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Abstract 

There are some mappings, which  are not contraction mappings in the usual senses, such that they hold   

some contractive type conditions in the settings of some new abstract metric and modular spaces. In 

this paper, taking into account this fact, we introduce such a new type modular space by using the 

setting of cones in Banach algebras. In the first section, some basic notions and definitions are given. In 

the second part, it is shown that some result of Banach Contraction Principle in modular space with 𝐶∗-

algebra is equal to the result of Banach Contraction Principle of the usual modular space. Then that new 

modular space mentioned above is introduced and some results are given. Finally the work is concluded 

with an example. 

 

Banach Cebirli Koni Modüler Uzaylarda Banach Büzülme Prensibi 

 

Anahtar kelimeler 

Modüler uzay; Banach 

cebiri; sabit nokta 

teoremi;  ∆ 2-koşulu; 

𝐹-normu; 𝐶∗-cebiri. 

Öz 

Bilinen anlamda büzülme dönüşümü olmayan öyle dönüşümler vardır ki bu dönüşümler bazı yeni metrik 

ve modüler uzay yapılarında bazı büzülme tipinde koşulları sağlarlar. Biz bu makalede bu durumu göz 

önünde bulundurarak Banach cebirlerdeki konilerin yardımıyla yeni bir modüler uzay kavramı sunduk. 

İlk kısımda temel tanım ve notasyonlar verildi. İkinci kısımda Banach Büzülme Prensibinin 𝐶∗-cebir 

değerli modüler uzaylardaki sonucuyla klasik modüler uzaylardaki sonucunun denkliği gösterildi. Sonra 

yukarıda bahsedilen o modüler uzaya giriş yapıldı ve bazı sonuçlar verildi. Son olarak çalışma bir örnekle 

desteklendi. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

 

Banach (1922) presented a fixed point theorem 

known as Banach Contraction Principle (BCP) that is 

one of the important mathematical tools in 

nonlinear analysis. Then many authors dealth with 

this theorem in different spaces. For example, Ma et 

al. (2014) presented this theorem in 𝐶∗-algebra-

valued metric space and claimed that this is a 

generalization of BCP in the standart metric space. 

But later, Alsulami et al. (2016), Kadelburg and 

Radenovic’ (2016) separately showed that BCP 

obtained in 𝐶∗-algebra-valued metric space is 

equivalent to the result of BCP in the classical metric 

space. 

 

Nakano (1950) introduced the notion of modular 

space. Then Musielak and Orlicz (1959) generalized 

this space. By using the results of these works 

Khamsi and Kozlowski (1990) extended BCP to the 

frame of modular function space, an example of 

modular space, introduced by Kozlowski (1988). 

Inspired by the notion of 𝐶∗-algebra-valued metric 
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space Ma et al. (2014), Shateri (2017) presented a 

generalization for modular space. 

 

Now in this work, motivated by Alsulami et al. (2016) 

and Kadelburg and Radenovic’ (2016) it is firstly 

shown that BCP in the setting of 𝐶∗-algebra-valued 

modular space does not provide a real extension for 

the usual one in the modular space. Secondly, 

introduced a new setting, namely, a cone modular 

space over Banach algebras, which enables one to 

obtain a proper generalization for BCP in the usual 

modular spaces. Finally, the work is concluded with 

an example. 

 

2. Preliminaries 

Modular functional is defined as follows: 

Let 𝑉 be a vector space and 𝜌 ∶  𝑉 →  [0, ∞] be a 

functional for 𝑥, 𝑦 ∈ 𝑉. 𝜃𝑉  represents the zero 

vector of 𝑉. 𝜌 is called modular if the followings 

hold: 

m1.)  𝜌(𝑥)  =  0 if and only if 𝑥 =  𝜃𝑉 . 

m2.) 𝜌(𝜇𝑥)  =  𝜌(𝑥) for each scalar with |𝜇| =  1. 

m3.) 𝜌 (𝜇𝑥 +  𝛼𝑦)  ≤  𝜌(𝑥)  +  𝜌 (𝑦) if 𝜇 =  1 − 𝛼 

for 𝛼, 𝜇 ≥ 0. 

It is clear that the set 

𝑉𝜌 = {𝑥 ∈ 𝑉: 𝜌(𝜆𝑥) → 0 𝑎𝑠 𝜆 → 0} 

is a vector subspace of 𝑉. 𝑉𝜌 is called modular space. 

In addition to the conditions above, if                

𝜌 (𝜇𝑥 +  𝛼𝑦)  ≤  𝜇𝜌(𝑥)  + 𝛼 𝜌 (𝑦) for 𝛼, 𝜇 ≥

0, 𝜇 =  1 − 𝛼, then the functional 𝜌 is called 

convex. 

Definition 2.1. The modular 𝜌 satisfies the ∆2-

condition if lim
𝑛→∞

𝜌(2𝑥𝑛) = 𝜃𝑉  whenever 

lim
𝑛→∞

𝜌(𝑥𝑛) = 𝜃𝑉 .  

That is seen from Khamsi and Kozlowski (1990) that 

the BCP is valid for a mapping 𝑇: 𝑀 → 𝑀 where 𝑀 is 

a closed , bounded non-empty subset of the 

modular function space:  

Theorem 2.1. Let 𝜌 be a modular functional that 

satisfies the ∆2-condition and 𝑀 be a non-empty 𝜌 -

closed subset of the modular function space 𝑉𝜌. If 

𝑇: 𝑀 → 𝑀 is Lipschitzian and 𝑀 is 𝜌-bounded, then 

𝑇 has a unique fixed point. 

Now it is recalled some basic definitions and results 

from Murphy (1990) and Ma et al. (2014). 

An algebra is unital if it has the multiplicative unit. 

An involution on a unital algebra 𝐶 is a conjugate-

linear map 𝑎 → 𝑎∗ on 𝐶 such that 𝑎𝑎∗ = 𝑎 and 

(𝑎𝑏)∗  =  𝑏∗𝑎∗ for all 𝑎, 𝑏 ∈  𝐶. (𝐶,∗) is said to be a 

∗-algebra. A Banach ∗-algebra is a ∗-algebra with a 

complete submultiplicative norm such that ‖𝑎∗‖𝐶 =

‖𝑎‖𝐶  for each element 𝑎 of it. A 𝐶∗-algebra is a 

Banach ∗-algebra such that ‖𝑎∗𝑎‖𝐶 = ‖𝑎‖𝐶
2  for 

every element 𝑎 of it. In the rest of the the paper it 

is supposed that 𝐶 is a unital 𝐶∗-algebra. 𝜎(𝑥) 

stands for the spectrum of 𝑥. 𝜃𝐶  represents the zero 

element of 𝐶. The set 𝐶# = {𝑥 ∈ 𝐶: 𝑥∗ = 𝑥} 

denotes the hermitian or self-adjoint elements of 𝐶. 

If 𝑥 ∈ 𝐶# and 𝜎(𝑥) ⊆ [0, ∞), then 𝑥 ∈ 𝐶 is said to 

be a positive element of 𝐶. 𝐶+ denotes the positive 

elements of 𝐶 and |𝑥| = (𝑥∗𝑥)
1

2. Thus a partial 

ordering ≼ on 𝐶# is defined as 𝑥 ≼ 𝑦 iff 𝑦 − 𝑥 ∈ 𝐶+.  

Theorem 2.2. The following conditions are hold for 

𝐶: 

i) There is a unique element 𝑏 ∈ 𝐶+ such that 𝑏2 =

𝑎 for 𝑎 ∈ 𝐶+. 

ii) The set 𝐶+ is equal to {𝑎𝑎∗: 𝑎 ∈ 𝐶}. 

iii) If 𝑎, 𝑏 ∈ 𝐶# and 𝜃𝐶 ≼ 𝑎 ≼ 𝑏, then ‖𝑎‖𝐶 ≼ ‖𝑏‖𝐶 . 

iv) If 𝑎, 𝑏 ∈ 𝐶#, 𝑐 ∈ 𝐶 and 𝑎 ≼ 𝑏, then 𝑐∗𝑎𝑐 ≼ 𝑐∗𝑏𝑐. 

Ma et al. (2014) introduced the notion of 𝐶∗-

algebra-valued metric space and proved BCP in such 

spaces. Then motivated by the results obtained in 

Ma et al. (2014), Shateri (2017) presented the 

notion of 𝐶∗-algebra-valued modular space as 

follows: 

Definition 2.2. Let 𝑉 be a vector space over the field 

𝐾. The functional 𝜌: 𝑉 → 𝐶 called 𝐶∗-algebra-valued 

modular if the followings hold: 

cm1) 𝜌(𝑥) ≽ 𝜃𝐶 and 𝜌(𝑥) = 𝜃𝐶  if and only if 𝑥 =

𝜃𝑉 . 

cm2) 𝜌(𝛼𝑥) = 𝜌(𝑥) for each 𝛼 ∈ 𝐾 with |𝛼| = 1. 

cm3) 𝜌(𝛼𝑥 + 𝛽𝑦) ≼ 𝜌(𝑥) + 𝜌(𝑦) if 𝛼, 𝛽 ≥ 0 and 

𝛼 = 1 − 𝛽, for arbitrary 𝑥, 𝑦 ∈ 𝑉. 
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Note that the subset  

𝑉𝜌 = {𝑥 ∈ 𝑉: lim
𝜆→0

𝜌(𝜆𝑥) = 𝜃𝐶} 

is a subspace of 𝑉 and 𝑉𝜌 is called 𝐶∗-algebra-valued 

modular space. 

Definition 2.3. Let 𝑉𝜌 be a 𝐶∗-algebra-valued 

modular space. Then a mapping 𝑇: 𝑉𝜌 → 𝑉𝜌 is called 

a 𝐶∗-algebra-valued contractive mapping on 𝑉𝜌 if 

there is 𝑘 ∈ 𝐶 with ‖𝑘‖ < 1 and 𝛼, 𝛽 ∈ ℝ+ with 

𝛼 > 𝛽 such that  

𝜌(𝛼(𝑇𝑥 − 𝑇𝑦)) ≼ 𝑘∗𝜌(𝛽(𝑥 − 𝑦))𝑘 

for all 𝑥, 𝑦 ∈ 𝑉. 

Shateri (2017) gives definitions of 𝜌-convergence, 

∆2-condition, 𝜌-Cauchy and 𝜌-completeness in 

accordance with the literature and introduces the 

following theorem: 

Theorem 2.3. Suppose that 𝑉𝜌 is a 𝜌-complete 

modular space with the ∆2-condition and 𝑇 is a 𝐶∗-

algebra-valued contractive mapping on 𝑉𝜌. Then 𝑇 

has a unique fixed point in 𝑉𝜌. 

In the following some necessary definitions and 

properties are recalled. (Rudin 1991; Liu and Xu 

2013). 

Definition 2.4. Let 𝒜 be a Banach space over 𝐾 ∈

{ℝ, ℂ} and ‖. ‖ 𝒜  be a norm on 𝒜. 𝒜 is said to be a 

Banach algebra if there is an operation of 

multiplication satisfying the following conditions: 

i) (𝑢 + 𝑣)𝑤 = 𝑢𝑤 + 𝑣𝑤 and 𝑢(𝑣 + 𝑤) = 𝑢𝑣 + 𝑢𝑤. 

ii) (𝑢𝑣)𝑤 = 𝑢(𝑣𝑤). 

iii) 𝛽(𝑢𝑣) = (𝛽𝑢)𝑣 = 𝑢(𝛽𝑣). 

iv) ‖𝑢𝑣‖𝒜 ≤ ‖𝑢‖𝒜‖𝑣‖𝒜. 

for all 𝑢, 𝑣, 𝑤 ∈ 𝒜 and 𝛽 ∈ 𝐾. If there is an element 

𝑒 ∈ 𝒜 such that 𝑒𝑎 = 𝑎𝑒 = 𝑎 for all 𝑎 ∈ 𝒜, then 𝑒 

is called the multiplicative unit of the Banach 

algebra 𝒜. An element 𝑎 ∈ 𝒜 is called invertible if 

there is 𝑎−1 ∈ 𝒜 such that 𝑎𝑎−1 = 𝑎−1𝑎 = 𝑒. In 

the rest of the paper 𝒜 is supposed to be a Banach 

algebra with the multiplicative unit 𝑒 and zero 

vector 𝜃𝒜 . 

Definition 2.5. Let 𝑃 ⊆ 𝒜, then 𝑃 is called a cone if 

the followings hold: 

i) {𝑒, 𝜃𝒜} ⊂ 𝑃. 

ii) 𝜇𝑃 + 𝛽𝑃 ⊂ 𝑃 where all 𝜇, 𝛽 are non-negative real 

numbers. 

iii) 𝑃𝑃 = 𝑃2 ⊂ 𝑃. 

iv) 𝑃 ∩ (−𝑃) = {𝜃𝒜}. 

A partial ordering ≼ on 𝒜 is defined as 𝑢 ≼ 𝑣 iff 𝑣 −

𝑢 ∈ 𝑃. 𝑢 ≺ 𝑣 stands for 𝑢 ≼ 𝑣 and 𝑢 ≠ 𝑣. 𝑖𝑛𝑡𝑃 

denotes the interior of 𝑃. 𝑢 ≪ 𝑣 represents 𝑣 − 𝑢 ∈

𝑖𝑛𝑡𝑃. 𝑃 is said to be a solid cone if 𝑖𝑛𝑡𝑃 ≠ ∅. The 

cone 𝑃 is said to be normal if there exists 𝐿 > 0 such 

that for all 𝑥, 𝑦 ∈ 𝒜, 𝜃𝒜 ≼ 𝑥 ≼ 𝑦 implies ‖𝑥‖𝒜 ≤

𝐿‖𝑦‖𝒜 . From now on 𝑃 denotes a normal solid cone 

of 𝒜 unless otherwise stated. 

Definition 2.6. Let 𝑋 be a non-empty set and 

𝑑: 𝑋 × 𝑋 → 𝒜 be amapping holding the following 

conditions: 

i) 𝜃𝒜 ≼ 𝑑(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑋 and 𝑑(𝑢, 𝑣) = 𝜃𝒜  if 

and only if 𝑢 = 𝑣.  

ii) 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) for all 𝑢, 𝑣 ∈ 𝑋. 

iii) 𝑑(𝑢, 𝑤) ≼ 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑤) for all 𝑢, 𝑣, 𝑤 ∈ 𝑋. 

Then (𝑋, 𝑑) is said to be a cone metric space over 

𝒜. 

BCP in such spaces is introduced by Liu and Xu 

(2013) as follows: 

Theorem 2.4. Let (𝑋, 𝑑) be a cone metric space over 

𝒜 and 𝑃 be a normal solid cone of 𝒜 where 𝑎 ∈

𝑃 with 𝑟(𝑎) < 1. If the mapping 𝑇: 𝑋 → 𝑋 holds 

following condition for all 𝑥, 𝑦 ∈ 𝑋, then it has a 

unique fixed point in 𝑋: 

𝑑(𝑇𝑥, 𝑇𝑦) ≼ 𝑎𝑑(𝑥, 𝑦). 

After the announcement of this theorem, Xu and 

Radenovic’ (2014) showed that there is no need to 

normality condition to prove BCP mentioned above. 

However, it must be noted that as a generalization 

of the usual modular space, a cone modular space in 

this paper can be defined if 𝑃 holds the normality 

condition. 

 

Lemma 2.1. The spectral radius 𝑟(𝑎) of 𝑎 ∈ 𝒜 holds 

𝑟(𝑎) = lim
𝑛→∞

‖𝑎𝑛‖
𝒜

1

𝑛 .  
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If 𝑟(𝑎) < 1, then 𝑒 − 𝑎 is invertible in 𝒜. 

Furthermore 

(𝑒 − 𝑎)−1 = ∑ 𝑎𝑖 .

∞

𝑖=0

 

 

3. Main Results 

 

In the sequel it is first shown that BCP in 𝐶∗-algebra-

valued modular spaces is equivalent to BCP in the 

usual modular spaces: 

Theorem 3.1. BCP in the sense of Theorem 2.3. is 

equivalent to one in the usual modular space. 

Proof. From the Definition 2.3. it is known that there 

is 𝑎 ∈ 𝐶 with ‖𝑎‖𝐶 < 1 and 𝛼, 𝛽 ∈ ℝ+ with 𝛼 > 𝛽 

such that 𝜌(𝛼(𝑇𝑥 − 𝑇𝑦)) ≼ 𝑎∗𝜌(𝛽(𝑥 − 𝑦))𝑎 for all 

𝑥, 𝑦 ∈ 𝑉. Moreover, by ii) in Theorem 2.2. it is seen 

that there exists 𝑢𝑓 ∈ 𝐶 such that 𝜌(𝛽(𝑥 − 𝑦)) =

𝑢𝑓
∗𝑢𝑓 . Hence ‖𝜌(𝛽(𝑥 − 𝑦))‖

𝐶
= ‖𝑢𝑓

∗𝑢𝑓‖
𝐶

=

‖𝑢𝑓‖
𝐶

2
. On the other hand, since 𝜌(𝛼(𝑇𝑥 − 𝑇𝑦)) ≼

𝑎∗𝜌(𝛽(𝑥 − 𝑦))𝑎 = 𝑎∗𝑢𝑓
∗𝑢𝑓𝑎 = (𝑢𝑓𝑎)

∗
𝑢𝑓𝑎, then 

by using iii) in Theorem 2.2. the following is 

obtained: 

‖𝜌(𝛼(𝑇𝑥 − 𝑇𝑦))‖
𝐶

≼ ‖(𝑢𝑓𝑎)
∗
𝑢𝑓𝑎‖

𝐶
= ‖𝑢𝑓𝑎‖

𝐶

2

≼ ‖𝑎‖𝐶
2 ‖𝑢𝑓‖

𝐶

2

= ‖𝑎‖𝐶
2 ‖𝜌(𝛽(𝑥 − 𝑦))‖

𝐶
.      (3.1) 

 

Now consider a mapping  𝐹: 𝑉𝜌 → [0, ∞] such as 

𝐹(𝑥) = ‖𝜌(𝑥)‖𝐶. Then 𝐹 is a usual modular. Indeed, 

i) Let 𝐹(𝑥) = 0. Then ‖𝜌(𝑥)‖𝐶 = 0. Thus by the 

property of norm 𝜌(𝑥) = 0. Since 𝜌 is a modular, 

then 𝑥 = 𝜃𝑉 . 

ii) Let 𝜇 be a scalar with  |𝜇| = 1. Then 𝐹(𝜇𝑥) =

‖𝜌(𝜇𝑥)‖𝐶 = ‖𝜌(𝑥)‖𝐶 = 𝐹(𝑥). 

iii) Let 𝜇 = 1 − 𝜆 for 𝜇, 𝜆 ≥ 0. Then by using iii) in 

Theorem 2.2. and triangle inequality of the norm,  

𝐹(𝜇𝑥 + 𝜆𝑦) = ‖𝜌(𝜇𝑥 + 𝜆𝑦)‖𝐶 ≤ ‖𝜌(𝑥) + 𝜌(𝑦)‖𝐶

≤ ‖𝜌(𝑥)‖𝐶 + ‖𝜌(𝑦)‖𝐶

= 𝐹(𝑥) + 𝐹(𝑦). 

By letting ‖𝑎‖𝐶
2 , 𝑘 < 1. Thus by (3.1) 

𝐹(𝛼(𝑇𝑥 − 𝑇𝑦)) ≼ 𝑘𝐹(𝛽(𝑥 − 𝑦)). 

Hence, BCP in 𝐶∗-algebra valued modular spaces is 

equivalent to one in the usual modular spaces. 

Now introduced a proper space where a proper 

generalization for BCP in classical modular space 

could be obtained. 

Definition 3.1. Let 𝑉 be a vector space over 𝐾. A 

mapping 𝜌: 𝑉 → 𝒜 is called a cone modular 

functional if it satisfies the followings: 

cmf1 𝜌(𝑢) ≽ 𝜃𝒜  and 𝜌(𝑢) = 𝜃𝒜  iff 𝑢 = 𝜃𝑉 . 

cmf2) 𝜌(𝛼𝑢) = 𝜌(𝑢) for each 𝛼 ∈ 𝐾 with |𝛼| = 1. 

cmf3) 𝜌(𝛼𝑢 + 𝛽𝑣) ≼ 𝜌(𝑢) + 𝜌(𝑣) if 𝛼, 𝛽 ≥ 0 and 

𝛼 = 1 − 𝛽, for arbitrary 𝑢, 𝑣 ∈ 𝑉. 

In addition to the conditions above, if 𝜌 satisfies ) 

𝜌(𝛼𝑢 + 𝛽𝑣) ≼ 𝛼𝜌(𝑢) + 𝛽𝜌(𝑣) whenever 𝛼, 𝛽 ≥ 0 

and 𝛼 = 1 − 𝛽, then 𝜌 is called convex. 

It is clear that  

𝑉𝜌 = {𝑥 ∈ 𝑉: lim
𝜆→0

𝜌(𝜆𝑥) = 𝜃𝒜} 

is a subspace of 𝑉. Indeed, 

i) Let 𝑥, 𝑦 ∈ 𝑉𝜌. Then lim
𝜆→0

𝜌(𝜆𝑥) = 𝜃𝒜  and 

lim
𝜆→0

𝜌(𝜆𝑦) = 𝜃𝒜 . By using cmf3, 𝜌(𝜆(𝑥 + 𝑦)) =

𝜌 (
1

2
(2𝜆𝑥 + 2𝜆𝑦)) ≼ 𝜌(2𝜆𝑥) + 𝜌(2𝜆𝑦). Taking 𝑡 =

2𝜆, it is seen that 𝑡 → 0 as 𝜆 → 0. So 𝜃𝒜 ≼

lim
𝜆→0

𝜌(𝜆𝑥 + 𝜆𝑦) ≼ 𝜃𝒜 . Thus by the normaity of the 

cone, the Sandwich Theorem can be used. 

Therefore lim
𝜆→0

𝜌(𝜆(𝑥 + 𝑦)) = 𝜃𝒜 , implying 𝑥 + 𝑦 ∈

𝑉𝜌. 

ii) Take an arbitrary 𝛼 ∈ 𝐾 and 𝑥 ∈ 𝑉𝜌. Then 

lim
𝜆→0

𝜌(𝜆𝑥) = 𝜃𝒜 . Letting 𝛼𝜆 = 𝑡, 𝑡 → 0 as 𝜆 → 0. 

Hence lim
𝜆→0

𝜌(𝜆𝛼𝑥) = 𝜃𝒜 . So 𝛼𝑥 ∈ 𝑉𝜌. 

In the following 𝑉𝜌 denotes a cone modular space 

over Banach algebra 𝒜. 

Note that the cone modular space over 𝒜 is a 

generalization of the usual modular space.  

Let a functional on 𝑉𝜌 be defined as ‖𝑥‖𝐹 =

𝑖𝑛𝑓 {𝛿 > 0: ‖𝜌 (
𝑥

𝛿
)‖

𝒜
≤ 𝛿}. Note that ‖. ‖𝐹  is an 𝐹-

norm, that is, it satisfies the following conditions: 
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i) ‖𝑥‖𝐹 = 0 iff 𝑥 = 𝜃𝑉. 

ii) ‖𝑥 + 𝑦‖𝐹 ≤ ‖𝑥‖𝐹 + ‖𝑦‖𝐹. 

iii) ‖−𝑥‖𝐹 = ‖𝑥‖𝐹. 

iv) 𝛼𝑛 → 𝛼 and ‖𝑥𝑛 − 𝑥‖𝐹 → 0 imply  

‖𝛼𝑥𝑛 − 𝛼𝑥‖𝐹 → 0. 

Definition 3.2. Let {𝑥𝑛} be in 𝑉𝜌. 

i) {𝑥𝑛} is called 𝜌-convergent to 𝑥 ∈ 𝑉𝜌 if  for each 

휀 > 0 there is a natural number 𝑁 and 𝜇 > 0 such 

that  ‖𝜌(𝜇(𝑥𝑛 − 𝑥))‖
𝒜

< 휀 for all 𝑛 ≥ 𝑁. 

ii) {𝑥𝑛} is a 𝜌-Cauchy if for each 휀 > 0 there is a  

natural number 𝑁 and 𝜇 > 0 such that  

‖𝜌(𝜇(𝑥𝑛 − 𝑥𝑚))‖
𝒜

< 휀 for all 𝑛, 𝑚 ≥ 𝑁. 

iii) 𝑉𝜌 is 𝜌-complete if each 𝜌-Cauchy sequence with  

respect to 𝒜 is 𝜌-convergent. 

iv) 𝜌 satisfies ∆2-condition if for each 휀 > 0 there is  

𝑛0 ∈ ℕ such that ‖𝜌(2𝑥𝑛)‖𝒜 < 휀 whenever   

‖𝜌(𝑥𝑛)‖𝒜 < 휀 for 𝑛 ≥ 𝑛0. 

Remark 3.1. Since ‖𝜌(𝑥)‖𝒜 ≤ ‖𝑥‖𝐹, then the 

norm convergence implies modular convergence to 

the same limit. 

Remark 3.2. If 0 < 𝛼 < 𝛽, then from the Definition 

3.1., 𝜌(𝛼𝑥) = 𝜌 (
𝛼

𝛽
𝛽𝑥) ≼ 𝜌(𝛽𝑥) for all 𝑥 ∈ 𝑉 with 

𝑦 = 0. Furthermore, if 𝜌 is a convex cone modular 

on 𝑉 and |𝛼| ≤ 1, then 𝜌(𝛼𝑥) ≼ 𝛼𝜌(𝑥) for all 𝑥 ∈

𝑉.  

Definition 3.3. A mapping 𝑇: 𝑉𝜌 → 𝑉𝜌 is called a 

cone contractive mapping on 𝑉𝜌 if there exists a 

scalar vector 𝑘 ∈ 𝑃 with 𝑟(𝑘) < 1 and 𝛼, 𝛽 ∈ ℝ+ 

with 𝛼 > 𝛽 such that for all 𝑥, 𝑦 ∈ 𝑉𝜌 

𝜌(𝛼(𝑇𝑥 − 𝑇𝑦)) ≼ 𝑘𝜌(𝛽(𝑥 − 𝑦)).           (3.2) 

Theorem 3.2. Let 𝑉𝜌 be a 𝜌-complete modular space 

with ∆2-condition and 𝑇 be a cone contractive 

mapping on 𝑉𝜌. Then 𝑇 has a unique fixed point in 

𝑉𝜌. 

Proof. If 𝑘 = 𝜃𝒜 , then the proof is clear. Thus,  

assume that 𝑘 ≠ 𝜃𝒜 . Let 𝛼0 ∈ ℝ+ be with 
𝛽

𝛼
+

1

𝛼0
=

1. For an arbitrary 𝑥 ∈ 𝑉𝜌 and 𝑛 ∈ ℕ, set 𝑥𝑛+1 =

𝑇𝑥𝑛 = 𝑇𝑛+1𝑥. Since 𝛼 > 𝛽, then using Remark 3.2. 

and Definition 3.2. 

𝜌(𝛽(𝑥𝑛+1 − 𝑥𝑛)) = 𝜌(𝛽(𝑇𝑥𝑛 − 𝑇𝑥𝑛−1))

≼ 𝜌(𝛼(𝑇𝑥𝑛 − 𝑇𝑥𝑛−1))

≼ 𝑘𝜌(𝛽(𝑥𝑛 − 𝑥𝑛−1))

= 𝑘𝜌(𝛽(𝑇𝑥𝑛−1 − 𝑇𝑥𝑛−2))

≼ 𝑘𝜌(𝛼(𝑇𝑥𝑛−1 − 𝑇𝑥𝑛−2))

≼ 𝑘2𝜌(𝛽(𝑥𝑛−1 − 𝑥𝑛−2)) …

≼ 𝑘𝑛𝜌(𝛽(𝑥1 − 𝑥0)). 

Since 
𝛽

𝛼
+

1

𝛼0
= 1, then using cmf3  

                              𝜌(𝛽(𝑥𝑛+1 − 𝑥𝑛−1))

= 𝜌(𝛽(𝑥𝑛+1 + 𝑥𝑛 − 𝑥𝑛 − 𝑥𝑛−1))

= 𝜌(𝛽(𝑥𝑛+1 − 𝑥𝑛) + 𝛽(𝑥𝑛

− 𝑥𝑛−1))

= 𝜌 (𝛽
𝛼

𝛼
(𝑥𝑛+1 − 𝑥𝑛) + 𝛽

𝛼0

𝛼0
(𝑥𝑛

− 𝑥𝑛−1))

≼ 𝜌(𝛼(𝑥𝑛+1 − 𝑥𝑛))

+ 𝜌(𝛽𝛼0(𝑥𝑛 − 𝑥𝑛−1)). 

Since 𝛼 > 𝛽, then by using 3.2 the following is 

obtained, 

𝜌(𝛽(𝑥𝑛+1 − 𝑥𝑛−1))

≼ 𝑘𝜌(𝛽(𝑥𝑛 − 𝑥𝑛−1))

+ 𝜌(𝛽𝛼0(𝑥𝑛 − 𝑥𝑛−1)). 

By applying recursively the approach used above, 

the following inequality is obtained 

𝜌(𝛽(𝑥𝑛+1 − 𝑥𝑛−1))

≼ 𝑘𝑛𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

+ 𝑘𝑛−1𝜌(𝛽𝛼0(𝑥1 − 𝑥0)). 

Thus for 𝑛 + 1 > 𝑚 
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𝜌(𝛽(𝑥𝑛+1 − 𝑥𝑚))

≼ 𝜌(𝛼(𝑥𝑛+1 − 𝑥𝑚+1))

+ 𝜌(𝛽𝛼0(𝑥𝑚+1 − 𝑥𝑚))

≼ 𝜌(𝛼(𝑥𝑛+1 − 𝑥𝑚+1))

+ 𝑘𝑚𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

= 𝜌(𝛼(𝑇𝑛 − 𝑇𝑚))

+ 𝑘𝑚𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

≼ 𝑘𝜌(𝛽(𝑥𝑛 − 𝑥𝑚))

+ 𝑘𝑚𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

≼ 𝑘[𝜌(𝛼(𝑥𝑛 − 𝑥𝑚+1))

+ 𝜌(𝛽𝛼0(𝑥𝑚+1 − 𝑥𝑚))]

+ 𝑘𝑚𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

≼ 𝑘𝜌(𝛼(𝑥𝑛 − 𝑥𝑚+1))

+ 𝑘𝑘𝑚𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

+ 𝑘𝑚𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

≼ 𝑘2𝜌(𝛽(𝑥𝑛−1 − 𝑥𝑚))

+ {𝑘𝑚+1 + 𝑘𝑚}𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

≼ 𝑘3𝜌(𝛽(𝑥𝑛−2 − 𝑥𝑚))

+ {𝑘𝑚+2 + 𝑘𝑚+1 + 𝑘𝑚}𝜌(𝛽𝛼0(𝑥1

− 𝑥0)). 

By induction, 

𝜌(𝛽(𝑥𝑛+1 − 𝑥𝑚))

≼ 𝑘𝑛−𝑚+1𝜌(𝛽(𝑥𝑚 − 𝑥𝑚))

+ {𝑘𝑚+𝑛−𝑚 + ⋯ + 𝑘𝑚+1

+ 𝑘𝑚}𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

= 𝑘𝑚(𝑒 + 𝑘 + 𝑘2 + ⋯

+ 𝑘𝑛−𝑚)𝜌(𝛽𝛼0(𝑥1 − 𝑥0)). 

Since 𝑟(𝑘) < 1, then by Lemma 2.1. it is known that 

𝑒 − 𝑘 is invertible and (𝑒 − 𝑘)−1 = ∑ 𝑘𝑖 .∞
𝑖=0  Thus 

𝜌(𝛽(𝑥𝑛+1 − 𝑥𝑚)) ≼ 𝑘𝑚 [∑ 𝑘𝑖

∞

𝑖=0

] 𝜌(𝛽𝛼0(𝑥1 − 𝑥0))

= 𝑘𝑚(𝑒 − 𝑘 )−1𝜌(𝛽𝛼0(𝑥1 − 𝑥0)). 

Since 𝑃 is a normal solid cone with a normal 

constant 𝐿 and ‖𝑘𝑚‖𝒜 → 0 (𝑚 → ∞). Thus for 

(𝑚 → ∞) 

       ‖𝜌(𝛽(𝑥𝑛+1 − 𝑥𝑚))‖𝒜

≤ 𝐿‖𝑘𝑚‖𝒜‖(𝑒

− 𝑘 )−1‖𝒜‖𝜌(𝛽𝛼0(𝑥1 − 𝑥0))‖𝒜

→ 0. 

Thus {𝑥𝑛} is a 𝜌-Cauchy sequence. Since 𝑉𝜌 is a 𝜌-

complete cone modular space over the Banach 

algebra 𝒜, there exists 𝑥∗ ∈ 𝑉𝜌 and 𝛼 > 0 such that 

       ‖𝜌(𝛼(𝑥𝑛 − 𝑥∗))‖𝒜

=        ‖𝜌(𝛼(𝑇𝑥𝑛−1 − 𝑥∗))‖𝒜 < 𝑐. 

 

Now it remains to show that 𝑥∗ is a fixed point of 𝑇. 

Indeed, 

𝜌 (
𝛼

2
(𝑇𝑥∗ − 𝑥∗))

= 𝜌 (
𝛼

2
(𝑇𝑥∗ − 𝑇𝑛+1𝑥)

+
𝛼

2
(𝑇𝑛+1𝑥 − 𝑥∗))

≼ 𝜌(𝛼(𝑇𝑥∗ − 𝑇𝑛+1𝑥))

+ 𝜌(𝛼(𝑇𝑛+1𝑥 − 𝑥∗))

≼ 𝑘𝜌(𝛽(𝑥∗ − 𝑇𝑛𝑥))

+ 𝜌(𝛼(𝑇𝑛+1𝑥 − 𝑥∗))

≼ 𝑘𝜌(𝛼(𝑥∗ − 𝑇𝑛𝑥))

+ 𝜌(𝛼(𝑇𝑛+1𝑥 − 𝑥∗)). 

Hence, 

‖𝜌 (
𝛼

2
(𝑇𝑥∗ − 𝑥∗))‖

𝒜

≤ 𝐿 (‖𝑘‖𝒜‖𝜌(𝛼(𝑥∗ − 𝑇𝑛𝑥))‖
𝒜

+ ‖𝜌(𝛼(𝑇𝑛+1𝑥 − 𝑥∗))‖
𝒜

). 

For (𝑛 → ∞), 𝐿 (‖𝑘‖𝒜‖𝜌(𝛼(𝑥∗ − 𝑇𝑛𝑥))‖
𝒜

+

‖𝜌(𝛼(𝑇𝑛+1𝑥 − 𝑥∗))‖
𝒜

) → 0. Thus ‖𝜌 (
𝛼

2
(𝑇𝑥∗ −

𝑥∗))‖
𝒜

= 0. Therefore 𝑇𝑥∗ = 𝑥∗. Now assume 

that 𝑦∗ ≠ (𝑥∗) be another fixed point of 𝑇. Then  

𝜌(𝛽(𝑥∗ − 𝑦∗)) = 𝜌(𝛽(𝑇𝑥∗ − 𝑇𝑦∗))

≼ 𝜌(𝛼(𝑇𝑥∗ − 𝑇𝑦∗))

≼ 𝑘𝜌(𝛽(𝑥∗ − 𝑦∗))

≼ 𝑘2𝜌(𝛽(𝑥∗ − 𝑦∗)) …

≼ 𝑘𝑛𝜌(𝛽(𝑥∗ − 𝑦∗)). 

Since 

‖𝜌(𝛽(𝑥∗ − 𝑦∗))‖
𝒜

≤ 𝐿‖𝑘𝑛‖𝒜‖𝜌(𝛽(𝑥∗ − 𝑦∗))‖
𝒜

→ 0 

while 𝑛 → ∞, then 𝜌(𝛽(𝑥∗ − 𝑦∗)) = 𝜃𝒜  and  so 

𝑥∗ = 𝑦∗. Hence the fixed point is unique. 

Now an example is presented to show that the main 

result of this work provides a real generalization for 

the fixed point theory in the modular spaces: 
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Example 3.1. Let 𝒜 = ℝ2. For each (𝑏1, 𝑏2) ∈ 𝒜, 

‖(𝑏1, 𝑏2)‖𝒜 = |𝑏1| + |𝑏2|. The multiplication is 

defined as 𝑏𝑎 = (𝑏1, 𝑏2)(𝑎1, 𝑎2) = (𝑏1𝑎1, 𝑏1𝑎2 +

𝑏2𝑎1). Then it is obvious that 𝒜 is a Banach algebra 

with unit 𝑒 = (1,0). Let 𝑃 = {(𝑏1, 𝑏2) ∈

ℝ2: 𝑏1, 𝑏2 > 0}. Thus 𝑃 is a normal solid cone with a 

constant 𝐿 = 1. Let 𝑉 = ℝ2 and the cone modular 

𝜌 be defined by 𝜌(𝑏) = 𝜌((𝑏1, 𝑏2)) = (|𝑏1|, |𝑏2|). 

So, 𝜌(𝑏) ∈ 𝑃. Then 𝑉𝜌 = {𝑏 ∈ 𝑉: lim
𝜆→0

𝜌(𝜆𝑏) = 𝜃𝒜} is 

a 𝜌-complete cone modular space over 𝒜. The 

mapping 𝑇: 𝑉𝜌 → 𝑉𝜌 is defined  by 

𝑇(𝑏) = 𝑇((𝑏1, 𝑏2))

= (log(4 + |𝑏1|) , 𝑎𝑟𝑐𝑡𝑎𝑛(3

+ |𝑏2|) + 𝜆𝑏1), 

where 𝜆 can be any large positive real number. By 

Lagrange mean value theorem 

𝜌 (𝛼(𝑇(𝑏1, 𝑏2) − 𝑇(𝑎1, 𝑎2)))

≼ (
𝛼

4
|𝑏1 − 𝑎1|,

𝛼

10
|𝑏2 − 𝑎2|

+ 𝜆(𝑏1 − 𝑎1))

≼ (
1

2
, 𝜆) 𝜌 (

𝛼

2
((𝑏1, 𝑏2)

− (𝑎1, 𝑎2))). 

Since 𝑟 ((
1

2
, 𝜆)) = lim

𝑛→∞
‖(

1

2
, 𝜆)

𝑛

‖

1

𝑛
=

1

2
< 1, then 

by Theorem 3.2., 𝑇 has a unique fixed point theorem 

in 𝒜. Now it is shown that 𝑇 is not a contraction in 

the setting of usual modular spaces. Indeed, let 

𝜌∗ = 𝜉𝑐 ∘ 𝜌 where 𝑐 ∈ 𝑖𝑛𝑡𝑃 and 𝜉𝑐: 𝒜 → ℝ is the 

nonlinear scalarization function defined by 𝜉𝑐(𝑏) =

𝑖𝑛𝑓{𝑡 ∈ ℝ: 𝑏 ∈ 𝑡𝑐 − 𝑃} = 𝑖𝑛𝑓{𝑡 ∈ ℝ: 𝑏 ≤ 𝑡𝑐} 

(Gerstewitz, 1983) Therefore, since 𝑖𝑛𝑡𝑃 =

{(𝑐1, 𝑐2) ∈ ℝ2: 𝑐1, 𝑐2 > 0}, then 

𝜉𝑐(𝑏) = 𝜉𝑐((𝑏1, 𝑏2))

= 𝑖𝑛𝑓{𝑡 ∈ ℝ: (𝑏1, 𝑏2) ≤ 𝑡(𝑐1, 𝑐2)}

= 𝑚𝑎𝑥 {
𝑏1

𝑐1
,
𝑏2

𝑐2
} 

for 𝑐 = (𝑐1, 𝑐2) ∈ 𝑖𝑛𝑡𝑃 and 𝑏 = (𝑏1, 𝑏2) ∈ 𝒜. Thus,  

 𝜌∗(𝑎) = (𝜉𝑐 ∘ 𝜌)(𝑎1, 𝑎2) = 𝑚𝑎𝑥 {
|𝑎1|

𝑐1
,

|𝑎2|

𝑐2
} 

for 𝑎, 𝑏 ∈ 𝑉. Let 𝛼 >
𝑐2

𝑐1
 and consider 𝑎 = (1,0), 𝑏 =

(0,0). Thus  

𝜌∗(𝑇𝑎 − 𝑇𝑏) = 𝑚𝑎𝑥 {
log 5 − log 4

𝑐1
,

𝛼

𝑐2
} ≽

𝛼

𝑐2
≻

1

𝑐1

= 𝜌∗(𝑎 − 𝑏) 

implying that 𝑇 is not a contraction in the setting of 

modular space 𝑉𝜌∗. 
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