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SOME RELATED FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS ON

TWO METRIC SPACES

BIÇER Ö.1 , OLGUN M.2 , ALYILDIZ T.2 , ALTUN I.3

The definition of related mappings was introduced by Fisher in 1981. He proved some theorems

about the existence of fixed points of single valued mappings defined on two complete metric spaces

and relations between these mappings. In this paper, we present some related fixed point results for

multivalued mappings on two complete metric spaces. First we give a classical result which is an

extension of the main result of Fisher to the multivalued case. Then considering the recent technique

of Wardowski, we provide two related fixed point results for both compact set valued and closed

bounded set valued mappings via F-contraction type conditions.
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1 INTRODUCTION AND PRELIMINARIES

The well-known Banach contraction mapping principle plays crucial role in the functional

analysis and ensures the existence and uniqueness of a fixed point on a complete metric space.

By considering this principle several authors generalized it in different ways and this thought

has opened that there exist various types of contractions using different mappings in two met-

ric spaces. Some of authors wonder whether each of two contraction mappings on two com-

plete metric spaces has a fixed point and what is the relation between them.

After 1981, Fisher and others gave the definition of related mappings and proved that they

have fixed points which are related to each other [4–7].

Definition 1. Let (X, d) and (Y, ρ) be two metric spaces, T : X → Y and S : Y → X are two

mappings. If there exist x ∈ X and y ∈ Y such that Tx = y and Sy = x, then the pair (T, S) is

called related mappings.

Fisher [4] proved the theorem given in the following and then most of authors generalized

it using different contractions on metric spaces.

Theorem 1. Let (X, d) and (Y, ρ) be two complete metric spaces, T : X → Y and S : Y → X

mappings satisfying the following equations:

d(Sy, STx) ≤ c max{d(x, Sy), d(x, STx), ρ(y, Tx)},

ρ(Tx, TSy) ≤ c max{ρ(y, Tx), ρ(y, TSy), d(x, Sy)}
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for all x ∈ X and y ∈ Y, where 0 ≤ c < 1. Then ST has a unique fixed point z ∈ X and TS has

a unique fixed point w ∈ Y. Further T and S are related mappings.

Let (X, d) be a metric space. P(X) denotes the family of all nonempty subsets of X, C(X) de-

notes the family of all nonempty closed subsets of X, CB(X) denotes the family of all nonempty

closed and bounded subsets of X, and K(X) denotes the family of all nonempty compact sub-

sets of X. It is clear that, K(X) ⊆ CB(X) ⊆ P(X). For A, B ∈ CB(X), let

H(A, B) = max

{

sup
x∈A

D(x, B), sup
y∈B

D(y, A)

}

,

where D(x, B) = inf{d(x, y) : y ∈ B} and D(y, A) = inf{d(x, y) : x ∈ A}. Then H is called

generalized Pompeiu-Hausdorff distance on C(X) and it is well known that H is a metric on

CB(X), which is called Pompeiu–Hausdorff metric induced by d. In 1969, Nadler [9] gave the

definition of multivalued contraction using Hausdorff metric and proved that every multival-

ued contraction mapping has a fixed point in complete metric spaces.

Theorem 2 ([1]). Let (X, d) be a metric space, A and B are nonempty subsets of X. If A is

compact then there exists p ∈ A such that D(A, B) = D(p, B).

Remark 1. Let (X, d) be a metric space, x ∈ X, and A is a nonempty compact subset of X. Then

there exists a ∈ A such that d(x, a) = D(x, A).

Lemma 1 ([9]). Let (X, d) be metric space, A, B ∈ CB(X) and a ∈ A. Then there exists b ∈ B

such that

d(a, b) ≤ qH(A, B) (1)

for all q > 1.

Theorem 3 ([9]). Let (X, d) be a complete metric space and T : X → CB(X) be a mapping. If

there exists c ∈ (0, 1) such that

H(Tx, Ty) ≤ cd(x, y)

for all x ∈ X, then T has a fixed point.

In 2012 Wardowski [8] introduced a new concept of F-contraction on complete metric space.

Let F : (0, ∞) → R be a function. Consider the following conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0, ∞) such that α < β, F(α) < F(β);

(F2) for each sequence {αn} of positive numbers lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0;

(F4) F(inf A) = inf F(A) for all A ⊂ (0, ∞) with inf A > 0.

̥ denotes the set of all functions satisfying (F1)–(F3) and ̥∗ denotes the set of all functions

satisfying (F1)–(F4). It is clear that ̥∗ ⊂ ̥.

Definition 2 ([2, 3]). Let (X, d) be a metric space and T : X → CB(X) be a mapping. Then T is

a multivalued F-contraction if F ∈ ̥ and there exists τ > 0 such that

∀x, y ∈ X [H(Tx, Ty) > 0 =⇒ τ + F(H(Tx, Ty)) ≤ F(d(x, y))].
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Theorem 4 ([2,3]). Let (X, d) be a complete metric space and T : X → CB(X) be a multivalued

F-contraction. Then T has a fixed point in X.

The main purpose of this paper it to present some related fixed point results for multival-

ued mappings on two complete metric spaces.

2 MAIN RESULT

First we present the multivalued version of Theorem 1.

Let (X, d) be a metric space, T : X → CB(Y) and S : Y → CB(X) be two mappings. Then

for u ∈ X we denote STu by

STu =
⋃

w∈Tu

Sw.

Similarly we can denote the set TSv for v ∈ Y. If there exists a point u ∈ X such that u ∈ STu,

then u is called fixed point of ST.

Theorem 5. Let (X, d) and (Y, ρ) be two complete metric spaces, T : X → CB(Y) and S : Y →

CB(X) be two mappings satisfying the following inequalities

H1(Sy, Sz) ≤ c max{D1(x, Sy), D1(x, Sz), ρ(y, z)}, (2)

H2(Tx, Tw) ≤ c max{D2(y, Tx), D2(y, Tw), d(x, w)}, (3)

for all x ∈ X, y ∈ Y, z ∈ Tx and w ∈ Sy, where 0 < c < 1, H1 and H2 are Pompeiu-Hausdorff

metrics on CB(X) and CB(Y) respectively. Then ST has a fixed point u ∈ X and TS has a fixed

point v ∈ Y. Further, u ∈ Sv and v ∈ Tu.

Proof. Let x0 be an arbitrary point in X. As Sy and Tx are nonempty for all x ∈ X and y ∈ Y,

we can choose y1 ∈ Tx0 and x1 ∈ Sy1. If x1 ∈ STx1 and y1 ∈ TSy1, then x1 and y1 are fixed

points of ST and TS respectively. Now assume that x1 /∈ STx1 or y1 /∈ TSy1.

Let q > 1 such that qc < 1. Applying inequalities (1) and (3), there exists y2 ∈ Tx1 such that

ρ(y1, y2) ≤ qH2(Tx0, Tx1) ≤ qc max{D2(y1, Tx0), D2(y1, Tx1), d(x0, x1)}

≤ qc max{H2(Tx0, Tx1), d(x0, x1)} ≤ qcd(x0, x1)

from which it follows that

ρ(y1, y2) ≤ qcd(x0, x1).

Now applying inequalities (1) and (2), there exists x2 ∈ Sy2 such that

d(x1, x2) ≤ qH1(Sy1, Sy2) ≤ qc max{D1(x1, Sy1), D1(x1, Sy2), ρ(y1, y2)}

≤ qc max{H1(Sy1, Sy2), ρ(y1, y2)} = qcρ(y1, y2)

from which it follows that

d(x1, x2) ≤ qcρ(y1, y2).

By applying inequalities (1) and (3), there exists yn+1 ∈ Txn such that

ρ(yn, yn+1) ≤ qH2(Txn−1, Txn) ≤ qc max{D2(yn, Txn−1), D2(yn, Txn), d(xn−1, xn)}

≤ qc max{H2(Txn−1, Txn), d(xn−1, xn)} ≤ qcd(xn−1, xn)
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for all n ∈ N, and similarly, applying inequalities (1) and (2), there exists xn+1 ∈ Syn+1 such

that

d(xn, xn+1) ≤ qH1(Syn, Syn+1) ≤ qc max{D1(xn, Syn), D1(xn, Syn+1), ρ(yn, yn+1)}

≤ qc max{H1(Syn, Syn+1), ρ(yn , yn+1)} = qcρ(yn , yn+1)

from which it follows that

ρ(yn , yn+1) ≤ qH2(Txn−1, Txn) ≤ qcd(xn−1, xn) ≤ · · · ≤ (qc)n+1d(x0, x1) (4)

and

d(xn, xn+1) ≤ (qc)ρ(yn , yn+1) ≤ (qc)2d(xn−1, xn) ≤ · · · ≤ (qc)n+2d(x0, x1). (5)

Letting n → ∞ in (4) and (5) we obtain

lim
n→∞

d(xn, xn+1) = 0 and lim
n→∞

ρ(yn, yn+1) = 0.

In order to show that {xn} and {yn} are Cauchy sequences consider m, n ∈ N such that m > n.

From (5) and triangular inequality we write

d(xn, xm) ≤
m−1

∑
i=n

d(xi, xi+1) ≤
m−1

∑
i=n

(qc)i+2d(x0, x1) ≤ d(x0, x1)
∞

∑
i=n

(qc)i+2,

where qc ∈ (0, 1). From the convergence of the series
∞

∑
i=−2

(qc)i+2 we obtain that {xn} is Cauchy

sequence in X. Similarly using (4), we can see that {yn} is Cauchy sequence in Y. Since (X, d)

and (Y, ρ) are complete metric spaces, the sequences {xn} and {yn} converge to some point

u ∈ X and v ∈ Y respectively.

Now suppose u /∈ Sv or v /∈ Tu. If u /∈ Sv, then there exists a number n0 ∈ N such that

D1(Sv, xn+1) > 0 for n > n0. Therefore, applying inequality (2), we have

D1(Sv, xn+1) ≤ H1(Sv, Syn+1) ≤ c max{D1(xn, Sv), D1(xn, Syn+1), ρ(v, yn+1)}

≤ c max{D1(xn, Sv), d(xn, xn+1), ρ(v, yn+1)}.

Letting n → ∞ we get

D1(Sv, u) ≤ cD1(u, Sv),

which is a contradiction. Therefore we get u ∈ Sv. If v /∈ Tu, then similar contradiction can be

obtained and we get v ∈ Tu.

Hence, we can write u ∈ Sv ⊆ STu and v ∈ Tu ⊆ TSv, so u and v are fixed points of ST

and TS respectively.

Now we introduce the concept of multivalued related F-contractions on two metric spaces,

then we provide some results for such mappings.

Definition 3. Let (X, d) and (Y, ρ) be two metric spaces, T : X → CB(Y) and S : Y → CB(X)

be two mappings. We say that T and S are multivalued related F-contractions if there exist

F ∈ ̥ and τ > 0 such that

H1(Sy, Sz) > 0 =⇒ τ + F(H1(Sy, Sz)) ≤ F(M1(x, y)), (6)

H2(Tx, Tw) > 0 =⇒ τ + F(H2(Tx, Tw)) ≤ F(M2(x, y)) (7)

for all x ∈ X and y ∈ Y, z ∈ Tx and w ∈ Sy, where

M1(x, y) = max{D1(x, Sy), D1(x, Sz), ρ(y, z)},

M2(x, y) = max{D2(y, Tx), D2(y, Tw), d(x, w)}.
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Before we give our main results, we recall the following. Let X and Y be two metric spaces.

Then, a multivalued mapping T : X → P(Y) is said to be upper semicontinuous (lower semi-

continuous) if the inverse image of closed sets (open sets) is closed (open). A multivalued

mapping is continuous if it is upper as well as lower semicontinuous. If T : X → P(Y) is

an upper semicontinuous and {xn}, {yn} be two sequences in X and Y respectively such that

xn → x, yn → y and yn ∈ Txn, then y ∈ Tx.

New we can present the following assertion.

Theorem 6. Let (X, d) and (Y, ρ) be two complete metric spaces, T : X → K(Y) and S : Y →

K(X) be two multivalued related F-contractions. If T and S are upper semicontinuous or F is

continuous, then ST has a fixed point u ∈ X and TS has a fixed point v ∈ Y. Further, v ∈ Tu

and u ∈ Sv.

Proof. Let x0 be an arbitrary point in X. As Sy and Tx are nonempty for all x ∈ X and y ∈ Y,

we can choose y1 ∈ Tx0 and x1 ∈ Sy1. Since Tx1 is compact then there exists y2 ∈ Tx1 such

that

ρ(y1, y2) = D2(y1, Tx1).

If D2(y1, Tx1) = 0, then y1 ∈ Tx1 ⊂ TSy1 and x1 ∈ Sy1 ⊂ STx1 and thus the proof is complete.

Now suppose that D2(y1, Tx1) > 0. From (F1) and (7), there exists τ > 0 such that

F(D2(y1, Tx1)) ≤ F(H2(Tx0, Tx1)) ≤ F(M2(x0, y1))− τ ≤ F(d(x0, x1))− τ.

Therefore we obtain

F(ρ(y1 , y2)) ≤ F(H2(Tx0, Tx1)) < F(d(x0, x1))− τ. (8)

In a similar way, since Sy2 is compact then there exists x2 ∈ Sy2 such that

d(x1, x2) = D1(x1, Sy2).

If D1(x1, Sy2) = 0, then x1 ∈ Sy2 ⊂ STx1 and y2 ∈ Tx1 ⊂ TSy2 thus the proof is complete.

Now suppose that D1(x1, Sy2) > 0. From (F1) and (6), there exists τ > 0 such that

F(D1(x1, Sy2)) ≤ F(H1(Sy1, Sy2)) ≤ F(M1(x1, y1))− τ ≤ F(ρ(y1 , y2))− τ.

Therefore we obtain

F(d(x1, x2)) ≤ F(H1(Sy1, Sy2)) ≤ F(ρ(y1 , y2))− τ. (9)

By applying inequalities (8) and (9), we can construct two sequences {xn} and {yn} such that

xn ∈ Syn and yn+1 ∈ Txn for all n ∈ N satisfying

F(d(xn, xn+1)) ≤ F(ρ(yn , yn+1))− τ ≤ F(d(xn−1, xn)− 2τ

...

≤ F(ρ(y1, y2))− (2n − 1)τ ≤ F(d(x0, x1))− 2nτ.

(10)

Letting n → ∞ and using (F2), we get

lim
n→∞

d(xn, xn+1) = 0 and lim
n→∞

ρ(yn, yn+1) = 0.
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Now denote αn = d(xn, xn+1) for n = 0, 1, 2, · · · . From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

αk
nF(αn) = 0.

By (10), the following holds for all n ∈ N

αk
nF(αn)− αk

nF(α0) ≤ −2αk
nnτ ≤ 0. (11)

Letting n → ∞ in (11), we get

lim
n→∞

nαk
n = 0. (12)

From (12) there exists n1 ∈ N such that nαk
n ≤ 1 for all n > n1. So we have

αn ≤
1

n
1
k

(13)

for all n > n1. In order to show that {xn} is Cauchy sequence consider m, n ∈ N such that

m > n. From (13) and triangular inequality we can write

d(xn, xm) ≤
m−1

∑
i=n

d(xi, xi+1) =
m−1

∑
i=n

αi ≤
m−1

∑
i=n

1

i
1
k

.

By the convergence of the series
∞

∑
i=1

1

i
1
k

we have that {xn} is Cauchy sequence in (X, d). Sim-

ilarly we can see that {yn} is Cauchy sequence in (Y, ρ). Since (X, d) and (Y, ρ) are complete

metric spaces, the sequences {xn} and {yn} converge to some point u ∈ X and v ∈ Y respec-

tively.

Now suppose T and S are upper semicontinuous. Since xn ∈ Syn, yn+1 ∈ Txn, xn → u

and yn → v, we have u ∈ Sv and v ∈ Tu. Therefore u and v are fixed points of ST and TS,

respectively.

Now suppose F is continuous and u /∈ Sv or v /∈ Tu. If u /∈ Sv, then there exists n0 ∈ N

such that D1(Sv, xn+1) > 0 for n > n0. Therefore, applying inequality (6) and (F1), we have

F(D1(Sv, xn+1)) ≤ F(H1(Sv, Syn+1)) ≤ F(M1(xn, v))− τ

≤ F(max{D1(xn, Sv), D1(xn, Syn+1), ρ(v, yn+1)})− τ

≤ F(max{D1(xn, Sv), d(xn, xn+1), ρ(v, yn+1)})− τ.

Letting n → ∞ and using the continuity of F, we get

F(D1(Sv, u)) ≤ F(D1(u, Sv))− τ,

which is a contradiction. Therefore we get u ∈ Sv. If v /∈ Tu, then similar contradiction can be

obtained and we get v ∈ Tu. Hence, we can write u ∈ Sv ⊆ STu and v ∈ Tu ⊆ TSv, so u and v

are fixed points of ST and TS respectively.
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The following example shows that the compactness of Tx and Sy can not be relaxed in

Theorem 6.

Example 1. Let (X, d) and (Y, ρ) be two metric spaces such that X = [0, 1], Y = [−1, 0] and

d = ρ with

d(x, y) =

{

0, x = y,

1 + |x − y| , x 6= y.

Define two mappings T : X → P(Y) and S : Y → P(X) by

Tx =

{

QY, x ∈ IX,

IY, x ∈ QX,
and Sy =

{

IX, y ∈ IY,

QX, y ∈ QY,

where QA and IA are rational and irrational numbers in A, respectively. Note that (X, d) and

(Y, ρ) are complete metric spaces. Moreover, every subsets of X as well as Y are closed but

noncompact because of τd and τρ are discrete topologies. This also shows that T and S are

upper semicontinuous. Furthermore, the spaces X and Y are bounded and so Tx and Sy are

closed and bounded. Now define F : (0, ∞) → R by

F(α) =

{

ln α, α ≤ 1,

α, α > 1,

then it is clear that F ∈ ̥\̥∗. Now we show that the inequalities (6) and (7) are satisfied with

τ = 1. First note that, if x ∈ X, y ∈ Y and z ∈ Tx with H1(Sy, Sz) > 0, then x ∈ IX and y ∈ IY

or x ∈ QX and y ∈ QY. Hence, we have to consider the following two cases.

Case 1. Let x ∈ IX and y ∈ IY. Then for all z ∈ Tx = QY, we have H1(Sy, Sz) = 1 > 0 and

τ + F(H1(Sy, Sz)) = 1 + F(1) = 1 < 1 + |y − z| = ρ(y, z) = F(ρ(y, z)) ≤ F(M1(x, y)).

Case 2. Let x ∈ QX and y ∈ QY. Then for all z ∈ Tx = IY, we have H1(Sy, Sz) = 1 > 0 and

τ + F(H1(Sy, Sz)) = 1 + F(1) = 1 < 1 + |y − z| = ρ(y, z) = F(ρ(y, z)) ≤ F(M1(x, y)).

Therefore (6) holds. Similarly, we can see that (7) holds. As a consequence, all conditions of

Theorem 6 except of the compactness of Tx and Sy are satisfied, but TS and ST do not have

fixed points.

Remark 2. Considering the family̥∗ in Theorem 6, we can relaxed the compactness condition

on Tx and Sy as closed and boundedness. Therefore, it gives us the following theorem.

Theorem 7. Let (X, d) and (Y, ρ) be two complete metric spaces, T : X → CB(Y) and S :

Y → CB(X) be two multivalued related F-contractions with F ∈ ̥∗. If T and S are upper

semicontinuous or F is continuous, then ST has a fixed point u ∈ X and TS has a fixed point

v ∈ Y. Further, v ∈ Tu and u ∈ Sv.

Proof. Let x0 ∈ X. As Sy and Tx are nonempty for all x ∈ X and y ∈ Y, we can choose

y1 ∈ Tx0 and x1 ∈ Sy1. If D2(y1, Tx1) = 0 then y1 ∈ Tx1. So we obtain y1 ∈ Tx1 ⊂ TSy1 and

x1 ∈ Sy1 ⊂ STx1 mean that x1 and y1 are the fixed points of ST and TS respectively. Now let

D2(y1, Tx1) > 0. Since D2(y1, Tx1) ≤ H2(Tx0, Tx1), we have

F(D2(y1, Tx1)) ≤ F(H2(Tx0, Tx1)) ≤ F(M2(x0, y1))− τ ≤ F(d(x0, x1))− τ.
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From (F4) we write

F(D2(y1, Tx1)) = inf
y∈Tx1

F(ρ(y1 , y)) ≤ F(d(x0, x1))− τ. (14)

From (14) there exists y2 ∈ Tx1 such that

F(ρ(y1, y2)) ≤ F(d(x0, x1))− τ.

In the similar way, if D1(x1, Sy2) = 0, then x1 ∈ Sy2. So we get x1 ∈ Sy2 ⊂ STx1 and y2 ∈

Tx1 ⊂ TSy1 mean that x1 and y1 are the fixed points of ST and TS respectively. Otherwise,

since D1(x1, Sy2) ≤ H1(Sy1, Sy2), we have

F(D1(x1, Sy2)) ≤ F(H1(Sy1, Sy2)) ≤ F(M(x1, y1))− τ ≤ F(ρ(y1, y2))− τ.

Hence, from (F4) we obtain

F(D1(x1, Sy2)) = inf
x∈Sy2

F(d(x1, x)) ≤ F(ρ(y1, y2))− τ. (15)

Therefore, from (15) there exists x2 ∈ Sy2 such that

F(d(x1, x2) ≤ F(ρ(y1, y2))− τ.

The rest of the proof can be completed as in the proof of Theorem 6.

If we choose X = Y, S = T and d = ρ in the above theorems we obtain the following fixed

point results.

Corollary 1. Let (X, d) be a complete metric space, T : X → K(X) be a mapping such that for

all x, y ∈ X and z ∈ Tx

H(Ty, Tz) > 0 =⇒ τ + F(H(Ty, Tz)) ≤ F(M(x, y))

holds, where F ∈ ̥, τ > 0 and

M(x, y) = max{D(x, Ty), D(x, Tz), d(y, z)}.

If T is upper semicontinuous or F is continuous, then T2 has a fixed point in X.

Corollary 2. Let (X, d) be a complete metric space, T : X → CB(X) be a mapping such that

for all x, y ∈ X and z ∈ Tx

H(Ty, Tz) > 0 =⇒ τ + F(H(Ty, Tz)) ≤ F(M(x, y))

holds, where F ∈ ̥∗, τ > 0 and

M(x, y) = max{D(x, Ty), D(x, Tz), d(y, z)}.

If T is upper semicontinuous or F is continuous, then T2 has a fixed point in X.
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Бiчер O., Олгун М., Алiлдiз T., Алтун I. Деякi пов’язанi теореми про нерухому точку для багато-

значних вiдображень на двох метричних просторах // Карпатськi матем. публ. — 2020. — Т.12,

№2. — C. 392–400.

Означення пов’язаних вiдображень було введено Фiшером у 1981 р. Вiн довiв деякi тео-

реми про iснування нерухомих точок однозначних вiдображень, визначених на двох повних

метричних просторах, i вiдношення мiж цими вiдображеннями. У цiй роботi ми подаємо де-

якi результати про пов’язану нерухому точку для багатозначних вiдображень на двох повних

метричних просторах. Спочатку ми даємо класичний результат, який є продовженням основ-

ного результату Фiшера до багатозначного випадку. Потiм, розглядаючи нову технiку Вар-

довського, за допомогою умов типу F-стиску ми пропонуємо два результати про пов’язану не-

рухому точку як для компактозначних вiдображень, так i для вiдображень, значеннями яких

є замкненi обмеженi множини.

Ключовi слова i фрази: нерухома точка, повний метричний простiр, F-стиск.


