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Abstract
The Gleason score is the most important prognostic marker for prostate cancer patients, but it suffers from significant
observer variability. Artificial intelligence (AI) systems based on deep learning can achieve pathologist-level performance at
Gleason grading. However, the performance of such systems can degrade in the presence of artifacts, foreign tissue, or other
anomalies. Pathologists integrating their expertise with feedback from an AI system could result in a synergy that
outperforms both the individual pathologist and the system. Despite the hype around AI assistance, existing literature on this
topic within the pathology domain is limited. We investigated the value of AI assistance for grading prostate biopsies.
A panel of 14 observers graded 160 biopsies with and without AI assistance. Using AI, the agreement of the panel with an
expert reference standard increased significantly (quadratically weighted Cohen’s kappa, 0.799 vs. 0.872; p= 0.019). On an
external validation set of 87 cases, the panel showed a significant increase in agreement with a panel of international experts
in prostate pathology (quadratically weighted Cohen’s kappa, 0.733 vs. 0.786; p= 0.003). In both experiments, on a group-
level, AI-assisted pathologists outperformed the unassisted pathologists and the standalone AI system. Our results show the
potential of AI systems for Gleason grading, but more importantly, show the benefits of pathologist-AI synergy.
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below Acknowledgements.
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Introduction

The biopsy Gleason score is the most important tissue-
based prognostic marker for prostate cancer patients [1].
However, it has been shown that Gleason grading suffers
from significant inter- and intraobserver variability [2, 3].
Specialized uropathologists show higher concordance rates
[4], but such expertise is not always available. Artificial
intelligence (AI) systems based on deep learning have
achieved pathologist-level performance in Gleason grading
[5–8], but it is not yet investigated whether pathologists
improve in Gleason grading if they are assisted by such
systems.

Pathologists assess the Gleason grade of a prostate
biopsy through microscopic assessment of tissue stained
with hematoxylin and eosin (H&E). Based on the mor-
phological pattern of the tumor, a grade between one and
five is assigned, with one being the lowest and five the
highest. For biopsies, the Gleason score is the sum of the
two most common patterns, e.g., 3+ 5= 8. If a higher
tertiary pattern is present, this is used instead of the sec-
ondary pattern. Patterns 1 and 2 are not reported anymore
for biopsies [9].

Recently, (ISUP) grade groups were introduced which
aimed to improve the reporting of Gleason grading by
assigning the Gleason score to one of five prognostic groups
[10]. These groups are directly based on the Gleason score;
3+ 3 and lower go to group 1, 3+ 4 to group 2, 4+ 3 to
group 3, 3+ 5, 5+ 3 and 4+ 4 to group 4, and higher
scores to group 5. While the introduction of grade groups
showed clinical value and increased interpretability of the
tumor grade for patients, it has not improved the inter- and
intraobserver variability [5, 11].

Deep learning has shown promise in many medical fields
[12], and the introduction of digital pathology allows for
AI-based diagnostics in pathology [13]. For prostate cancer,
methods based on deep learning have been developed for
tumor detection [7, 8, 14–16], grading of prostatectomies
[5], tissue microarrays [6], and biopsies [7, 8, 17]. In
multiple studies, such deep learning systems showed
pathologist-level performance, within the limits of the study
setup [5, 7, 8].

Although deep learning systems have shown to achieve
high performances on grading tasks, evidence of the merit
of such systems when embedded in the pathologist’s
workflow is limited. Deep learning systems can be viewed
as a new tool for pathologists to use in their diagnostic
process and should also be evaluated as such. In addition,
regardless of the merits, most developed systems are also
constrained by significant limitations that affect the per-
formance and can lower the diagnostic power. Within his-
topathology, the presence of non-prostate tissue, atypical
tissue patterns, ink on a slide, fixation, scanning and cutting

artifacts, or the presence of rare cancer subtypes can dra-
matically affect a system’s assessment of tissue. Many of
these errors, especially those caused by artifacts, are easily
spotted by a human observer.

Studies combining experts’ opinions with feedback from
automated systems have mainly been performed outside of
the field of pathology; for example on the task of breast
cancer detection in mammography [18]. For pathology, on
the task of cancer metastasis detection in lymph nodes, the
sensitivity of detection of micrometastases increased, and
overall case reading time went down as a result of AI
support [19]. On the task of mitosis counting, AI-generated
hotspots improved reproducibility between readers [20]. For
prostate cancer, AI assistance has shown potential in
increasing sensitivity for detecting cancer in biopsies [16].
However, most of these studies focus either on computer-
aided detection or diagnosis. For prognostic measures, such
as Gleason grading of prostate biopsies, there is, to the best
of our knowledge, no such study as of yet.

In a previous study, we developed a fully automated deep
learning system for grading prostate cancer [7]. The deep
learning system was trained on a large dataset of prostate
biopsies and achieved pathologist-level performance, both in
determining the grade group and in stratifying patients in
relevant risk categories. As part of the initial validation of the
system, its performance was compared with a panel of
pathologists in an observer experiment. The deep learning
system outperformed 10 out of 15 observers on determining
the grade group.

In this study, we investigate the value of AI-assisted
reading by pathologists for Gleason grading of prostate
biopsies by comparing the diagnostic performance of
pathologists with and without the assistance of a deep
learning system.

Materials and methods

Collection of the dataset and setting the reference
standard

In a previous study [7], we developed a deep learning
system to grade prostate biopsies using the Gleason grading
system. To train this system, we collected a dataset of 5759
H&E-stained biopsies from 1243 patients. All biopsy pro-
cedures were performed as part of routine diagnostics at the
Radboud University Medical Center between 2012 and
2017. For the study, the H&E-stained glass slides of the
biopsies were digitized at 20× magnification (pixel resolu-
tion 0.24 µm) using a 3DHistech Pannoramic Flash II
250 scanner and subsequently anonymized. The need for
informed consent was waived by the local ethics review
board (IRB number 2016–2275).
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Of the dataset, 550 biopsies were excluded from model
development and used as an independent test set to evaluate
the deep learning system. Patients that were included in this
test set were independent of the patients in the training set.
Given the inter-observer variability of Gleason grading,
validation of the system required a consensus reference
standard. In the first round, three expert pathologists (CH-
vdK, RV, HvB) with a subspecialty in uropathology indi-
vidually graded the cases in the test set using the ISUP 2014
guidelines [21]. For some cases the majority vote was taken:
cases with an agreement on grade group but a difference in
Gleason pattern order, e.g., 5+ 4 versus 4+ 5; cases with
an equal grade group but a disagreement on Gleason score;
and cases for which two pathologists agreed while the third
had a maximum deviation of one grade group. Cases with a
disagreement on malignancy were always flagged. In the
second round, cases that had no agreement were presented
to the pathologist who deviated the most from the other two.
Additional to the pathologist’s score, the scores of the two
other pathologists were shown anonymously. Finally,
biopsies without agreement after two rounds were discussed
in a consensus meeting.

Observer panel and case selection

Part of the first study was a comparison of the deep learning
system to a panel of pathologists. Of the full test set, 100
cases were selected and presented to a panel of 13 external
pathologists and two pathologists in training. Of these 100
cases, 20 benign cases were selected by one of the expert
pathologists (CH-vdK). The benign cases were chosen to
cover the full spectrum of possible pitfalls for cancer,

including partial atrophy, reactive atypia, granulomatous
inflammation with epithelioid cells, atypical adenomatous
hyperplasia as well as HGPIN (Table 1). The other 80 cases
were sampled based on the grade group assignment by the
same pathologist, selecting an equal number of cases per
grade group. Potential pitfalls in the set of malignant cases
are shown in Table 2. The panel was asked to grade all
biopsies through an online viewer PMA.view (Pathomation,
Berchem, Belgium) following the ISUP 2014 guidelines.
No time limit was set for the grading process.

All pathologists that participated in the first study were
invited to participate in the present study. One additional
pathologist in training, who showed interest in the first
study but was not able to grade all biopsies before sub-
mission of the previous paper, was also asked to join the
current study. Panel members were not involved in the
development of the AI system, nor had used the system
before this study.

We included all 100 biopsies from the first study, as the
panel already graded these cases. In addition, we extended
the dataset with 60 new cases from the original test set, all
of which were unseen by the panel members. These
new unseen cases were used as control cases to measure
the potential effect of a second-read on the original
cases. One of the expert pathologists who set the reference
standard (CH-vdK), selected ten benign cases manually,
again controlling for a broad range of tissue patterns.
The remaining fifty cases were sampled based on the con-
sensus grade group, selecting an equal number of cases per
group. All 160 biopsies were shuffled and assigned new
identifiers. This dataset is further referenced as the internal
dataset.

Table 1 Description and
presence of inflammation for the
benign cases of the internal
test set.

Case ID Description Inflammation Case ID Description Inflammation

20 AAH Mild 109 RA+ BCH+A Mild

21 PA Mild 113 none None

23 RA+A Mild 171 PA+A None

30 RA+ BCH+A Mild 192 RA+A Mild

33 HGPIN+ RA+A Mild 227 PA+HGPIN Minimal

36 RA Minimal 249 RA Moderate

38 RA+A Mild 280 A+ PA Minimal

66 PA Minimal 284 RA+ PA Mild

67 AAH None 287 HGPIN None

68 A None 326 PA+AAH None

82 None Minimal 333 A None

88 RA Moderate granulomatous 348 HGPIN+ RA+ PA Minimal

90 RA Severe granulomatous 398 RA+ PA+BCH Mild

94 PA Mild 430 RA Moderate

108 PA Mild 482 PA None

A (full) atrophy, AAH atypical adenomatous hyperplasia, PA partial atrophy, RA reactive atypia, BCH basal
cell hyperplasia, HGPIN high grade PIN.
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Feedback of the AI system

We processed each biopsy in the dataset using the deep
learning system [7], resulting in a prediction of the volume
percentages of each Gleason pattern (if present), the Glea-
son score, and the grade group per biopsy. Besides a
numerical prediction, the system also generated an overlay

that outlined malignant glands: Gleason pattern 3 in yellow,
Gleason pattern 4 in orange, and Gleason pattern 5 in red.
For the current experiment, we chose not to highlight
detected benign tissue. The overlays were postprocessed by
a connected components algorithm to remove small artifacts
and to ensure that each detected malignant gland was
assigned to a single Gleason pattern. Postprocessing was

Fig. 1 Overview of the viewer used in the observer experiment.
Both the original biopsy (a) and the biopsy with the AI overlay (b)
are presented to the pathologist. Each individual tumor gland is

marked by the deep learning system in the overlay. The case-level
grade group was supplied to the panel as part of their (separate)
grading form.

Table 2 Potential pitfalls in the
set of malignant cases of the
internal test set.

Case ID Comment Case ID Comment

8 IDC dd HGPIN and G4 cribriform 277 IDC dd G4 cribriform

14 G5 dd -itis 3+ 317 IDC dd HGPIN and G4 cribriform

112 G5 dd -itis 3+ 370 IDC dd HGPIN and G4 cribriform

114 G5 dd -itis 3+ 391 Partly foamy gland, no dd problem

132 Minimal cancer 395 Partly foamy gland, no dd problem

141 HGPIN dd G3 396 Partly foamy gland, no dd problem

186 Partly foamy gland, no dd problem 424 Foamy gland and IDC dd invasive

191 Partly foamy gland, no dd problem 439 IDC dd invasive G4

194 IDC dd HGPIN and G4 cribriform 448 Hyperplastic variant

212 Partly atrophic subtype 468 dd HGPIN vs. invasive

216 Foamy subtype 475 IDC dd HGPIN and G4 cribriform

229 IDC dd HGPIN and G4 cribriform 476 IDC dd G4 cribriform

234 Minimal cancer 526 IDC dd invasive G4

241 Minimal cancer and G5 dd -itis 529 HGPIN dd invasive G3

242 Partly hyperplastic type

IDC intraductal carcinoma, HGPIN high grade PIN, G3, G4, G5 growth pattern 3, 4, 5, dd differential
diagnosis, -itis inflammation.
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done fully automatically without manual review. All
selected biopsies were used, regardless of the correctness of
the system’s prediction on these biopsies.

Second-read with AI assistance

The 160 biopsies were made available to the panel
of pathologists through the same online viewer as during
the first read. The time between the first and second
read was at least 3 months. Each biopsy could be
viewed at a maximum pixel spacing of 0.24 μm (roughly
equivalent to 40× objective magnification). Next to the
original biopsy, we showed an exact copy of the biopsy
where AI-predicted Gleason patterns were highlighted
using different colors (Fig. 1). This overlay could be
used to assess the tissue that the algorithm had flagged as
malignant. To complement the overlay, we also supplied
the numerical output of the deep learning system to
the panel, including the predicted volume percentages, the
presence of tumor (yes/no), the Gleason score, and the
grade group.

We asked each panel member to report: whether a biopsy
contained tumor, presence of Gleason patterns, volume
percentages of present patterns, and the grade group. After
grading a case, the panel members had to indicate whether
they thought the system’s prediction influenced their
assessment.

No time restriction was given per case, but we asked
each pathologist to complete all 160 cases within 8 weeks.
Each panel member was instructed to review the cases
individually without consulting colleagues. Panel members
had no access to the cases from the previous experiment nor
to the grades that they assigned. Between the first and
second read, no performance indication or feedback was
given to panel members with respect to the reference stan-
dard. When all cases were graded, each panel member was
asked to fill in a questionnaire regarding the process and
feedback from the deep learning system.

External dataset

After the experiment on the internal dataset, we performed
an additional experiment to test our hypothesis on external
data. The time between the main experiment, and this
external validation was 6 months. For this external valida-
tion, we made use of the Imagebase dataset [22]. The
Imagebase set consists of 90 cases of prostate needle
biopsies with cancer independently graded by 24 interna-
tional experts in prostate pathology. Grading by the experts
was done between May and September 2015, based on
microphotographs taken from representative locations.

Each glass slide in the dataset consisted of two sections
of the same biopsy, of which one was marked by pen. The

biopsies were scanned on two different scanners as part of a
previous independent study on automated Gleason grading
by Ström et al. [8]. We extracted the marked biopsies and
removed the pen markings. The deep learning system was
applied as-is to the dataset without any normalization of the
data. In the absence of a training set, the decision thresholds
of the system were not optimized on the dataset. Instead, we
determined that any detected tumor would classify the
biopsy as malignant and used a 5% volume threshold for the
inclusion of secondary patterns, comparable with clinical
practice.

The setup of the experiment on the external dataset was
equal to the experiment on the internal dataset. All pathol-
ogists who took part in the first experiment were invited to
join the second experiment. Pathologists were given 1 week
to grade the Imagebase cases. Instead of using micro-
photographs, pathologists were given access to the full
biopsy through the digital viewer. After the unassisted read
and a 2-week washout-period, the pathologists had to
reexamine the cases with AI assistance.

Statistical analysis

After all panel members completed the grading of the
biopsies, we compared their raw scores to the consensus
reference standard. Scores were given on a six-point scale: 0
for benign, and 1–5 for grade groups. Cohen’s kappa with
quadratic weights was used as the primary metric of per-
formance. On a group-level, we used the median kappa as
the metric to account for outliers.

To compare reading cases with or without AI assistance
we conducted a statistical analysis, using the difference
in kappa between the two reads as the test statistic.
A Shapiro–Wilks test for normality was performed to show
that the data were not normally distributed. To compare the
difference in kappa scores, we performed a Wilcoxon
signed-rank test on the paired kappa values. The test sta-
tistic was computed using the grades of the 100 cases that
were used in both reads.

To account for possible bias in the reference standard, we
computed the pairwise agreement between all panel mem-
bers individually. The reference standard was not used in
this analysis. Agreement was calculated using quadratically
weighted Cohen’s kappa on the grade group.

In addition to a comparison of grade group agreement, we
compared the concordance on estimated tumor volume. For
each panel member, we computed Pearson’s correlation on
the reported tumor volume with all other panel members
(pairwise combinations). Correlations were computed on data
of the 80 malignant cases that were used in both reads.

For the external Imagebase dataset, we used agreement
using quadratically weighted Cohen’s kappa as the
main metric, to allow for a comparison between the internal
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and external data. Agreement was calculated using
linear weights in the Imagebase study [22], so we addi-
tionally computed the agreement using linear weights to
compare between the two studies. As there was no con-
sensus between Imagebase panel members for every
case, we computed the average agreement of each panel
member of the study pairwise with the Imagebase panel
members, following similar work on this dataset [8]. To
compare between reads, the median value of the pairwise
kappas was used. A Shapiro–Wilks test for normality was
performed to show that the data were not normally dis-
tributed. To compare the difference in kappa scores,
we performed a Wilcoxon signed-rank test on the paired
kappa values.

All statistical analyses were performed using Python
(version 3.7.6), the pandas package (version 1.0.1), the
scikit-learn package (version 0.22.2) and the SciPy package
(version 1.4.1). Figures were generated using the matplotlib
package (version 3.1.3).

Results

The observer panel

We invited 16 pathologists (board certified or residents)
who participated in an earlier study on automated Gleason
grading [7] to perform this observer experiment. Two panel
members dropped out due to other obligations or a lack of
time. In total, the observer panel consisted of 14 members
(11 certified pathologists and 3 pathology residents), ori-
ginating from 12 independent labs and 8 countries. All
panel members had prior experience with Gleason grading,
though with varying amounts of experience.

Dataset under review and reference standard

From the test set that was previously used to evaluate our
deep learning system [7], a set of 160 cases was selected to

be reviewed by the panel. All cases under review had been
graded by three uropathologists with extensive (>20 years)
experience in Gleason grading, and their consensus opinion
set the reference standard. The agreement between the
uropathologists in the first round of the consensus-protocol
was high (quadratic weighted Cohen’s kappa 0.925).

Of the selected cases, 100 cases were already graded by
the panel as part of the previous study and were reused for
the current study; the remaining 60 cases were unseen to act
as controls, to measure the potential effect of a second-read
on the original cases. The complete set of 160 cases for the
AI-assisted read in the present study consisted of 30 (19%)
benign cases, 22 (14%) cases with grade group 1, 26 (16%)
cases with grade group 2, 32 (20%) cases with grade group
3, 20 (13%) cases with grade group 4 and 30 (19%) cases
with grade group 5.

AI-assisted gleason grading

After grading, all panel members filled in a questionnaire on
the grading process. Five out of 14 (36%) panel members
predicted that they scored somewhat better in comparison
with the first read. Of these five, 3 out of 14 (21%) expected
a performance increase due to being more experienced in
viewing cases using the online viewer, and 2 out of 14
(14%) because of the AI assistance. The majority of the
panel members (8 out of 14, 57%) indicated they did not
expect a performance increase as a result of the AI assis-
tance, while one pathologist (1 out of 14, 7%) expected to
have scored somewhat lower.

Eleven out of 14 (79%) panel members indicated that
they used feedback from the AI system during grading. Of
all the components of the AI feedback, the Gleason pattern
overlay was determined to be the most useful and easy to
interpret (Fig. 2). The panel members indicated that the final
grade group, as assigned by the system, was the least
helpful. The majority of panel members noted that the AI
assistance did not distract them from the grading process,
but instead made grading the biopsies faster (Fig. 3).

Fig. 2 Survey results on the AI
feedback. Panel members were
asked to indicate how useful
each part of the AI’s feedback
was on a five-point scale from
“Not useful” to “Very useful”.
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Performance of the panel with and without AI
feedback

In the first read without AI assistance, the agreement with
the reference standard (measured by the median quad-
ratically weighted Cohen’s kappa) for the panel was
0.799. In the second, AI-assisted read, the median kappa
of the panel increased to 0.872 (9.14% increase), showing
a significant increase in performance (Wilcoxon signed-
rank test p= 0.019, Fig. 4). On the same dataset, the AI
system in itself achieved a kappa score of 0.854.
Excluding panel members who estimated that they
improved due to viewing more cases (n= 3) or excluding
pathologists who indicated that they did not use the AI
feedback (n= 3), we found a comparable increase in

median kappa from, respectively 0.754–0.875 (p= 0.041)
and 0.754–0.870 (p= 0.016).

Nine of the 14 (64%) panel members scored higher in the
assisted read, while five (36%) panel members scored
slightly lower, though with a maximum decrease in kappa
score of 0.013. Of the five that scored lower, four already
outperformed the AI system in the first read. The inter-
quartile range of the panel’s kappa values dropped from
0.113 to 0.073 in the second read (Fig. 4).

In the first read, the kappa value of the AI system
exceeded that of 10 out of the 14 (71%) panel members. In
the AI-assisted read, only five of the panel members (36%)
scored a kappa value below that of the AI system.
The largest improvement was seen for panel members who
had less than 15 years of experience (Fig. 5a). Of the panel

Fig. 3 Survey results on the
grading process. Panel
members were asked to reflect
on the grading process and
answer questions on a five-point
scale from “Strongly disagree”
to “Strongly agree”.

Fig. 4 Panel performance with
and without AI assistance.
With AI assistance, the median
performance of the group
increased while the variability
between panel members
went down.
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members who scored lower than the AI system in
the unassisted read (10 out of 14, 71%), nine scored higher
in the assisted read (9 out of 10, 90%). None of the
panel members who outperformed the AI in the unassisted
read improved in the assisted read. On a group-level, the

median performance of AI-assisted reads was higher than
both that of the standalone AI system and the unassisted
reads.

The agreement of the panel with the reference standard
on the control cases was high, with a median kappa value of

Fig. 5 Individual performance of panel members shown for both
the unassisted read (light blue) and assisted read (dark blue).
Results for the internal test set shown in (a) and external test set shown
in (b). Lower performance in the unassisted read is indicated with a
line in the light blue bars. Pathologists are sorted based on experience

level and the kappa value of the unassisted read. The performance of
the standalone AI system is shown in green. In the unassisted reads,
the AI system outperforms the group. In the assisted reads, the median
performance of the group is higher than of the standalone AI system.

Fig. 6 Pairwise agreement for each panel member with the other
panel members. Each horizontal bar indicates the average agreement.
The consensus reference standard was not used in this figure. The

agreement in the assisted read (dark blue) is higher than in the unas-
sisted read (light blue). Panel members are sorted based on their
agreement in the unassisted read.

Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by. . . 667



0.910, and slightly higher in comparison with the test cases
(kappa 0.872). The control cases were only viewed in the
assisted read. The system’s performance on the control
cases was also higher, with a kappa value of 0.905 com-
pared with 0.854 on the test cases.

Between panel members, grading became more con-
sistent in the assisted read. In the unassisted read, without
taking the consensus into account, the median pair-wised
agreement within the panel was 0.737 (quadratically
weighted Cohen’s kappa). In the assisted read, this agree-
ment increased to 0.859 (Fig. 6).

One pathologist did not report total tumor volume in the
unassisted read and was excluded for the analysis of
reported tumor volume. The correlation between the
remaining panel members (13 out of 14) on total tumor
volume was high in the unassisted read (mean Pearson’s
r= 0.744), and increased slightly the assisted read (r=
0.780). Variation between panel members was lower in the
assisted read; the interquartile range decreased from 0.164
to 0.105 (Fig. 7).

External validation

For the Imagebase experiment, three cases and scores from
one of the expert pathologists were excluded following the
procedure by Ström et al. [8]. The remaining 87 cases all
contained tumor, and the Imagebase panel had an average
pairwise Cohen’s kappa of 0.819 (quadratically weighted)
and 0.677 (linear weighted). The deep learning system

achieved an average pairwise agreement of 0.748 (quad-
ratically weighted) and 0.584 (linear weighted) with the
Imagebase panel.

Of the 14 panel members, 12 joined the second experi-
ment using the Imagebase dataset, two pathology residents
dropped out due to other obligations. The remaining
members graded all the cases in both reads. In the unas-
sisted read, the median pairwise agreement with the Ima-
gebase panel was 0.733 (quadratically weighted Cohen’s
kappa) and 9 out of the 11 panel members (75%) scored
lower than the AI system. Using linear weights, the agree-
ment of the panel was 0.576.

With AI assistance, the agreement increased sig-
nificantly to 0.786 (p= 0.003), with the majority of the
panel now outperforming the standalone AI system
(10 out of 12, 83%). Improvements could be seen for all
but one of the panel members, with no clear effect of
experience level (Fig. 5b). Measured using linear weigh-
ted Cohen’s kappa, the agreement in the assisted read
increased to 0.631.

Discussion

To the best of our knowledge, this study was the first to
explore the possible merits of AI assistance on histological
tumor grading. In a research setting, we showed that AI
assistance improves pathologists’ performance at Gleason
grading of prostate biopsies. Measured through the

Fig. 7 Pairwise correlations on
reported total tumor volume
between panel members.While
only a slight increase can be
observed in the assisted read, the
total variation dropped
substantially.
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agreement with an expert reference standard, the read with
AI assistance resulted in a significant increase in perfor-
mance on the internal test set (quadratically weighted
Cohen’s kappa, 0.799 vs. 0.872).

On an external validation set, Imagebase, the same
positive effect of AI assistance was shown. With respect
to a panel of international experts in prostate pathology,
agreement increased from 0.733 to 0.786 (quadratically
weighted Cohen’s kappa). In comparison with the internal
set, the panel and AI system both scored lower on this
external set. This could be explained due to several rea-
sons: the Imagebase cases were collected specifically to
represent a wide range of tissue patterns and the panel
who set the reference standard reached consensus in only
50 of the cases, showing significant difficulty in the cases.
Second, some differences can be accounted to the refer-
ence standard being set in 2015 and the use of micro-
photographs instead of whole-slide images by the expert
panel. Last, the external dataset was collected in a dif-
ferent lab and scanned using a different scanner, which
could negatively influence the accuracy of the feedback
provided by the AI system.

Variance between panel members’ performance
decreased due to AI assistance, resulting in overall more
consistent grading. This decrease in grader variability was
observed in comparison with the reference standard, and
between panel members on both grade group and tumor
volume estimation. Reduced observer variability of Gleason
grading is highly desirable, as it could lead to a stronger
prognostic marker for individual patients and reduces the
effect of the diagnosing pathologist on potential treatment
decisions.

In the unassisted read, the AI system outperformed 10
out of 14 pathologists, and this dropped to only 5 out of
14 in the second-read with AI assistance. Pathologists
assisted by the AI system not only improved compared
with unassisted reads but also achieved higher median
performance than the standalone AI. These results indi-
cate that there is a potential benefit of pathologists using
AI assistance as a supportive tool during diagnosis.
Especially in geographic regions where the number of
pathologists is limited or subspecialized pathologists are
not available, AI systems such as ours can support
pathologists in achieving higher grading accuracy and
consistency.

The most substantial increase in performance was seen
for panel members who initially scored lower than the AI
system. Most of the pathologists with more than 15 years
of experience, who often outperformed the AI system in
the unassisted read, scored comparably in both reads.
Some pathologists’ scores approached the agreement
between the pathologists who set the reference standard.
In such cases, given the subjective nature of Gleason

grading, objective improvement is difficult to determine.
In the external set, which had a higher case difficulty, AI
assistance improved the scores of all but one of the panel
members.

While no performance gain was found for some pathol-
ogists in terms of diagnostic accuracy, most pathologists
indicated that the use of the AI system led to faster grading.
However, in this study, we did not directly measure the time
taken per case nor did we limit the maximum time per case.
For clinical applications, where reducing the workload and
overall efficiency is an important topic, saving time through
AI assistance is of great interest. Additional research could
quantitively test the ability of AI systems to reduce time
needed per case.

Through a questionnaire, we investigated the patholo-
gists’ experiences when using the system. One of the design
goals of the deep learning system was to support the
workflow of pathologists. The system was developed to
give feedback on multiple abstraction levels, with the grade
group giving an overall assessment and the overlay more
detailed feedback. We assumed that the precise gland-level
segmentations of the tumor and Gleason patterns could
support pathologists in quickly assessing glandular regions
and assisting in volume measurements. Almost all pathol-
ogists indicated that the AI system’s overlay was useful,
and, based on the questionnaire, was the most used feature
of the system. AI assistance through these overlays can be
seen as another tool for pathologists that gives feedback on
a glandular level, comparable with, e.g., immunohis-
tochemistry, and gives direct support for the systems’ case-
level prediction. The overlays allow pathologists to com-
bine their expertise with the added feedback of the system
to determine the final grade.

The AI feedback was also given on a case-level through
volume measurements, the Gleason score, and the grade
group. Of all features, panel members rated the biopsy level
grade group as the least useful. Given that the grade group
is directly computed from the Gleason score and all feed-
back was presented at the same time, it can be seen as
redundant information in the feedback.

While the results of this observer experiment are pro-
mising, several limitations have to be addressed. First, we
cannot entirely exclude that factors outside of the AI
feedback influenced the pathologists’ performance, both
positively and negatively. While pathologists did not
receive any feedback between the two reads, more
experience with viewing cases digitally, the viewer, or in
Gleason grading itself could have some influence on the
results. Though, we believe that the influence of a second-
read is small for several reasons: the majority of pathol-
ogists predicted that they scored the same, a significant
increase was still found when excluding pathologists who
indicated more experience, and the performance on the
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unseen control cases was also high. Furthermore, AI
assistance also improved grading on external data,
6 months after the first experiment, which would be
unlikely if the measured effect could be contributed to a
higher experience level. For future research, the order in
which pathologists received AI assistance could be ran-
domized to further exclude these factors.

Secondly, pathologists were not extensively trained or
instructed to use the AI system and were free to use the
system in any way during grading. All cases that were
graded were also included in the analysis, and we did not
allow for a training phase. Pathologists can benefit from
an understanding of the global properties of an AI system
when such a system is introduced in their grading process;
this includes the system’s limitations, its tendency to
over- or under grade, and the overall design goal [23]. A
training phase at the start of the observer experiment
could have increased the use, understanding, and effec-
tiveness of the AI feedback during the grading process
and might have led to further increased performance by
using the AI system.

Third, in this study, we focused on the assessment of
individual biopsies whereas in clinical practice pathologists
will examine multiple biopsies per patient. The dataset used
to develop the AI system only included one glass slide per
patient and the pathologists who set the reference standard
evaluated each biopsy individually. An important avenue
for future research would be to investigate AI assistance on
a patient-level, which allows for new approaches such as
automatically prioritizing slides.

Last, the selection of cases under review can influence
overall results. We performed our main experiment using a
limited set of 100 test and 60 control cases from a single
center in a research setting. The results on the external
validation set showed that AI assistance still improved
grading, even on data with a different case distribution and
reference standard. Nonetheless, for clinical validation of AI
tools and their benefit to day-to-day practice, more cases,
collected under different settings and from additional cen-
ters, should be included.

To the best of our knowledge, our study is the first to
show the benefit of AI support for Gleason grading. Ulti-
mately, additional research should determine whether the
added benefit of AI assistance results in a stronger prog-
nostic marker for individual patients.
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