Basit öğe kaydını göster

dc.contributor.authorMarouf, Ahmed Al
dc.contributor.authorAlhajj, Reda
dc.contributor.authorRokne, Jon G.
dc.contributor.authorGhose, Sunita
dc.contributor.authorBismar, Tarek A.
dc.date.accessioned2023-12-05T06:48:29Z
dc.date.available2023-12-05T06:48:29Z
dc.date.issued2023en_US
dc.identifier.citationMarouf, A. A., Alhajj, R., Rokne, J. G., Ghose, S. ve Bismar, T. A. (2023). Exploring gene expression and clinical data for identifying prostate cancer severity levels using machine learning methods. Annual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) içinde (186-191. ss.). Regina, 24-27 September 2023. https://doi.org/10.1109/CCECE58730.2023.10288946en_US
dc.identifier.isbn9798350323979
dc.identifier.issn0840-7789
dc.identifier.urihttps://doi.org/10.1109/CCECE58730.2023.10288946
dc.identifier.urihttps://hdl.handle.net/20.500.12511/11943
dc.description.abstractProstate cancer (PCa) is the most common type of cancer in men worldwide. It is a cancer that starts in the small walnut-shaped male gland called the prostate. From the prostate, it can form a metastasis into other organs. If detected and diagnosed early the survival rate may increase to 95%. Therefore, early detection and diagnosis are important tasks performed by a pathologist. The pathologist identifies the severity levels using a scale called the Gleason grading group (GGG). The GGG is found by pathologists by looking at a biopsy sample and assigning a grade of low, intermediate, or high to the sample. The pathologist then assesses a second sample in the same manner. The GGG is found by adding these two scores provides the total Gleason score. In this paper, we have explored tissue microarray (TMA) and clinical data collected by pathologists of Alberta Precision Laboratory, for predicting the severity level of prostate cancer using various machine learning methods. Traditional classifiers, such as Naïve Bayes, Decision Tree, Support Vector Machine with Radial basis function (RBF), Logistic Regression, and ensemble classifiers, such as Random Forest, and Bagging with k-nearest neighbors have been applied through the machine learning pipeline containing imputation and sampling techniques. An integrated SMOTE-Tomek Links method is adopted for handling the class imbalance problem. The highest accuracy obtained is 99.64% from the Random Forest method.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGleason Grading Groupen_US
dc.subjectMachine Learningen_US
dc.subjectProstate Canceren_US
dc.subjectRandom Foresten_US
dc.subjectSeverity Levelsen_US
dc.titleExploring gene expression and clinical data for identifying prostate cancer severity levels using machine learning methodsen_US
dc.typeconferenceObjecten_US
dc.relation.ispartofAnnual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)en_US
dc.departmentİstanbul Medipol Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.authorid0000-0001-6657-9738en_US
dc.identifier.issue2023-Septemberen_US
dc.identifier.startpage186en_US
dc.identifier.endpage191en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/CCECE58730.2023.10288946en_US
dc.institutionauthorAlhajj, Reda
dc.identifier.wos001103161900033en_US
dc.identifier.scopus2-s2.0-85177471238en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster