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Abstract: Several simple and prenylated coumarin derivatives were isolated from the dichloromethane
extract of the root of Neocryptodiscus papillaris based on moderate cytotoxic activity of the extract in
COLO205, KM12 and MCF7 cancer cells. While the major prenylated furanocoumarin derivatives
and osthol isolated from the dichloromethane extract were responsible for the activity in the colon
and breast cancer cell lines, the 4′-acylated osthol derivatives including a novel coumarino-alkaloid;
neopapillarine) demonstrated selective cytotoxic activity in A498 and UO31 renal cancer cell lines.

Keywords: neocryptodiscus papillaris; apiaceae; simple coumarins; furanocoumarins; prenylated
coumarins; coumarino-alkaloid; cytotoxic activity

1. Introduction

The flora of Turkey is highly diverse, with about seed plant species, 3100 of which are endemic [1].
As part of a long-term collaboration to explore the phytochemistry of rare, endemic, and medicinal Turkish
plants, we evaluated the anticancer properties of extracts and pure compounds using cancer cell growth
inhibition assays as well as molecularly targeted assays. We have focused on the family Apiaceae, a notably
diverse plant family in Turkey, with 100 genera, e.g., [2]. Over 140 extracts from over 40 species of Turkish
Apiaceae were tested by both cell growth and biochemical assays at the Molecular Targets Program,
National Cancer Institute (NCI). Neocryptodiscus [3] is a small genus of the family Apiaceae represented by
five species worldwide [4], which have not been investigated for their non-volatile secondary metabolites.
Neocryptodiscus papillaris (Boiss.) Herrnst. & Heyn (syn. Prangos papillaris (Boiss.) Menemen) is a rare
species only found in a small area of the Northern Mesopotamia region [5].

2. Results

Cytotoxicity testing of the root and fruit extracts of N. papillaris showed moderate activity against
COLO205, KM12, MCF7, A498 and UO31 cancer cell lines, with the dichloromethane root extract
the being most active [6]. In addition to the various known coumarin derivatives, e.g., osthol (1) [7],
4′-senecioyloxyosthol (5) [8], psoralen (6), bergapten (7), isoimperatorin (8) [9], oxypeucedanin (9) [10],
oxypeucedanin hydrate (10) [10,11], pranferol (11) [12], scopoletin (12), and scoparone (13) [13];
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the fractionation of the dichloromethane extract of the root of N. papillaris yielded several novel osthol
derivatives, i.e., 4′-hydroxyosthol (2), 4′-acetoxyosthol (3) and neopapillarine (4) (Figure 1).
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Figure 1. Structures of the coumarin derivatives isolated from the roots of Neocryptodiscus papillaris.

In addition to their cytotoxic and anticancer activities [14,15], natural and semi-synthetic
coumarins possess many biological activities properties [16] such as antiviral [17–19], antifungal,
antioxidative [20,21], antibacterial [22] and anti-inflammatory activities [23]. It should be noted that
aflatoxins, potent hepatotoxic, carcinogenic, mutagenic and teratogenic mycotoxins isolated from
Aspergillus species, also contain a coumarin nucleus as part of their polycylic heterocyclic structure [24].

The 1H-NMR spectrum of 4′-hydroxyosthol (2) (Table 1) was similar to that of osthol (1) with
the exception of the lack of one of the vinylic methyl group signals. The presence of a methylene
singlet at δH 4.41 ppm (2H) suggested that the second vinylic methyl group of osthol was hydroxylated.
The HRESIMS data of 2 showed a protonated molecular peak at m/z 261.1115 [M + H]+ (calcd. 261.1121,
err. 2.55 ppm) indicating a molecular formula of C15H16O4 for 2 which that is in agreement with
the hydoxylated isoprenyl side chain added to the osthol structure. Although this compound has
previously been reported as a rat metabolite of osthol [25], both the 1H-NMR and 13C–NMR spectra of
the metabolite were reported in deuterated dimethylsulfoxide and the reported chemical shifts do not
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closely match the 1H-NMR and 13C-NMR spectra of 2 recorded in CDCl3. Thus, in order to confirm the
correct hydroxyosthol structure for 2, the 13C-NMR as well as the COSY, NOESY, HSQC and HMBC
spectra of 2 were recorded in CDCl3 (see Table 1, Figure 2, Figure 3 and Supplementary Materials).
The NOESY spectrum of 2 exhibited interactions between the C-5′ methyl protons and H-2′ as well as
H-4′ (Figure 3) suggesting the presence of a hydroxyl group on the osthol C-4′ methyl. Furthermore,
2D-COSY, HSQC and HMBC data (see Figure 2, Figure 3 and Supplementary Materials information)
confirmed the structure of 2 as 4′-hydroxyosthol.
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The 1H-NMR spectrum of 4′-acetoxyosthol (3) (Table 1) clearly suggested that 3 is the acetylated
derivative of 2. The presence of an acetyl methyl group signal in the 1H-NMR spectrum at δH 2.09 ppm
(3H, s) and 0.44 ppm downfield shift of the C-4′ methylene protons [i.e., at δH 4.85 ppm (br s, 2H)]
strongly suggested that the C-4′ hydroxymethylene group was esterified with an acetyl group in 3.
In addition, the position of the acetoxy group was corroborated by the 2D NOESY spectrum as C-4′

and furthermore, a sodium adduct molecular peak observed at m/z 325.1039 [M + Na]+ (calcd. 325.1052,
err. 4.03 ppm) in the HRESIMS spectrum of 3 confirmed the structure of 3 as 4′-acetoxyosthol.

The 1H-NMR spectrum of neopapillarine (4) (Table 1) showed similar signals to that those of 3.
However, instead of an acetyl methyl group observed at δH 2.09 ppm in the 1H-NMR spectrum of 3,
the 1H-NMR spectrum of 4 contained four proton signals in the aromatic region of the spectrum. The
chemical shifts and multiplicities of these four protons were almost identical to those of nicotinic acid
esters [26], thus, the acid portion of the ester group in 4 should be nicotinic acid. The 2D NOESY
spectrum of 4 indicated that the nicotinoyloxy group was located on the C-4′ methyl group (Figure 3) as
with the acetoxy group of 3. In addition, the HRESIMS spectrum of 4 displayed a protonated molecular
peak at m/z 366.1337 [M + H]+ (calcd. 366.1341, err. 1.23 ppm) confirming a molecular formula of
C21H19NO5 for 4 which that is in agreement with a 4′-nicotinoyloxyosthol structure for compound 4.
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Table 1. 1H-NMR and 13C-NMR data for Compounds 2, 3, and 4 in CDCl3.

Compound 2 Compound 3 Compound 4

Pos. δH (in ppm, m, J in Hz) δC (in ppm, type) δH (in ppm, m, J in Hz) δC (in ppm, type) δH (in ppm, m, J in Hz) δC (in ppm, type)

2 162.09; C 161.24; C 161.21; C
3 6.25; d; 9.5; 1H 112.96; CH 6.23; d; 9.4; 1H 113.24, CH 6.23; d; 9.5; 1H 127.70; CH
4 7.65; d; 9.5; 1H 144.32; CH 7.61; d; 9.4; 1H 143.81; CH 7.61; d; 9.5; 1H 143.82; CH
5 7.33; d; 8.5; 1H 126.76; CH 7.31; d; 8.6; 1H 126.73; CH 7.31; d; (8.6); 1H 126.82; CH
6 6.86; d; 8.5; 1H 107.80; CH 6.82; d; 8.6; 1H 107.46; CH 6.83; d; 8.6; 1H 107.49; CH
7 160.01; C 160.19; C 160.19; C
8 116.70; C 116.68; C 116.56; C
9 153.39; C 153.03; C 153.01; C

10 113.50; C 113.11; C 113.15; C
OCH3 3.94; s; 3H 56.36; CH3 3.91; s; 3H 56.18; CH3 3.90; s; 3H 56.24; CH3

1′ 3.59; br dd; 0.6, 7.9; 2H 21.63; CH2 3.61; br d; 7.7; 2H 21.73; CH2 3.68; br d; 7.7; 2H 21.65; CH2
2′ 5.22; br t; 7.9; 1H 123.14; CH 5.51; br t; 7.7; 1H 126.98; CH 5.60; br t; 7.7; 1H 113.30; CH
3′ 136.51; C 130.98; C 130.54; C
4′ 4.41; d; 0.6; 2H 61.21; CH2 4.85; br s; 2H 63.46; CH2 5.16; br s; 2H 64.53; CH2
5′ 1.80; br d; 1.4; 3H 21.59; CH3 1.72; br d; 0.9; 3H 21.52; CH3 1.81; br d; 1.0; 3H 21.85; CH3
1′′ 171.37; C 165.33; C
2′′ 2.09; s; 3H 21.14; CH3 126.82; C
3′′ 8.35; d t; 1.9, 7.8; 1H 137.67; CH
4′′ 7.42; br dd; 4.8, 7.8; 1H 123.63; CH
5′′ 8.78; br d; 3.5; 1H 153.07; CH
6′′ 9.24; br s; 1H 150.71; CH
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The cytotoxic activity of the coumarins isolated from N. papillaris was tested in A498 and UO31
renal cancer cell lines (Table 2). While most furanocoumarins and simple osthol derivatives isolated
from the root of N. papillaris showed no or weak inhibitory activity against these cell lines, osthol
derivatives that contain larger 4′-acyloxy groups such as senecioyloxy (i.e., 5) or nicotinoyloxy (i.e., 4)
group displayed a moderate inhibitory activity against the UO31 cell line. Furthermore neopapillarine
(4), the 4′-nicotinoyloxy derivative of osthol, exhibited better inhibitory activity in the A498 renal
cancer cell line in comparison with the 4′-senecioyloxy derivative of osthol (5).

Table 2. Inhibitory concentrations, (IC50, µM) values of prenylated coumarins isolated from N. papillaris.

Compounds 1 2 3 4 5 8 9

A498 >1000 >1000 >1000 67 >100 >1000 720
UO31 >1000 ≥1000 >1000 20 20 >1000 630

COLO205 20 NT * NT NT NT 14 30
KM12 >100 NT NT NT NT >100 31
MCF7 24 NT NT NT NT >100 >100

* NT; not tested.

3. Discussion

The Investigation of the dichloromethane extract of the root of N. papillaris, a rare and endemic
Apiaceae plant, yielded several coumarin derivatives with cytotoxic activity including a novel
coumarino-alkaloid compound; named neopapillarine (4). The prenylated major coumarins of
the root extract were osthol (1), isoimperatorin (8) and oxypeucedanin (9). Osthol (1) showed 20
and 24 µM IC50 values in COLO205 colon cancer and MCF7 breast cancer cell lines, respectively.
Oxypeucedanin (9) displayed 30 and 31 µM IC50 values in the COLO205 and KM12 colon cancer
cell lines, but much weaker IC50 values (i.e., ca. 100 µM, 720 µM and 630 µM) against the MCF7
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mammalian and A498 and UO31 renal cancer cell lines, respectively. Isoimperatorin (8) showed an
IC50 value of 14 µM in the COLO205 cancer cell line but a weaker inhibitory activity (i.e., ca. 100 µM
IC50) against the KM12 and MCF7 cancer cell lines, respectively. In contrast, only neopapillarine (4)
and 4′-senecioyloxyosthol (5) showed inhibitory activity with an IC50 of 20 µM in the UO31 renal
cancer cell line. While neopapillarine (4) displayed a moderate inhibitory activity with an IC50 of
67 µM in the A498 cell line, 4′-senecioyloxyosthol (5) showed relatively weak activity in the A498 cell
line, this difference may be due to the nitrogen bearing ester group of neopapillarine (4).

To date, isomurralonginol nicotinate (14) was the only other known nicotinic acid ester of a
prenylated coumarin isolated from a plant species of the Rutaceae family, i.e., Murraya paniculata
(L.) Jack, [28]. Interestingly, other coumarino-alkaloids such as toddacoumalone (15) [29], dimeric
coumarin coupled quinolone, acrimarines (e.g., acrimarine A (16)) [30,31] and neoacrimarines (e.g.,
neoacrimarine A (17)) [32,33], dimeric coumarin coupled acridone alkaloids, were all isolated from the
plants of the Rutaceae family (Figure 4). The vast majority of alkaloids discovered in the Apiaceae
family have been piperidine derivatives (e.g., coniine (18), conyhydrine) [34]. Nevertheless, rarely
other types of alkaloids such as bisbenzyisoquinoline (e.g., cycleanine (19)) [35] and two protoalkaloid
derivatives; elaeochytrine A (20) (i.e., jaeschkeanadiol anthranilate) [36] and a furanocoumarin derived
prangosine (21) [37] have been reported in the Apiaceae family (Figure 5).Molecules 2017, 22, x FOR PEER REVIEW  3 of 12 
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4. Materials and Methods

4.1. General Experimental Procedures

UV spectra were recorded on the Shimadzu UV-Vis Spectrophotometer, UV-1700 (Kyoto, Japan).
IR spectra (neat) were recorded on the Perkin-Elmer FT-IR Spectrometer, SPECTRUM 2000 (Waltham,
MA, USA). NMR spectra were acquired on a Bruker Avance III spectrometer (Billerica, MA, USA)
operating at 600 MHz for 1H and 150 MHz for 13C and equipped with a 3 mm cryogenically cooled
probe. HRESIMS data were acquired on an Agilent 6530 Accurate Mass Q-TOF instrument (Santa Clara,
CA, USA). Initial purification of the dichloromethane extract was carried out on a Sephadex LH-20
(GE Healthcare, Chicago, IL, USA) column. Further purification of column fractions was performed
using silica gel F254 PLC plates (1 mm thickness) (Merck KGaA, Darmstadt, Germany).

4.2. Plant Material

The root and fruits of N. papillaris were collected from Aşağı Dilimli village, near Viranşehir,
Şanlıurfa in June 2013 and identified by Prof. A. Duran. A voucher specimen (A. Duran 7780) was
deposited in the Herbarium of Selçuk University, Faculty of Sciences, Department of Biology. Due to the
endangered rare plant species status of Neocryptodiscus papillaris, only a portion of the root was taken
from the plant (Figure 6), the root material was cut into narrow slices and dried in a well-ventilated
area protected from sun light along with the fruits of plant.
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4.3. Extraction and Isolation

Upon complete drying (ca. 1 month) of the plant material, coarsely powdered root (200 g) and
fruits (100 g) of N. papillaris were extracted sequentially with dichloromethane (4 L for the root and
2 L for the fruits) and methanol (4 L for the root and 2 L for the fruits) at room temperature and
concentrated, in vacuo, to dryness (yields; 9.85 g for the dichloromethane root extract, 1.59 g for
the dichloromethane fruit extract, 16.72 g for the methanol root extract and 4.22 g for the methanol
fruit extract). The dichloromethane root extract (4 g) was separated using a Sephadex LH-20 column
(4.5 × 100 cm) packed in a hexane/dichloromethane/methanol (14:9:1) mixture followed by prep.
TLC (1 mm thickness, silica gel F254 developed with hexane/ethyl acetate at 9:1, 7:3, or 1:1) for
final purification of compounds. The known compounds isolated from the dichloromethane extract
were osthol (1, 1.08 g), 4′-senecioyloxyosthol (5, 24 mg), psoralen (6, 6 mg), bergapten (7, 3 mg),
isoimperatorin (8, 32 mg), oxypeucedanin (9, 22.5 mg), oxypeucedanin hydrate (10, 4.4 mg), pranferol
(11, 3 mg), scopoletin (12, 8 mg) and scoparone (13, 1.2 mg).

4′-Hydroxyosthol (2, 2.2 mg). White amorphous powder; IR (NaCl) νmax: 3450, 2918, 2850, 1730,
1607, 1498, 1403, 1281, 1252, 1120, 1091, 832 cm−1; UV (MeOH) λmax (log ε): 321 (3.80), 257 (3.39), 248
(sh) (3.40), 214 (3.94) nm; 1H and 13C-NMR (see Table 1); HRESIMS m/z 261.1115 [M + H]+ (calcd. for
C15H16O4 261.1121, err. 2.55 ppm).

4′-Acetoxyosthol (3, 1.6 mg). White amorphous powder; IR (NaCl) νmax: 2933, 2850, 1742, 1730,
1609, 1498, 1436, 1403, 1367, 1281, 1251, 1118, 1090, 1028, 833 cm−1; UV (MeOH) λmax (log ε): 322 (3.91),
257 (3.51), 248 (3.50), 210 (3.99) nm; 1h and 13C-NMR (see Table 1); HRESIMS m/z 325.1039 [M + Na +

(calcd. for C17H18O5Na 325.1052, err. 4.03 ppm).
Neopapillarine (4, 8.1 mg). White amorphous powder; IR (NaCl) νmax: 2919, 2850, 1723, 1608,

1498, 1436, 1281, 1251, 1161, 1117, 1089, 1024, 833, 742, 703 cm−1; UV (MeOH) λmax (log ε): 321 (3.23),
271 (sh) (2.98), 258 (3.11), 190 (sh) (3.63) nm; 1h and 13C-NMR (see Table 1); HRESIMS m/z 366.1337 [M
+ H]+ (calcd. for C21H20NO5 366.1341, err. 1.23 ppm).

4.4. Cytotoxicity Assay on Renal Cancer Cell Lines

The assay used for this study was a two-day, two cell line XTT bioassay [38], an in vitro antitumor
colorimetric assay developed by the MTP Assay Development and Screening Section. The renal cancer
cell lines used were UO31 and A498. Colon cancer cell lines were COLO205 and KM12, and MCF-7 was
the breast cancer cell line. Cells were harvested and plated (45 µL) at a seeding density of 3.0 × 105 cells
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per well for the UO31 cell line, 2.5 × 105 cells per well for the A498 cell line, 3.5 × 105 cells per well
for the COLO205 and KM12 colon cancer cell lines, and 3.0 × 105 cells per well for the MCF7 breast
cancer cell line. The respective cell lines were separately plated into 384-well assay plates and then
incubated for 24 h. DMSO solutions of the test materials (8 µL) were diluted 1:25 with medium
(192 µL) and then subjected to five 2:1 serial dilutions (100 µL each) on a 96-well plate. Duplicate
40 µL aliquots of each sample concentration were then transferred to a 384-well “dilution plate”,
which could accommodate the duplicate samples from two 96-well plates. A 5 µL portion of each
solution in the dilution plate was transferred to the cell cultures in the 384-well assay plates to give a
final volume of 50 µL and a DMSO concentration of 0.4%. Control wells included 8 wells with the
positive control sanguinarine chloride at 20 µM, as well as DMSO only controls and no cell controls.
The Z’ factors for the individual plates were calculated and were >0.5 in all cases. The cells were
incubated for 48 h at 37 ◦C in the presence of the test samples and then treated with the tetrazolium salt
XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2h-tetrazolium-5-carboxanilide). Viable cells reduced
XTT to a colored formazan product, and after an additional 4 h incubation period the amount of
formazan produced was quantified by absorption at 450 nm, using a 650 nm reference. Plates were
read on a PerkinElmer EnVision (model # 2104) reader.

Supplementary Materials: The following are available online, Figure S1: Structures of the coumarin derivatives
isolated from the roots of Neocryptodiscus papillaris, Figure S2: 1H NMR spectrum (600 MHz, CDCl3) of
4′-Hydroxyosthol (2), Figure S3: 13C NMR spectrum (125 MHz, CDCl3) of 4′-Hydroxyosthol (2), Figure S4:
2D-COSY spectrum of 4′-Hydroxyosthol (2), Figure S5: 2D HSQC spectrum 4′-Hydroxyosthol (2), Figure S6:
2D HMBC spectrum of 4′-Hydroxyosthol (2), Figure S7: 2D NOESY spectrum of 4′-Hydroxyosthol (2), Figure S8:
HRESIMS spectrum of 4′-Hydroxyosthol (2), Figure S9: 1H NMR spectrum (600 MHz, CDCl3) of 4′-Acetoxyosthol
(3), Figure S10: 13C NMR spectrum (125 MHz, CDCl3) of 4′-Acetoxyosthol (3), Figure S11: 2D-COSY spectrum of
4′-Acetoxyosthol (3), Figure S12: 2D HSQC spectrum 4′-Acetoxyosthol (3), Figure S13: 2D HMBC spectrum of
4′-Acetoxyosthol (3), Figure S14: 2D NOESY spectrum of 4′-Acetoxyosthol (3), Figure S15: HRESIMS spectrum of
4′-Acetoxyosthol (3), Figure S16: 1H NMR spectrum (600 MHz, CDCl3) of Neopapillarine (4), Figure S17: 13C NMR
spectrum (125 MHz, CDCl3) of Neopapillarine (4). Figure S18: 2D-COSY spectrum of Neopapillarine (4), Figure
S19: 2D HSQC spectrum Neopapillarine (4), Figure S20: 2D HMBC spectrum of Neopapillarine (4), Figure S21:
2D NOESY spectrum of Neopapillarine (4), Figure S22: HRESIMS spectrum of Neopapillarine (4), Figure S23:
1H NMR spectrum of Osthol (1), Figure S24: 1H NMR spectrum of 4′-Senecioyloxyosthol (5), Figure S25: 1H NMR
spectrum of Psoralen (6), Figure S26: 1H NMR spectrum of Bergapten (7), Figure S27: 1H NMR spectrum of
Isoimperatorin (8), Figure S28: 1H NMR spectrum of Oxypeucedanin (9), Figure S29: 1H NMR spectrum of
Oxypeucedanin Hydrate (10), Figure S30: 1H NMR spectrum of Pranferol (11), Figure S31: 1H NMR spectrum of
Scopoletin (12), Figure S32: 1H NMR spectrum of Scoparone (13).
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