
Journal of Neuroscience Methods 346 (2020) 108946

Available online 12 September 2020
0165-0270/© 2020 Elsevier B.V. All rights reserved.

Myelin detection in fluorescence microscopy images using 
machine learning 

Sibel Çimen Yetiş a, Abdulkerim Çapar b, Dursun A. Ekinci b, Umut E. Ayten a, Bilal E. Kerman c,*, 
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A B S T R A C T   

Background: The myelin sheath produced by glial cells insulates the axons, and supports the function of the 
nervous system. Myelin sheath degeneration causes neurodegenerative disorders, such as multiple sclerosis (MS). 
There are no therapies for MS that promote remyelination. Drug discovery frequently involves screening thou
sands of compounds. However, this is not feasible for remyelination drugs, since myelin quantification is a 
manual labor-intensive endeavor. Therefore, the development of assistive software for expedited myelin detec
tion is instrumental for MS drug discovery by enabling high-content image-based drug screens. 
New method: In this study, we developed a machine learning based expedited myelin detection approach in 
fluorescence microscopy images. Multi-channel three-dimensional microscopy images of a mouse stem cell-based 
myelination assay were labeled by experts. A spectro-spatial feature extraction method was introduced to 
represent local dependencies of voxels both in spatial and spectral domains. Feature extraction yielded two data 
set of over forty-seven thousand annotated images in total. 
Results: Myelin detection performances of 23 different supervised machine learning techniques including a 
customized-convolutional neural network (CNN), were assessed using various train/test split ratios of the data 
sets. The highest accuracy values of 98.84 ± 0.09% and 98.46 ± 0.11% were achieved by Boosted Trees and 
customized-CNN, respectively. 
Comparison with existing methods: Our approach can detect myelin in a common experimental setup. Myelin 
extending in any orientation in 3 dimensions is segmented from 3 channel z-stack fluorescence images. 
Conclusions: Our results suggest that the proposed expedited myelin detection approach is a feasible and robust 
method for remyelination drug screening.   

1. Introduction 

Myelin is a cholesterol-rich extension of the cell membranes of oli
godendrocytes, specialized glial cells of the central nervous system 
(CNS) wrapping axons of neurons as seen in Fig. 1. Insulation provided 
by multiple layers of oligodendrocyte membrane surrounding the axon 
increases the speed and efficiency of neuronal signal transmission and 
supports the survival of neurons (Aydınli et al., 2016; Simons and Nave, 
2016). Myelin is an essential structure for the function of the neuron, 
thus, any damage to myelin disrupts the nervous system leading to 
diseases such as multiple sclerosis (MS). Approximately 2.5 million 
people suffer from MS worldwide, making it the most prevalent 

neuroinflammatory disease (Reich et al., 2018; Thompson et al., 2018). 
A combination of genetic and environmental factors trigger the immune 
system to attack and destroy CNS myelin. Current therapies reduce 
demyelination by suppressing the immune system but do not cure the 
disease (Aydınli et al., 2016; Reich et al., 2018; Thompson et al., 2018). 
The search for chemical compounds that promote myelin regeneration 
(remyelination) is in progress; however, there are no drugs that are 
currently in the clinical use (Reich et al., 2018; Cole et al., 2017). 

The drug discovery process frequently starts with screening thou
sands or tens of thousands of compounds in a disease relevant assay 
(Cole et al., 2017). In the compound screens for treatment of MS, 
maturation status of oligodendrocytes is frequently used as a proxy for 
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myelination (Cole et al., 2017; Boucanova et al., 2018). Mature oligo
dendrocytes are identified by gene expression and/or cellular 
morphology. Image acquisition and simple image analysis can be auto
mated for myelin detection in order to expedite recognition of the pos
itive hits, which may reach over 1000 per screen (Cole et al., 2017; 
Boucanova et al., 2018; Deshmukh et al., 2013). However, only a small 
fraction of these compounds actually increase remyelination under 
closer scrutiny. Out of eight published screens encompassing hundreds 
of thousands of chemicals, only five molecules have been found to 
enhance remyelination in laboratory animals (Cole et al., 2017). This 
high attrition rate suggests MS and remyelination drug discovery can be 
more efficient if myelin is quantified directly instead of the proxy, 
oligodendrocyte maturation. However, in its current form, myelin 
quantification is a time consuming and labor intensive manual endeavor 
(Cole et al., 2017; Naito et al., 2017; Kerman et al., 2015; Danelakis 
et al., 2018) that hampers screening of large numbers of compounds. 
Therefore, rapid and effective myelin detection will expedite drug dis
covery for MS by enabling high-content image-based drug screens (Cole 
et al., 2017). 

Automated detection of myelin by image analysis is challenging 
because myelin is observed as an overlapping region of the oligoden
drocyte process and the axon of the neuron (Fig. 1a, 1b, 1c). The expert 
researchers are trained to distinguish random overlapping regions 
(Fig. 1d) from the actual myelin using criteria such as size, shape, pro
cess length, and continuity. Efforts for accelerating this process up to 
now focused on the extraction of co-localizing pixels from fluorescent 
images (Kerman et al., 2015; Zhang et al., 2011; Kreft et al., 2004). 
Despite such methods successfully quantified myelin from large data sets 

and detected changes in myelination ratios in a disease model and after 
drug treatment (Kerman et al., 2015; Ettle et al., 2016), identifying 
overlapping pixels as myelin increases false positives due to random 
co-localization between cellular processes (Fig. 1d). A simple size filter 
is not effective, because myelin may extend in z-dimension and may be 
visible as only a small projection in single imaging planes. Thus, a filter 
based on size may remove myelin, as well as, random overlaps, resulting 
in underestimation of total myelin. In order to account for the shape and 
size of overlapping regions in myelin identification, we turned to ma
chine learning-based image classification. Machine-learning based ap
proaches discover latent relationships within data (Zaimi et al., 2016, 
2018; Kilinc et al., 2009). Recently, they have been used for segmenting 
and highlighting cells within the brain in fluorescent microscopy images 
(Kayasandik and Labate, 2016; Salvi et al., 2019). Specifically, 
myelin-like structures were detected in optical images (Xu et al., 2019). 
Moreover, myelinated axons were segmented in optical and electron 
microscopy images (Naito et al., 2017; Janjic et al., 2019). Hence, they 
pose as a perfect match for the myelin detection problem. 

Inspired by the advancement of machine learning in automation of 
bio-image analysis, previously, we developed a LeNet algorithm based 
myelin detection method, DeepMQ, achieving a 93.38% accuracy on a 
data set sized 10,768 images (Cimen et al., 2018). DeepMQ, significantly 
expedited myelin detection by classifying images in seconds compared 
to days of manual classification. In order to further investigate the ef
ficacy of machine learning techniques on myelin detection, in the cur
rent study, we developed a customized-CNN and compared it to other 
classification methods on expanded and new data sets. Specifically, 
number of images in the data set was almost tripled to 30,895 and a data 

Fig. 1. Demonstration of myelin and non-myelin overlaps in co-cultures and a schematic drawing. (a) A sample RGB-composite, maximum intensity projection image 
of myelinating co-cultures. Myelin is observed as an overlapping region of the oligodendrocyte process membrane and axon of the neuron as well as non-myelin 
overlaps.The red, green and blue channels correspond to oligodendrocytes, axons, and nuclei respectively. The image is a projection of five optical z-sections. (b) 
Represents a schematic of the co-culture highlighting myelin regions (brackets) and non-myelin overlaps (ellipses). The higher magnification images of the boxed 
areas show (c) myelin (brackets), and (d) non-myelin overlaps. Upper ellipse: presence of a nucleus identifies this co-localization as overlapping cell body. Lower 
ellipses: short and discontinuous overlaps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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set of 17,672 images was analyzed, compared to our earlier study. 
Moreover, myelin detection performances of five different supervised 
machine learning techniques (23 different variants; cf. Table 1) were 
assessed with varying sizes of train/test split ratios of the annotated data 
set. Additionally, a pre-processing step comprising of contrast 
enhancement is introduced and its effect on detection performance of 
different methods were determined. Among all test scenarios, the 
highest accuracy value of 98.84 ± 0.09% was achieved by Boosted Trees 
on 15,452 pre-processed images and the customized-CNN was a close 
second with 98.46%. This accuracy value was achieved for the parti
tioning of the total labeled data as 50% training and 50% test sets. In 
addition, Boosted Trees reached over 96% accuracy values for an 
additional data set that is half as large. Customized-CNN reached close 
to 90% accuracy on this additional data set despite being trained on the 
former data set. Thus, both techniques were robust in detecting myelin 
accurately from various images. Finally, classified results were visual
ized on the images for the evaluation of the expert and the user. In 
conclusion, machine learning, specifically Boosted Trees and our 
customized-CNN, techniques can assist researchers in MS drug discovery 
by expediting myelin detection. The organization of this paper is as 
follows. Section 2 describes the methodology implemented to detect 
myelin. Section 3 presents our results of the methods applied in Section 
2. Finally, Section 4 presents our conclusions and a discussion on the 
implications of our research. 

2. Methodology 

The proposed approach to expedite myelin detection is comprised of 
the following stages: 1. Image Acquisition, 2. Pre-processing, 3. Anno
tation: Myelin Ground Truths, 4. Feature Image Extraction, and 5. 
Classification (cf. Fig. 2). Details of each step are described below. 

2.1. Image acquisition 

Part of the images was previously used for myelin quantification in 
Kerman et al. (2015). Briefly, myelinating co-cultures of oligodendro
cytes and neurons were fixed in 4% para-formaldehyde-PBS for 15 min, 
blocked and permeabilized with horse serum (10%) and Triton X-100 
(0.1%) in PBS. Cells were incubated overnight with 1:1000 mouse or 
rabbit anti-TUJ1 (Covance) and 1:50 rat anti-MBP (Serotec) primary 
antibodies to mark neurons and oligodendrocytes, respectively. DAPI 
(Sigma) was used to visualize nuclei. 

Images were acquired on Zeiss LSM 710 or 780 confocal micro
scopes. Images were acquired as tiles encompassing approximately 
2 mm × 7 mm area of five independent experiments. The z-axis, 
30–50 μm is covered by 1 μm apart optical z-sections. The tiles, with 
10% overlap, were stitched together on Zen software (Zeiss) to obtain 
approximately 2k px × 8k px images covering entire experimental area 
of five independent experiments. 14 images were acquired using 0.5 μm 

z-stack resolution. The z-axis, 16–60 μm is covered by 0.5 μm apart op
tical z-sections. 0.5 μm images were used to evaluate versatility of the 
selected methods. 

Images were composed of three 8-bit-quantized channels corre
sponding to MBP antibody (oligodendrocytes), TUJ1 antibody (neu
rons), and DAPI, pseudo-colored in red (R), green (G) and blue (B), 
respectively. The RGB-composite z-section image, A, is denoted as, A(x,
y,z,w), where x ∈ {1,…,X}, y ∈ {1,…,Y}, z ∈ {1,…,Z}, and w ∈ {1,2,3}. 
The size of A is X× Y × Z× 3. A sample RGB-composite image corre
sponding to a particular z-section and spatial location, of size 447×

373 px is presented in Fig. 1a, where, channels corresponding to 
oligodendrocyte, axon, and nuclei are represented with R, G, and B 
channels, respectively. 

2.2. Pre-processing 

In the pre-processing stage, contrast enhancement was carried out 
for each channel on ImageJ platform (Schneider and Rasband, 2012) by 
an expert. Expert visually inspected images and selected a reference 
layer where oligodendrocyte, axon, and cell nuclei are most prominent. 
Then, expert adjusted linear stretching parameters (minimum and 
maximum intensity values) for each channel image. Pre-processing stage 
yielded images with wider-range luminance values than those of input 
images. This, in turn, facilitated further analysis for myelin detection. 
Contrast enhancement stage was followed by feature image extraction 
(cf. Section 2.4). 

2.3. Annotation: myelin ground truths 

Myelin ground truth extraction is a tedious work and the sole moti
vation of this study is to expedite it. Still, in order to evaluate the per
formance of expedited myelin detection schemes, one needs to manually 
annotate myelin regions and obtain the myelin ground truths. Therefore, 
in this study, ground truths were determined manually by the expert 
with the help of a software and another expert. In total, labeled myelin 
images yielded 30,905 and 17,672 feature images from both data sets. 

The overall strategy for myelin ground truth extraction was sum
marized in Supplemental Fig. 1. First, “Computer-assisted Evaluation of 
Myelin (CEM) software”, which was developed to identify myelin, was 
utilized (Kerman et al., 2015). Binary output images of CEM software 
represented the candidate myelin pixels for each z-section. The expert 
meticulously inspected the RGB-composite z-section image and 
compared it simultaneously with the output of CEM software, to decide 
on keeping or removing candidate pixels. By doing so, the expert made 
sure that the myelin pixels’ continuity along z-axis and conformity 
across channels were satisfied. Consequently, myelin ground truth im
ages were obtained. 

2.4. Feature image extraction 

Exploiting the domain expertise on myelin detection, a novel two- 
dimensional spectro-spatial feature image, F, of size 9× 9 px, was 
introduced. Traversing through the RGB-composite z-section image, A, a 
specific F(x,y,z) feature image was composed of each and every voxel at 
location (x, y, z) in A (Cimen et al., 2018). The spectro-spatial feature, 
F(x,y,z), contained channel intensity values corresponding to the voxel at 
location (x,y,z), and its immediate 26-neighboring voxels (cf. Fig. 3). 
F(x,y,z) was composed of 9 smaller blocks, D(z,w), of size 3× 3 px, corre
sponding to a particular z-section and channel, w, pair, (z, w). This 
particular composition of the feature image made it possible to reveal 
myelin pixels’ continuity along z-axis and conformity across channels. 
The correspondence between the spectro-spatial feature image F(x,y,z)

and the z-section-channel block D(z,w) is given as follows: 

Table 1 
Classification methods used in the study. 23 variants of 5 supervised machine 
learning techniques were assessed for their myelin detection performances.  

Deep Learning Methods Decision Tree 
LeNet Complex Tree 

Customized-CNN Medium Tree 
Discriminant &Regression Simple Tree 

Linear Discriminant RUSBoosted Tree 
Quadratic Discriminant Boosted Trees 
Subspace Discriminant Bagged Tree 

Logistic Regression SVM 
k-NN Linear SVM 

Fine k-NN Quadratic SVM 
Medium k-NN Cubic SVM 
Coarse k-NN Fine Gaussian SVM 
Cosine k-NN Medium Gaussian SVM 

Weighted k-NN Coarse Gaussian SVM  
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F(x,y,z)(c, d) = D(

z+(⌈c
3⌉− 2),⌈d

3⌉

)([(c − 1)mod3] + 1, [(d − 1)mod3] + 1) (1)  

where c and d take values from the set {1,2,…,9}. Similarly, the cor
respondence between the z-section-channel block D and the RGB- 

composite z-section image A is given as follows: 

D(z,w)(a, b) = A(x + (a − 2), y + (b − 2), z,w) (2)  

where a, b, and w take values from the set {1,2,3}, 
From (1) and (2) one gets: 

Fig. 2. Procedure steps. Details of each step are given in the text.  

Fig. 3. A spectro-spatial feature image, F(x,y,z) , corresponding to each voxel, is composed of 9 smaller blocks, D(z,w), a central voxel and its immediate 26-neighboring 
voxels in the oligodendrocyte (red), axon (green), and nucleus (blue) channels. One of these nine blocks, namely, D(z,2), is pointed out. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Examples of positive and negative spectro-spatial feature images. (a) Positive sample: A positive image demonstrating the overlap between red and green 
channels. (b) Negative sample: The overlap is much smaller resulting in negative classification. (c) Negative sample: Signal in the blue (nuclei) channel identifies this 
image as an overlapping cell body. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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F(x,y,z)(a, b) = A(x + (([(c − 1)mod3] + 1) − 2), y + (([(d − 1)mod3] + 1)

− 2), (z + (⌈
c
3
⌉ − 2)), ⌈

d
3

⌉).

(3)  

which represents the correspondence between A(x,y,z,w) and F(x,y,z). 
Fig. 4 represents examples of spectro-spatial feature images classified 

as positive, myelin containing, and negative, myelin not present. The 
positive image (Fig. 4a) was taken from a region where oligodendrocyte 
process (red) enveloped the axon (green) for a substantial length (see 
also Fig. 1). This overlap is also apparent in the feature image. A small 
and/or discontinuous overlap between oligodendrocyte and axon was 
classified as negative (Fig. 4b). Additionally, the overlap between 
oligodendrocyte cell body, which is described by the presence of the 
nucleus (blue), and the axon was classified as negative. The cell body is 
identified by the presence of the nucleus (Fig. 4c). 

2.5. Classification 

The obtained two-dimensional spectro-spatial feature images, F(x,y,z), 
were given as input to 23 variants of 5 supervised machine learning 
techniques including Deep Learning, Discriminant & Regression, k- 
Nearest Neighbors (k-NN), Decision Tree, Support Vector Machine 
(SVM) to make classification. In order to find the most efficient classifier 
of myelin classification, we developed our own customized-CNN to 
classify myelin pixels and compared it to the most commonly used 
machine learning methods. Table 1 shows all classification methods 
used in this study. Model optimization was performed in these classifiers 
for non pre-processed and pre-processed images. The results of the best 
performing classifiers for each technique are detailed in Section 3. 

Our CNN architecture accepts 9 × 9 spectro-spatial feature images, 
F(x,y,z), as input. The parameters and the architecture of the customized- 
CNN architecture are shown in Table 2 and Fig. 5. The first convolu
tional layer contains 32 filters size of 5× 5. The output of this con
volutional layer enters a max pooling layer of kernel size 3× 3, strides 
are defined as 2. This layer is followed by two convolution layers 64 
filters size of 3 × 3 and a 3 × 3 max pooling layer whose stride is 2. 
Before Batch Normalization, 2 × 2 convolution layer with 128 feature 
and after batch normalization, 256-node fully connected layer is 
applied. Batch normalization is used for faster convergence (Çiçek et al., 
2016). Iteration per epoch was chosen as 150 and 15 epochs of training 
were proceed. Output layer of customized-CNN architecture has two 
nodes corresponding to myelin and non-myelin classes. Parameter space 
of our CNN architecture is 105. 

3. Results 

The data set used for training and test of all methods included 15,489 
positive and 15,416 negative feature images extracted from 1 μm z-stack 
images. The data sets used for evaluating the versatility of the selected 

methods included 8710 positive and 8962 negative feature images 
extracted from 0.5 μm z-stack resolution images. Training and test ex
periments were performed on a computer with Intel i7 7700HQ pro
cessor, 16 GB RAM, Asus GeForce GTX1080TI graphics card. Ground 
truths for biological samples, especially for myelin, are often difficult to 
extract (Kerman et al., 2015; Xu et al., 2019). In order to determine the 
minimal amount of myelin ground truths required for training, 10%, 
25%, 50%, 75%, and 90% of the data set was used for training and the 
remaining portion of the data set was used for test. Test accuracy of each 
classifier was calculated by averaging ten runs while standard deviation 
was calculated to measure variation (Tables 3 and 4) for selected clas
sifiers. The effect of contrast enhancement process, as described in 
Section 2.2, can be observed by comparing Tables 3 and 4. 

Test accuracies for selected classifiers with respect to test/training 
percentages (Table 4) and their standard deviations are graphed in 
Fig. 6. Increasing training data had a positive effect on CNNs as expected 
and increased performance rates. Accuracies of other classifiers also, 
tended to increase with the increasing training data. Boosted Trees 
achieved higher performance than other classifiers with lower standard 
deviations and fewer training data and the closest results were achieved 
by customized-CNN. Contrast enhancement increased the test accuracies 
for all methods (compare Tables 3 and 4). A reason for this observed 
phenomenon may be that while the starting images were under satu
rated, overlapping pixels became more prominent after the contrast 
enhancement. 

Confusion matrix values of Boosted Trees and customized-CNN 
classification results are presented in Table 5. According to the confu
sion matrix, performance metrics (Precision, Recall, F-score, Error, and 
Accuracy) were calculated and results are presented in Table 6. These 
parameters were calculated as follows: 

Precision =
TP

TP + FP
× 100 (4)  

Recall =
TP

TP + FN
× 100 (5)  

F − Score = 2 ×

(
Precision × Recall
Precision + Recall

)

(6)  

Error =
FP + FN

TP + TN + FP + FN
× 100 (7)  

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (8)  

where, TP, TN, FP, FN correspond to the True Positive, True Negative, 
False Positive and False Negative respectively. 

Performance metrics of Boosted Trees (Precision, Recall, F-score, 
Error, and Accuracy) were calculated with the 0.5 μm z-stack resolution 
images and results are presented in Table 7. The data set of 8710 positive 
and 8962 negative feature images were split into 10%, 25%, 50%, 75%, 
and 90% training and test sets. The results were comparable to the 1 μm 
z-stack resolution images (compare Tables 6 and 7). The observed dif
ferences may be due to fewer number of images i.e. the data set was 
approximately half as large. Effect of contrast enhancement was less 
pronounced. 

Next, the performance of customized-CNN was evaluated on the 
0.5 μm z-stack resolution images. Because the data set was not large 
enough to split into training and test sets, networks trained with un
processed or contrast enhanced 1 μm z-stack resolution images were 
tested. The number of training images were varied as in Tables 3 and 4. 
The results were presented in Table 8. The accuracy reached up to 
86.19% for the unprocessed and 90.15% for the contrast enhanced im
ages, suggesting that customized-CNN is robust enough to detect myelin 
in various data sets without training. 

Finally, myelin detected by the customized-CNN was visualized on 

Table 2 
Parameters of customized CNN.  

Layers Custom CNN Output size 

c1 [conv, 5 × 5, 32], stride 2, padding 2  5 × 5 × 32  
m1 max pool, 3 × 3, stride 2,padding 1  3 × 3 × 32  
c2 [[conv, 3 × 3, 64], stride 1] × 2  3 × 3 × 64  
c3 [[conv, 3 × 3, 64], stride 1] × 2  3 × 3 × 64  
m2 max pool, 3 × 3, stride 2  2 × 2 × 64  
c4 [conv, 2 × 2, 128], stride 1  1 × 1 × 128  
fc1 fc, 256 1 × 1 × 256  
fc2 fc, 2 1 × 1 × 2  
s1 Soft Max 1 × 1 × 2   

Classification layer –  
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the original composite images (Fig. 7). The algorithm correctly detected 
myelin as a continuous overlap (bracket) between oligodendrocytes and 
axons. However, a non-continuous pixel was also classified as myelin 
(circle). This post-visualization step enables evaluation of the results by 
the user. 

4. Discussion and conclusion 

Myelin, which is an indispensable part of the nervous system is 
damaged in neurodegenerative diseases such as MS (Aydınli et al., 2016; 
Reich et al., 2018; Thompson et al., 2018; Cole et al., 2017). However, 
currently available therapies against MS fail to regenerate myelin. A 
major obstacle in discovering remyelinating drugs is the difficulty of 

quantifying myelin in chemical screens (Cole et al., 2017; Naito et al., 
2017; Kerman et al., 2015). Automated myelin detection can improve 
the speed and efficiency of the process yet it is challenging to setup a 
platform that can perform with minimal user input and as accurately as 
an expert. Previously, we developed a CNN algorithm, DeepMQ, to 
expedite myelin detection (Cimen et al., 2018). Supporting the need for 
expedited myelin quantification, others (Xu et al., 2019), also developed 
a U-Net based algorithm to detect myelin-like structures, which formed 
on nanofibers. The nanofibers were used as artificial axon substitutes 
because they can be aligned parallel to each other and allow easier 
classification. However, this limits the generalizability of the method 
because the axons grow in many directions crisscrossing each other. In 
the current study, 23 different machine learning methods, including a 

Fig. 5. Customized CNN architecture (see also Table 2).  

Table 3 
Train and test accuracies for selected classifiers on unprocessed images.  

Train and test accuracies (%) 

Test images (%)a 10 25 50 75 90 
Training images (%)a 90 75 50 25 10 

Subspace Discriminant 
Training Acc. 74.99 ± 0.84  74.90 ± 0.34  74.91 ± 0.20  74.75 ± 0.17  74.49 ± 0.22  

Test Acc. 75.07 ± 0.87  75.01 ± 0.33  74.98 ± 0.21  74.79 ± 0.19  74.53 ± 0.23  

Weighted k-NN 
Training Acc. 100  100  100  100  100  

Test Acc. 91.94 ± 0.60  91.68 ± 0.33  91.09 ± 0.20  89.88 ± 0.35  88.20 ± 0.12  

Cubic SVM 
Training Acc. 97.62 ± 0.51  97.48 ± 0.65  97.93 ± 0.29  96.87 ± 0.39  94.08 ± 0.31  

Test Acc. 94.51 ± 0.51  94.64 ± 0.64  94.02 ± 0.30  93.21 ± 0.41  91.58 ± 0.33  

Boosted Trees 
Training Acc. 96.39 ± 0.30  96.39 ± 0.35  96.66 ± 0.12  95.76 ± 0.23  95.37 ± 0.13  

Test Acc. 95.91 ± 0.31  95.94 ± 0.35  95.87 ± 0.13  95.76 ± 0.23  95.37 ± 0.13  

LeNet 
Training Acc. 95.23 ± 0.63  95.19 ± 1.59  94.27 ± 0.93  93.86 ± 1.37  92.23 ± 2.21  

Test Acc. 94.00 ± 0.62  93.45 ± 1.65  93.74 ± 0.88  92.75 ± 1.41  90.76 ± 2.19  

Customized CNN 
Training Acc. 97.86 ± 0.48  97.92 ± 0.28  97.74 ± 0.22  98.13 ± 0.19  95.87 ± 0.42  

Test Acc. 95.93 ± 0.50  95.77 ± 0.29  95.51 ± 0.22  95.01 ± 0.19  94.39 ± 0.40   

a An equal percentage of positive and negative images were randomly selected from the data set to form the train and test image sets. 

Table 4 
Test accuracies for selected classifiers on contrast enhanced images.  

Training and test accuracies (%) 

Test images (%)a 10 25 50 75 90 
Training images (%)a 90 75 50 25 10 

Linear Discriminant 
Training Acc. 87.65 ± 0.64  87.67 ± 0.37  87.51 ± 0.30  87.43 ± 0.23  87.45 ± 0.19  

Test Acc. 87.76 ± 0.62  87.72 ± 0.33  87.50 ± 0.20  87.44 ± 0.24  87.43 ± 0.18  

Weighted k-NN 
Training Acc. 100  100  100  100  100  

Test Acc. 96.49 ± 0.40  96.42 ± 0.19  96.09 ± 0.15  95.47 ± 0.04  94.42 ± 0.19  

Cubic SVM 
Training Acc. 99.32 ± 0.30  99.44 ± 0.09  99.42 ± 0.15  99.38 ± 0.18  96.97 ± 0.28  

Test Acc. 98.26 ± 0.31  97.99 ± 0.11  97.88 ± 0.16  97.55 ± 0.20  96.63 ± 0.31  

Boosted Trees 
Training Acc. 99.12 ± 0.24  98.80 ± 0.10  99.16 ± 0.07  98.95 ± 0.10  98.92 ± 0.03  

Test Acc. 98.83 ± 0.25  98.80 ± 0.09  98.84 ± 0.09  98.77 ± 0.10  98.66 ± 0.05  

LeNet 
Training Acc. 97.90 ± 0.67  97.86 ± 0.51  97.45 ± 0.60  97.02 ± 0.89  96.58 ± 0.79  

Test Acc. 97.06 ± 0.71  97.04 ± 0.54  96.82 ± 0.63  96.25 ± 0.92  95.74 ± 0.53  

Customized-CNN 
Training Acc. 99.31 ± 0.25  99.46 ± 0.15  99.40 ± 0.09  99.25 ± 0.23  98.99 ± 0.25  

Test Acc. 98.50 ± 0.29  98.46 ± 0.16  98.46 ± 0.11  98.12 ± 0.25  97.66 ± 0.26   

a An equal percentage of positive and negative images were randomly selected from the data set to form the train and test image sets. 
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custom CNN specifically designed for detection, were evaluated for 
myelin detection on unprocessed and pre-processed images. Overall, 
Boosted Trees and customized-CNN achieved the highest accuracy 
values on both unprocessed and pre-processed images (Tables 3 and 4). 

Discriminant & Regression methods performed worse staying below 
90% accuracy even on pre-processed images. For all the methods, 
contrast enhancement increased accuracy by up to approximately 13 
percentage points. The best performing methods reached over 98% ac
curacy after pre-processing. In current study, optimum contrast levels 
for the images were determined by the expert. The future myelin 
quantification work-flows will benefit from expediting of this 
pre-processing step. Apart from the improvement in detection perfor
mance, contrast enhancement in the pre-processing stage prevents our 
approach to be a fully-automated myelin detector. This is due to the fact 
that enhancement parameters should be determined for each individual 
image by expert inspection. Improper enhancement parameters esti
mated by automatic methods can cause image loss or noise amplification 
in medical images (Agarwal and Mahajan, 2018). In addition, we 
assessed how the amount of labeled training data affects the perfor
mance of the 23 machine learning methods for 5 different cases. As 
expected, increasing the number of training images increased the ac
curacy in general. Having said that, a smaller training set yields suffi
ciently accurate myelin classification results for Decision Tree based 
methods. Previous myelin quantification efforts have been focused on 
deep learning based approaches (Cimen et al., 2018; Xu et al., 2019). 
However, in our study, CNN based methods did not perform as well as 
Boosted Trees based myelin detection method for the data set under 
consideration (Table 4). 

Confusion matrix (Table 5) shows that positive images were detected 
more accurately than the negative images for each split cases. In addi
tion, number of false negatives was more than number of false positives. 

Fig. 6. Test accuracies for the selected classifiers with their standard deviations were plotted for comparison.  

Table 5 
Confusion matrices of the top two classifiers on contrast enhanced images.   

Boosted Trees Customized-CNN  

Predicted 
values 

Actual values Number of test/ 
training images  

+ − + −

+ 1544 5 1534 15 
3095/27,840 −

31 1515 31 1515 

+ 3860 12 3843 29 
7737/23,198 −

81 3784 90 3775 

+ 7734 10 7672 72 
15,474/15,461 −

169 7561 167 7563 

+ 11,590 17 11,391 216 
23,202/7733 −

269 11,326 219 11,376 

+ 13,929 11 13,839 101 
27,854/3081 −

363 13,551 549 13,365  

Table 6 
Test accuracies of the best performing classifiers for different split cases on contrast enhanced images.  

Boosted Trees Customized-CNN  

Test images 
(%) 

Training images 
(%) 

Precision 
(%) 

Recall 
(%) 

F-Score 
(%) 

Error 
(%) 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F-Score 
(%) 

Error 
(%) 

Accuracy 
(%) 

10 90 99.67  98.03  98.85  1.16  98.83  99.03  98.02  98.50  1.49  98.50  
25 75 99.69  97.94  98.81  1.20  98.80  99.25  97.71  98.48  1.54  98.46  
50 50 99.87  97.86  98.86  1.16  98.84  99.07  97.87  98.47  1.54  98.46  
75 25 99.85  97.70  98.78  1.23  98.77  98.14  98.11  98.13  1.87  98.12  
90 10 99.92  97.46  98.68  1.34  98.66  99.28  96.18  97.71  2.33  97.66   
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This shows that both Boosted Trees and customized-CNN overlooked the 
myelin regions. Boosted Trees and customized-CNN showed similar 
performance while Boosted Trees were good at positives in case of 
10–90% (cf. Table 5). Customized-CNN worked more accurate on 
negative images in cases of 50–50% and 75–25% (cf. Table 5). 
Comparing and contrasting the missed myelin regions for both algo
rithms may help designing better myelin detection tools in the future. 

To further assess the generalization aspect of the proposed expedited 
myelin detection approach, we conducted detection tests for 0.5 μm z- 
stack resolution images (cf. Tables 7 and 8). Boosted Trees algorithm 
yielded similar performance results for images with different z-stack 
resolutions. Detection performance of customized-CNN, on the other 
hand, was substantially decreased for unprocessed images and the effect 
of contrast enhancement was more pronounced for this case. Results 
suggest that Boosted Trees algorithm and the customized-CNN may be 
regarded as robust myelin detection methods, even for data sets without 
a dedicated training phase specific for that particular data set. From the 
generalization point of view, this is especially desired for myelin 
detection. 

Similar to myelin, most biological structures expand in three di
mensions and carry information in multiple channels (Wigen et al., 
2018; Segars et al., 2018). Biologists prefer to visually evaluate the 
quality of the myelin. It allows them not only to confirm the results but 
also to assess the effect of treatments applied. Thus, we visualized the 
myelin detected by the machine learning algorithms over the original 
images. Moreover, the visualization step is an early step in stereological 
reconstruction of the myelin. In the future, we plan to extract and 
quantify morphological parameters such as myelin length and number of 
myelin regions from the reconstruction of machine learning detected 
myelin. 

Expediting myelin detection is essential for classifying thousands of 
images in a reasonable time frame allowing screening of chemicals for 
myelin repair. Here, we presented a machine learning based workflow 
for expedited myelin detection. Compared to manual myelin detection, 
this workflow is significantly faster. It takes six hours for a well-trained 
expert to manually detect myelin from five of the 2k × 8k images used 
in this study. In comparison, Boosted Trees method processed feature 
images extracted from these images in 8.27 s and the customized-CNN 

Table 7 
Test accuracies for Boosted Trees for different split cases on unprocessed and contrast enhanced 0.5 μm z-stack resolution images  

Boosted Trees on unprocessed images Boosted Trees on contrast enhanced images  

Test images 
(%)a 

Training images 
(%)a 

Precision 
(%) 

Recall 
(%) 

F-Score 
(%) 

Error 
(%) 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F-Score 
(%) 

Error 
(%) 

Accuracy 
(%) 

10 90 95.07  99.66  97.31  2.68  97.32  95.93  99.66  97.76  2.22  97.78  
25 75 95.09  99.59  97.29  2.71  97.29  96.07  99.41  97.71  2.27  97.73  
50 50 94.91  99.72  97.26  2.74  97.26  95.33  99.73  97.48  2.21  97.79  
75 25 94.60  99.49  96.99  3.01  96.99  95.09  99.25  97.13  2.87  97.13  
90 10 94.65  99.30  96.92  3.08  96.92  94.55  99.29  96.86  3.14  96.86  

aAn equal percentage of positive and negative images were randomly selected from 0.5 μm z-stack resolution images data set to form the train and test image sets. 

Table 8 
Test accuracies for Customized-CNN on unprocessed and contrast enhanced 0.5 μm z-stack resolution images. Note that the network was trained with 1 μm z-stack 
resolution images as was described in Tables 3 and 4).  

Customized-CNN on unprocessed 0.5 μm images  Customized-CNN on contrast enhanced 0.5 μm images   

Test images Training 
images (%) 

Precision 
(%) 

Recall 
(%) 

F-Score 
(%) 

Error 
(%) 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F-Score 
(%) 

Error 
(%) 

Accuracy 
(%) 

0.5 μm z-stack 
resolution images  

90 96.49  46.72  62.95  28.47  72.53  92.33  83.70  87.81  11.53  88.47  

75 95.90  55.91  70.65  23.20  76.80  89.87  87.30  88.57  11.14  88.86  

50 84.49  88.08  86.25  13.81  86.19  91.19  86.48  88.77  10.82  89.18  

25 95.90  55.57  70.36  23.37  76.63  87.84  92.77  90.24  9.85  90.15  

10 96.23  55.16  70.12  23.47  76.53  88.42  90.63  89.51  10.46  89.54   

Fig. 7. Post-visualization of the myelin were detected by the customized-CNN on a sample image. (a) The original image. Bracket shows myelin and circle marks the 
area of the false positive pixel. 5 stacks were maximum intensity projected. Oligodendrocytes: red, axons: green. (b) Ground truth as marked by the expert on the 
original image was shown in white. (c) All the pixels were classified as myelin by the customized-CNN. The myelin was in white while the false positive pixel was in 
orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

S. Çimen Yetiş et al.                                                                                                                                                                                                                            



Journal of Neuroscience Methods 346 (2020) 108946

9

took only 1.04 s. Taken together with their high accuracy and increased 
speed, both Boosted Trees and customized-CNN methods are effective in 
expediting myelin detection. Myelin detection may be expedited by 
three to four orders of magnitude using image processing and machine 
learning techniques. In the future, they can be incorporated into work
flows to automate myelin quantification. Our results also suggest that 
such an automation scheme will benefit from automated contrast 
enhancement. 
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