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Atrial fibrillation designation 
with micro‑Raman spectroscopy 
and scanning acoustic microscope
Ugur Parlatan1*, Seyma Parlatan2, Kubra Sen1, Ibrahim Kecoglu1, Mustafa Ozer Ulukan3, 
Atalay Karakaya3, Korhan Erkanli3, Halil Turkoglu3, Murat Ugurlucan3, 
Mehmet Burcin Unlu1,4 & Bukem Tanoren5

Atrial fibrillation (AF) is diagnosed with the electrocardiogram, which is the gold standard in clinics. 
However, sufficient arrhythmia monitoring takes a long time, and many of the tests are made in 
only a few seconds, which can lead arrhythmia to be missed. Here, we propose a combined method 
to detect the effects of AF on atrial tissue. We characterize tissues obtained from patients with or 
without AF by scanning acoustic microscopy (SAM) and by Raman spectroscopy (RS) to construct a 
mechano-chemical profile. We classify the Raman spectral measurements of the tissue samples with 
an unsupervised clustering method, k-means and compare their chemical properties. Besides, we 
utilize scanning acoustic microscopy to compare and determine differences in acoustic impedance 
maps of the groups. We compared the clinical outcomes with our findings using a neural network 
classification for Raman measurements and ANOVA for SAM measurements. Consequently, we show 
that the stiffness profiles of the tissues, corresponding to the patients with chronic AF, without AF or 
who experienced postoperative AF, are in agreement with the lipid-collagen profiles obtained by the 
Raman spectral characterization.

Coronary artery bypass surgery, which redirects blood through a healthy vessel taken from the leg, arm, or 
chest, is the surgical technique applied to patients with blocked or partially blocked arteries in their hearts. 
Approximately in half of the patients after coronary artery bypass surgery, atrial fibrillation (AF) is developed. 
Even though the exact cause of AF is not known, it is described to be mostly rapid and irregular heart rate, which 
increases the risk of heart complications such as stroke. AF was associated with fibrotic content of fatty infiltra-
tions in the left atria of AF sheep1. In patients with AF, blood clots can be developed and these may circulate 
within the body and then cause severe damages to specific organs. Therefore, possible causes of AF are widely 
investigated by the scientists.
The gold standard in diagnosing AF is the visual investigation of the electrocardiograms that are evaluated by the 
doctor’s clinical experience2. Artificial intelligence brings a quantitative perspective to the diagnosis process3,4. In 
addition, the physical measurement of human tissues evaluated frequently, brings another perspective to quantify 
the diagnosis of a specific disease. Such efforts for AF using Raman spectroscopy have been proposed before5.

Molecular spectroscopy enables the non-invasive structure determination of tissues. Raman spectroscopy is 
a vibrational spectroscopic technique that enables monitoring chemical signatures of the molecules in a sample 
by measuring the inelastic scattering photons spreading away from the illuminated sample6. An electromagnetic 
wave’s interaction (collision) with a molecule in a material leads to a shift in the frequency when the scattering is 
inelastic. In addition to its widespread use in chemistry7,8, biology9,10 and materials science11,12, this spectroscopic 
technique has also shown a great potential in medical applications such as diagnosing cancers, cardiovascular 
diseases and dermatological diseases13–15.

Tissue characterization with Raman spectroscopy enables fast determination of disease states16 and pathologi-
cal margins17,18 by decomposing the spectral tissue response and characterizing the macromolecular structure 
that mainly contains collagen, protein, and lipids. Machine learning and Raman spectroscopy have recently been 
an appropriate couple to detect small spectral changes in biological samples that may lead to a decision about 
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the sample19,20. One of these methods is k-means clustering that is an unsupervised data analysis method21,22. 
Measurements can be grouped into several clusters with no previous information using k-means.

Scanning acoustic microscopy (SAM) is a technique that uses ultrasound signals to obtain the samples’ 
morphological and mechanical properties simultaneously. The speed of sound (SOS) through tissues23–26 or 
acoustic impedance of samples27,28 can be obtained by SAM. On the other hand, two major advantages of SAM 
are its high speed in obtaining the two-dimensional maps and instantaneous scanning of the specimen with no 
staining or specific preparation.

In this study, we utilized scanning acoustic microscopy with Raman spectroscopy to investigate the samples 
obtained from patients, who underwent coronary artery bypass surgery. We used our Raman spectra and SAM 
images to group the tissues by performing a k-means algorithm. Consistency in SAM and RS results proved the 
success in combining these techniques to obtain a mechano-chemical profile for atrial tissues.

Results and discussion
In this study, 65 tissue samples (one tissue sample from each patient) were obtained from the auricle of the right 
atrium of patients and examined with both SAM and RS. There are 3 groups of patients, who are with chronic 
AF, who experienced postoperative AF and converted to sinus rhythm either medically or by cardioversion, and 
who did not experience rhythm disturbances preoperatively or after the operation during their hospital stay.

Raman spectroscopy.  We scanned each tissue sample using the experimental setup shown in Fig. 1a. We 
acquired Raman spectra of tissues from 441 different sites for each sample, which corresponds to a scan area 
of 1 x 1 mm2. Thus, we obtained a sampling that roughly represents the heterogeneous structure of the sample. 
We obtained a total number of 30552 spectra from 65 tissue samples. To reduce the number of variables in the 
analysis, we applied a principal component analysis (PCA) on the dataset we constructed from all the spectra 
that were baseline corrected and vector normalized.

Unsupervised (k‑means) clustering of the spectra.  AF can be mechanically characterized by giving indices to 
the stiffness levels of the tissues. Although we had this information, we considered this research problem as 
an unsupervised case from the molecular characterization view. We applied k-means clustering on the first 20 
principal components that cover 91% of the total variance explained. We utilized the Calinski-Harabasz index 
to determine the optimal “k” value for k-means clustering and found the k value as three. In Fig. 2a, we showed 
the averages of the three groups obtained from k-means clustering. The spectra in groups still had significant 
variances since the grouping is mainly performed depending on the amount of particular chemical(s). However, 
averaging a group can help explore the data and understand which spectral components are dominant in each 
group. For example, the first group mainly consists of the contributions from collagen bands since the highest 
intensity components are at 915, 1000, 1040, 1247, 1450, and 1645 cm-1. On the other hand, the second group is 
dominated by fatty acid components since the sharp peaks at 1060, 1120, 1299, and 1450 cm-1 exist. Besides, the 
band at 1725 cm-1, which is related to ester bonds, is only apparent in this group. The third group has relatively 
strong band components from Amide III (1254, 1265) and Amide I (1645). The number of spectra in the second 
group corresponds to 5.23% of all measurements. Thus, the measurements in the first and the third group are 
more dominant when compared to group two.

Utilizing PC Spectra and Band Component Analysis to Obtain Chemical Information.  In Fig. 2c, the PCA scores 
were colored according to their group identities obtained by k-means clustering. In Fig. 2b, we showed the PCA 
coefficient spectra whose x-axis and the y-axis show the Raman shifts and the PCA coefficients, respectively. We 
annotated the peak positions in this figure to relate the changes to molecular vibrations.

Figure 1.   Experimental setups for (a) Raman spectroscopy and (b) scanning acoustic microscopy.
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PCA coefficients are a measure of the variances between selected features. Since the first three PCs represent 
most of the spectra, we used them for spectral inspection. Here, we showed that the first PC is positively cor-
related with the peaks at 907, 1040 (Proline), 1247, 1265, 1657 (Amide III and Amide I), and 1442, 1295 (fatty 
acids, CH2/CH3). In Fig. 2e and f, we showed the spectra of proline and stearic acid to help the reader relate the 
differences in the wavenumbers to specific macromolecules. These correlations show that the first three principal 
component spectra are in line with the clustered Raman spectra shown in Fig. 2a. For example, the first group 
and the first PC have a common relation with the macromolecules proline and Amide I, which are the marker 
components of collagen. We showed the relations between the peak intensities at the strong peaks corresponding 
to major macromolecules in the first three PCs in Fig. 2d.

We concluded from Fig. 2d that the amplitude of the first PC spectrum at 1040 cm-1 is the highest while it 
is the lowest for the bands at 1295 and 1333 cm-1. Since the collagen structure is mainly composed of repeating 
proline chains, the difference between the signatures of other proteins and collagen structure in the tissue can 
be understood by following the relative changes of proline and Amide I bands36. The research on the preventive 
effect of polyunsaturated fatty acids on AF shows controversial outcomes37–39.

To extract more information from the Raman spectra, we quantified the Raman intensity differences between 
the groups visible in Fig. 2a. Therefore, we applied a Gaussian curve-fitting, also known as band component 
analysis (BCA), to decompose the measured Raman peaks into subcomponents that could not be resolved in 
the raw spectra. In this process, we calculated the parameters of the unresolved peak center positions, areas, 
and intensities and compared them using the indices we obtained from the k-means analysis. After determining 
peak parameters, we performed a Mann-Whitney U test on the peak intensities to find the statistically signifi-
cant wavenumbers. Figure 3 shows the comparison of the Raman shift values of the peaks located at 817, 853, 
938 cm-1 (proline and hydroxyproline), 1060, 1120, and 1438 (fatty acids) cm-1. Next, we calculated the means 
and standard deviations of the Raman intensities corresponding to the significant peaks to compare the groups. 
Finally, we summarized the average intensities of the significant peaks with their errors included in Table 1. 
Band component analysis showed that the second group has an apparent relationship with the fatty acid bands 
and the band intensities at collagen-related bands have the smallest values among the three groups. The band 
intensities at the statistically significant peak locations for the first and the third groups are closer to each other. 
One may speculate that the groups can be related to chronic AF, control, and postoperative AF when matched in 
order. Consequently, Raman analysis showed that the groups are different from each other in terms of the peak 
intensities corresponding to tissue cytoskeleton structures such as collagen.

Figure 2.   Raman spectroscopy-based classification of the measured tissue samples. (a) Comparison of group 
means. (b) PC loadings of the spectral distribution of the first three PCs whose TVEs are about 76%. We used 
these PCs in the k-means analysis. (c) Determination of group indices by using principal component analysis 
(PCA). PC1 (with total variance explained (TVE) of 47%) vs. PC2 (TVE of 23%) plot shows the Euclidean 
distance between the PC scores, which were further used in the k-means analysis for the determination of group 
identities. (d) Chemical comparison of PC loadings by means of their responses at particular band positions. 
Variations of peak positions at 1040, 1295 and 1657 (proline, fatty acids, and Amide I) were investigated. (e) 
Raman spectrum of Stearic Acid (Provided by FDM Raman organics library). (f) Raman spectrum of Proline 
measured in our lab.
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Scanning acoustic microscopy.  We obtained acoustic impedance maps of samples from 3 groups to char-
acterize the mechanical properties of the tissues. Reflected ultrasound signals from the reference (distilled water) 
surface and the tissue sample surface on the polystyrene substrate constructed the maps (Fig. 4a). As can be seen 
in Fig. 4, the acoustic impedance map of the tissues from Group 3 shows higher values (Fig. 4c) when compared 
with the maps of the first (Fig. 4a) or the second group patients(Fig. 4b). We show in Fig. 4d, that the average 
acoustic impedance of the tissues from Group 1 is 1.648 ± 0.017 MRayl, while the average acoustic impedance of 
the second group is 1.783 ± 0.020 MRayl and the average acoustic impedance of the third group is 1.996 ± 0.014 
MRayl. The average values of acoustic impedance were calculated considering the complete specimen surfaces.

As shown in Fig. 4d, the average acoustic impedance value was calculated to be the highest, indicating the 
highest elastic modulus, for Group 3, which may belong to patients with chronic AF. On the other hand, other 
groups had lower average acoustic impedance values, indicating lower elastic moduli. Therefore, samples of tis-
sues of patients with chronic AF can be assumed to be firmer. In contrast, other tissues samples of patients who 
experienced post-operative AF and no AF can be assumed to be softer. Change in tissue structure and, therefore, 

Figure 3.   Differences in Raman shifts found by BCA. The box plot comparison for the peak locations located at 
(a) 817 cm-1, (b) 853 cm-1, (c) 938 cm-1, (d) 1060 cm-1, (e) 1120 cm-1, (f) 1438 cm-1 are displayed.

Table 1.   Significant Raman bands among calculated band component analysis and their tentative assignments.

Raman shift (cm-1)

Normalized Raman intensity (a.u.) *103

Tentative assignmentsGroup1 Group2 Group3

817 9.2 ± 3.2 2.6 ± 5.3 7.2 ± 3.3 ν(C-C) Protein backbone29

853 9.6 ± 4.7 3.6 ± 6.3 6.7 ± 4.8 Proline of collagen30

938 14.6 ± 5.2 1.7 ± 4.0 8.5 ± 3.4 C-H out-of-plane vibration (Collagen type I or tyrosine), ν(C-C)31,32

1060 25.9 ± 6.7 70.9.1 ± 15.1 39.8 ± 8.3 ν(C-C) Fatty acids33

1120 6.9 ± 0.4 39.4 ± 1.4 17.9 ± 1.4 ν(C-C) Fatty acids33

1438 10.2 ± 8.0 59.1 ± 31.4 23.3 ± 13.4 HCC(out of plane), Proline31

1623 17.4 ± 1.4 18.7 ± 1.0 15.1 ± 1.4 Amide I β sheet34

1676 6.8 ± 2.7 9.5 ± 3.1 8.7 ± 3.1 Amide I β sheet35
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tissue mechanics through aging, mechanical overload or injury is observed due to cardiac tissue damage, which 
is associated with the development of fibrosis. Furthermore, the presence of atrial fibrillation was found to be 
associated with arterial stiffness in patients with hypertension40. Conclusively, we can say that the success of 
discrimination of atrial tissue samples, with a lateral resolution of approximately 20µm by SAM equipped with 
an 80 MHz transducer, is an indicator of the feasibility of this modality in the diagnosis of AF in clinics.

Comparison of Raman and SAM measurements with the clinical labels.  We performed super-
vised classification using the clinical labels on Raman data. We applied neural networks classification after divid-
ing the data 80 / 20% for training, cross-validation, and test purposes. We included each group obtained from 
k-means clustering in the dataset and calculated the accuracies. We found the best result for the dataset corre-
sponding to Group 3. To provide a dataset representing similar biochemical profiles of the tissue and to make a 
consistent comparison, we included only one group in the training set. Figure 5a shows the confusion table for 
the test results obtained from Raman measurements. We found 82.1% test accuracy from the experiment results 
with Raman spectroscopy.

We selected only the tissue portion of the SAM images by applying k-means clustering to the data. We per-
formed an ANOVA test on the cluster averaged acoustic impedances. Since we have only one feature, we did not 
use a similar training procedure for the SAM dataset. We found that the clinical labels are consistent with our 
acoustic impedance measurements with a confidence level of 99%. The biomechanical differences we measured 
with SAM are compatible with the biochemical profile of the group that gives us the best accuracy since the 
strong peaks in group 3 are originated from Amide I-III vibrations, most probably collagens.

We analyzed the PC scores to investigate the level of heterogeneity and the in-group / between-group similar-
ity. In Fig. 5b–d, we show three examples of score plots generated for tissues from three clinically labeled groups. 
Although we have wide distribution for the same classes, the overlap between different classes is still enough 
to classify tissues from each other. Keeping in mind that we scanned a region whose dimensions are 1 mm X 1 
mm, this level of heterogeneity is expected.

When we intersected the tissue predictions with Raman and SAM, we found a 67.5% match. Although the 
accuracy of Raman predictions and the level of confidence from the ANOVA test with SAM data is relatively 
high, we still have a modest matching. The reason might be the downsampling between Raman and SAM analy-
sis. Since SAM generates one feature to analyze (acoustic impedance), we needed to find a score for every tissue 
from Raman spectral analysis. However, there are hundreds of variables (Rama shifts) in Raman measurements, 
which means the contribution to classification from each variable may be different, and it is challenging to find 
an unbiased parameter to compare. Converting the system into a multimodal microscope with a medical will 
enable simultaneous measurement and avoid such problems.

Figure 4.   Acoustic impedance maps of tissues of patients of (a) Group 1, (b) Group 2, and (c) Group 3. (d) 
Average acoustic impedance values, with standard deviations, of 3 groups.
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Methods
Ethics decleration.  This study was ethically approved by Istanbul Medipol University Ethics Committee 
(Number: 2020/257) and informed consent was obtained from each participant. All experiments were per-
formed in accordance with relevant guidelines and regulations.

Surgical technique and material (tissue) retrieval.  This study was ethically approved by Istanbul 
Medipol University Ethics Committee (Number: 2020/257) and informed consent was obtained from each par-
ticipant. The operations were performed with standard median sternotomy. Cardiopulmonary bypass was insti-
tuted with aortic and two-stage atrial (for coronary artery bypass grafting or aortic valve procedures) or bicaval 
(for tricuspid and mitral valve procedures) cannulations after 3 mg/kg heparin infusion at activated clotting 
time above 480 seconds. The two-stage or superior caval vein cannula was inserted from the right atrial auricula 
and secured purse-string sutures. Patients were cooled down to 32 ◦ C, and planned surgical procedures were 
executed at moderate hypothermia on the arrested heart with a potassium enriched cold blood cardioplegia. 
Myocardial protection was achieved with intermittent cardioplegia infusion to the aortic root or directly into 
the coronary arteries. The cardiopulmonary bypass was finalized conventionally at the end of the planned inter-
ventions, and de-cannulation was performed. The tissue samples were obtained from the excluded right atrial 
auricula beyond the purse-string suture and immediately placed into 3% formaldehyde solution after neutral-
izing the heparin with protamin infusion (4.5 mg/kg). Operations were finalized with routine measures, and 
patients were transferred to the intensive care unit. Tissue samples were transferred to Bogazici University for 
microscopy studies.

Raman spectroscopy.  We built the customized experimental setup for Raman spectroscopy, as shown in 
Fig. 1a. We illuminated the sample with a diode laser whose wavelength was 785 nm (Laserglow). The beam was 
cleaned up with a line filter whose bandwidth was 10 nm and the output of the filter is transmitted through the 
dichroic mirror (Thorlabs SP805) and focused onto the sample plane after transmission from a 10X objective 
(Olympus, NA 0.25). The scattered beams were collected with the same optical path until the dichroic mir-
ror. Since the scattered beams have the components of Stokes, Anti-Stokes, and Rayleigh beams, we selected 
Stokes photons, whose wavelengths are higher than the laser wavelength. These photons were reflected from the 
dichroic mirror and were steered into the achromatic lens that focuses the Raman photons into the multimode 
fiber (50 µm , 0.22 NA, Thorlabs), which is coupled to the spectrometer (Ocean QE Pro Raman).

We performed the tissue measurements by scanning the tissue surface using a motorized stage (Standa). The 
stepsize of the scans was 50 µ m and the scanning area was 1 mm x 1 mm. We acquired a total 441 spectra from 

Figure 5.   (a) Confusion table for the unsupervised neural network test set generated by using Raman data. 
(b–d) PCA score plot comparison plots. Each plot compares three clinical groups Legends includes the averaged 
acoustic impedance values. Abbreviations in the legend: CAF: Chornic AF, PAF: post operative AF, NAF: no AF.
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each tissue. The integration time for the tissue measurements was two seconds. We applied a Boxcar averag-
ing with a window size of one to smooth the spectrum in real-time. Finally, we applied a fluorescence baseline 
correction and vector normalization on the spectra described in our previous publications14. Combining these 
two pre-processing methods has already been discussed and found to be an efficient way to prepare data for 
spectral analysis41.

Scanning acoustic microscope.  Scanning acoustic microscope (AMS-50SI) developed by Honda Elec-
tronics (Toyohashi, Japan) was used for the characterization. SAM setup in acoustic impedance (AI) mode is 
shown in Fig. 1b. Ultrasonic signal generator and receiver in this study is an 80 MHz transducer. The focal length 
of the transducer is 1.5 mm and its spot size is 17 µm . The coupling medium between the quartz lens and the 
substrate is distilled water. The ultrasonic signals generated by the transducer ( S0 ) are scanned 2-dimensionally 
by the X-Y stage and reflected back both from the reference ( Sref  ) and also the target material ( Starget ), then 
thsese reflected signals are compared and analyzed to generate the intensity and acoustic impedance maps of the 
region of interest with 300 x 300 sampling points with a lateral resolution of approximately 20 µm42.

Conclusion
AF is characterized by electrocardiogram which may lead to miss arrhythmia due to its duration of the measure-
ment. Besides, tissue stiffness increases dramatically in tissues of patients with AF, too. Generally, the doctors 
diagnose this hardness by hand. However, we can quantify the estimation of stiffness in many other ways. Scan-
ning acoustic microscopy is one of the most state-of-the-art and precise ways to do this. On the other hand, 
molecular changes that lead to mechanical changes in tissues can also be quantified by Raman spectroscopy. 
Combining these two techniques is a mechano-chemical analysis approach to assess the stiffness of the sample 
that can replace the subjective diagnosis done by medical doctors. We found increased acoustic impedance values 
for tissues of Groups 2 and 3, which can be related to AF development. Moreover, our Raman spectral analysis 
for these groups showed increased collagen levels, in agreement with the increase in stiffness.

There is a lack of literature on the diagnosis of AF by both SAM (no literature) and Raman spectroscopy (one 
study5). Therefore, we combined these two methods as a platform to assess the atrial tissues. Our limitation here 
was that we could not measure the tissues simultaneously by using both methods. This limitation is a challenge for 
us the overcome in future studies. Nevertheless, we think that the combination of SAM with RS has the potential 
to be used in clinics and will enable early diagnosis of AF in vivo with a verification. However, for combining 
SAM with RS, first, an intravascular SAM probe, similar to intravascular ultrasound (IVUS) probe, has to be 
developed. Then, it can be combined with RS on a catheter system for in vivo studies. Ultrasound signals and 
excitation light will be sent onto the tissue under investigation. Reflected ultrasound signals and Raman photons 
will be collected and then analyzed for obtaining affirmative morphological and mechanical information.

Data availability
The spectroscopy data that support the findings of this study are openly available in Zenodo at https://​doi.​org/​
10.​5281/​zenodo.​58205​4443.
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