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Abstract: We describe a method for computing a pair of spike detection thresholds, called ‘truncation thresholds’,

using truncated probability distributions, for extracellular recordings. In existing methods the threshold is usually set

to a multiple of an estimate of the standard deviation of the noise in the recording, with the multiplication factor

being chosen between 3 and 5 according to the researcher’s preferences. Our method has the following advantages over

these methods. First, because the standard deviation is usually estimated from the entire recording, which includes

the spikes, it increases with firing rate. By contrast, truncation thresholds decrease in absolute value with increasing

firing rate, thereby capturing more of the signal. Second, the parameters of the selected noise distribution are estimated

more accurately by maximum likelihood fitting of the truncated distribution to the data delimited by the truncation

thresholds. Third, the computation of the truncation thresholds is completely data-driven. It does not involve a user-

defined multiplication factor. Fourth, methods that use a threshold that is proportional to the estimated standard

deviation of the noise assume that the noise distribution is symmetrical around the mean. By contrast, truncation

thresholds are not linked to each other by an assumption of symmetry about some axis. Fifth, existing methods do not

verify that subthreshold data obey a noise distribution. Truncation thresholds, however, are defined by the fact that

the distribution of the data they delimit is statistically indistinguishable, according to the Kolmogorov–Smirnov test,

from a selected distribution, truncated at those thresholds. Application of the method is illustrated using recordings

from cortical area M1 in awake behaving rats, as well as in simulated recordings. Source code and executables of a

software suite that computes the truncation thresholds are provided for the case when the noise distribution is modeled

as truncated normal.

Key words: Biomedical signal processing, brain–machine interfaces, microelectrode recordings, computational neuro-

science

1. Introduction

Extracellular recordings of neuronal activity provide information about the electrical activity of both individual

and populations of neurons [1,2]. Extracellular recordings are widely used in behavioral neuroscience in exploring

the information processing that takes place at the level of individual and populations of neurons [3]. In humans,

such recordings are usually performed in the clinical setting, as in perioperative investigations in epilepsy [4] or

in the use of brain–machine interfaces in patients with spinal cord injuries [5].

In most studies, the detection of action potentials, or spikes, constitutes one of the first steps in the use of
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extracellular neural recordings [6]. Because spikes stand out in these data as relatively large amplitude events,

the easiest and most straightforward method for detecting them is amplitude thresholding. The threshold is

usually set to k × σ̂ , where σ̂ is an estimate of the standard deviation of the noise in the recording and k is

a multiplication factor that is usually chosen to be between 3 and 5 depending on the researcher’s preferences

[7–11]. However, this method of determining the threshold has some drawbacks. First, the use of such a

multiplication factor (k) adds an element of subjectivity to spike detection. In addition, the standard deviation

estimate ( σ̂) increases with the spiking frequency of the recorded neurons [7]. This is undesired since an increase

in spiking frequency, or firing rate, does not necessarily imply an increase in the standard deviation of the noise

that is present in the recording. As a consequence of the firing rate-dependent increase in both σ̂ and the

threshold that is proportional to σ̂ , more action potentials may be missed at high firing rates. Apart from the

dependence on firing rate, choosing k high is likely to result in some action potentials being classified as noise,

whereas choosing it low is likely to result in some noise events being classified as spike candidates. Evidence

suggests that suprathreshold events carry information regardless of whether they can be identified as individual

spikes [11]. These findings and observations underline the importance of using an objective and accurate method

for computing spike detection thresholds that can efficiently separate signal and noise. Accordingly, this study

addresses the question of whether spikes in extracellular recordings can be detected through thresholding in a

principled way that is completely independent of the researcher. To address this issue, a method of computing a

pair of spike detection thresholds, called ‘truncation thresholds’, is developed, and its application is illustrated

in extracellular recordings obtained from cortical area M1 in awake behaving rats, as well as in simulated

spike trains. The method has general applicability to problems where a continuous-valued data set needs to

be segmented into two nonoverlapping parts such that one part obeys a desired continuous-valued truncated

distribution while the other does not. Preliminary results of this study have been published in [12,13].

2. Materials and methods

This section explains the computation of the truncation thresholds along with the real and simulated neural

data that are used for illustrating their application. All computations were performed in MATLAB (R2015a,

MathWorks, Inc., USA) under a 64 bit Windows 8.1 Single Language (2013) operating system on a laptop

computer with 6 GB RAM and 2.60 GHz Intel R⃝CoreTMi5-3230M CPU.

2.1. Mathematical representation of the recordings

Because extracellular neural recordings are typically acquired using analog to digital conversion systems, their

initial representation in digital form is a discrete-time discrete-valued time series. Let d [n] , 0 ≤ n ≤ N − 1,

denote such a recording, with N representing the total number of samples in the recording. The method

presented here computes the spike detection thresholds by verifying that the samples that lie between the

thresholds obey a truncated continuous-valued probability distribution function. This verification is performed

using the Kolmogorov–Smirnov (KS) test. Because d [n] is discrete-valued, the distribution of its samples will

likely deviate significantly from a continuous distribution for any reasonable choice of thresholds, which implies

that the method proposed here may not be applied directly on d [n] . Fortunately, spike detection is usually

not performed directly on d [n] , but rather on a band-pass filtered version of it, in which frequencies below a

few hundred Hz and above a few kHz are attenuated. This filtering is expected to convert d [n] into a time

series that can be considered continuous-valued for the purposes of the present method. Let x [n] denote this

filtered recording. The following analysis assumes that the spikes will be detected in x [n] and that x [n] is a

continuous-valued discrete-time signal.
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2.2. Basic premises of truncation thresholds

Extracellular recordings are often assumed to consist of background activity and action potentials, or spikes. The

background activity is assumed to arise from the superimposed electrical activities of large numbers of neurons

that are located at various distances relative to the recording electrode and that are usually asynchronous.

Therefore, background activity is usually considered noise [7,14,15]. Consistent with this characterization, the

present analysis assumes that there exist threshold pairs Θ = [θl ,θh] , min (x) ≤ θl < θh ≤ max (x), such that

the samples that are between these thresholds, zΘ ∈ {x [n] | θl ≤ x [n] ≤ θh} , obey a parametric continuous-

valued noise distribution F
(
z | ζ̂Θ

)
that is truncated at θl and θh , where ζ̂Θ is the parameter vector that is

estimated from zΘ by maximum likelihood. Note that each selection of Θ defines a zΘ and a ζ̂Θ . It is accepted

that the truncated distribution F
(
z | ζ̂Θ

)
fits the truncated data if the KS test yields a P-value that is at least

α . Clearly, for any choice of Θ, a KS P-value is obtained. Let PKS (Θ) denote this value. The largest amount

of noise, under F
(
z | ζ̂Θ

)
, is segmented out of x , by the value of Θ that maximizes ∆ (Θ) ≜ θh−θl and for

which PKS (Θ) ≥ α . Let this optimal solution be denoted by Θ̂o . Since x is assumed to be continuous-valued,

it may contain about N distinct values, each of which is a candidate for θl or θh . Thus, it may be presumed

that there are about N (N − 1) /2 different choices of Θ that need to be evaluated in order to find Θ̂o . For

any recording of practical use, this number is prohibitively large. Therefore, rather than aiming at the optimal

solution by evaluating all possible values of Θ, a method needs to be adopted that yields a solution with large

∆ (Θ) and that can be computed relatively faster. The method presented here computes such a solution, and

the resulting thresholds, denoted by Θ̂t , are called ‘truncation thresholds’.

The computation of Θ̂t involves two steps. In the first step, initial values for the lower and upper

thresholds are computed using the bisection method [16] under the constraint that the other threshold is fixed

at the median of x . That is, Θ̂l|m ≜
[
θ̂l|m,median (x)

]
and Θ̂h|m ≜

[
median (x) , θ̂h|m

]
values are computed

as explained in Section 2.3. In the second step the interval
[
θ̂l|m, θ̂h|m

]
is stretched or compressed, anchored

at the median, using the bisection method, to yield Θ̂t , as explained in Section 2.4. The median is used as an

anchor because it is expected to be located near the middle of the background activity given that the greater

part of x is due to the background activity. Because an ordered threshold pair can also be viewed as an interval,

it will be referred to as one when appropriate.

2.3. Computing initial values for the lower and upper thresholds

The lower threshold in Θ̂l|m , θ̂l|m , is searched using the bisection method in a set of candidate solutions

that is reduced down to half of its size after each bisection. The initial value of this set is defined as
SCSl|m [1] = {x [n] |x [n] < median (x)} . The solution is obtained after at most I iterations, where I is

the smallest integer that is greater than or equal to log2 (K) and K is the cardinality of SCSl|m [1] .

The solution candidate at iteration i is defined as θl|m [i] , which is the sample that is closest to

median
(
SCSl|m [i]

)
. This yields the threshold pair Θl|m [i] =

[
θl|m [i] ,median (x)

]
. If PKS

(
Θl|m [i]

)
≥ α ,

then the data that lie in the interval Θl|m [i] are accepted to obey the truncated noise distribution F
(
z | ζ̂A[i]

)
,

where A[i] = Θl|m [i] . This implies that the search for the solution can continue in the set SCSl|m [i+ 1] =
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OKATAN and KOCATÜRK/Turk J Elec Eng & Comp Sci

{
x [n] ∈ SCSl|m [i] |x [n] < θl|m [i]

}
. If, however, PKS

(
Θl|m [i]

)
< α , then the data that lie in the interval

Θl|m [i] are not accepted to obey F
(
z | ζ̂A[i]

)
. This implies that the search for the solution can continue in the

set SCSl|m [i+ 1] =
{
x [n] ∈ SCSl|m [i] |x [n] > θl|m [i]

}
. This iterative search continues until the cardinality of

the set of candidate solutions becomes zero. After the iteration terminates, a search is conducted over all solution

candidates Θl|m [i] , 1 ≤ i ≤ I , to find the one that maximizes ∆
(
Θl|m [i]

)
and for which PKS

(
Θl|m [i]

)
≥ α .

Let Θ̂l|m denote this solution.

The upper threshold in Θ̂h|m , θ̂h|m , is searched in a similar manner. This time the initial value of the

set of candidate solutions is defined as SCSh|m [1] = {x [n] |x [n] > median (x)} . The solution is obtained after

at most J iterations, where J is the smallest integer that is greater than or equal to log2 (L) and L is the

cardinality of SCSh|m [1] . The solution candidate at iteration i is defined as θh|m [i] , which is the sample

that is closest to median
(
SCSh|m [i]

)
. This yields the threshold pair Θh|m [i] =

[
median (x) , θh|m [i]

]
. If

PKS

(
Θh|m [i]

)
≥ α , then the data that lie in the interval Θh|m [i] are accepted to obey the truncated noise

distribution F
(
z | ζ̂B[i]

)
, where B[i] = Θh|m [i] . This implies that the search for the solution can continue in

the set SCSh|m [i+ 1] =
{
x [n] ∈ SCSh|m [i] |x [n] > θh|m [i]

}
. If, however, PKS

(
Θh|m [i]

)
< α , then the data

that lie in the interval Θh|m [i] are not accepted to obey F
(
z | ζ̂B[i]

)
. This implies that the search for the

solution can continue in the set SCSh|m [i+ 1] =
{
x [n] ∈ SCSh|m [i] |x [n] < θh|m [i]

}
. This iterative search

continues until the cardinality of the set of candidate solutions becomes zero. After the iteration terminates, a

search is conducted over all solution candidates Θh|m [i] , 1 ≤ i ≤ J , to find the one that maximizes ∆
(
Θh|m [i]

)
and for which PKS

(
Θh|m [i]

)
≥ α . Let Θ̂h|m denote this solution.

If both PKS

(
Θl|m [i]

)
< α for 1 ≤ i ≤ I and PKS

(
Θh|m [i]

)
< α for 1 ≤ i ≤ J , then neither Θ̂l|m nor

Θ̂h|m could be found, which implies that Θ̂t could not be found either. If only Θ̂l|m or Θ̂h|m is found, then

the one that is found equals Θ̂t . If both Θ̂l|m and Θ̂h|m are found, then Θ̂t is computed as explained next.

2.4. Computing the truncation thresholds from the initial values

The threshold pairs Θ̂l|m and Θ̂h|m represent two intervals, below and above median (x) respectively, in which

the data obey the respective truncated distributions with PKS

(
Θ̂l|m

)
≥ α and PKS

(
Θ̂h|m

)
≥ α . The goal

of the present analysis is to find a single pair of thresholds Θ̂t ≜
[
θ̂t1, θ̂t2

]
, that will be a wide interval in

which the data obey the respective truncated distribution with PKS

(
Θ̂t

)
≥ α . This interval is constructed by

merging the intervals Θ̂l|m and Θ̂h|m and then scaling the resulting interval, anchored at the median, by the

bisection method, as explained next.

First, the threshold pair Θ̂w ≜
[
θ̂l|m, θ̂h|m

]
is obtained by using the lower and upper thresholds in

Θ̂l|m and Θ̂h|m respectively, and its adequacy is assessed. The search for the truncation thresholds proceeds

differently depending on whether PKS

(
Θ̂w

)
≥ α .
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2.4.1. Computation of the truncation thresholds when PKS

(
Θ̂w

)
≥ α

If PKS

(
Θ̂w

)
≥ α , then it is inferred that the interval Θ̂w can be widened, unless it already is the widest possible

interval. Θ̂w is the widest possible interval if Θ̂w = [min (x) , max (x)] . In that case the truncation thresholds

are found as Θ̂t = Θ̂w = Θ̂o . If Θ̂w is not the widest possible interval, however, then it is inferred that the

truncation thresholds may correspond to an interval that is wider than Θ̂w . In that case Θ̂t is computed

as Θt

(
ϕ̂
)

using Eq. (1), where ϕ̂ is a factor that is determined from the data by the bisection method, as

explained next.

Θt (ϕ) = (1− ϕ)×median (x) + ϕ× Θ̂w (1)

Since the role of Θt (ϕ) is to partition the samples in x into two classes, one noise and the other nonnoise,

it suffices if the upper or the lower threshold in Θt (ϕ), or both, are in {x [n] |x [n] ̸= median (x)} . Let Sl+ ,

defined in Eq. (2), denote the set of factors that adjust the lower threshold to any of the samples in x that are

smaller than θ̂l|m :

Sl+ =

{
median (x)− x [n]

median (x)− θ̂l|m
|x [n] < θ̂l|m

}
(2)

Let Sh+ , defined in Eq. (3), denote the set of factors that adjust the upper threshold to any of the samples in

x that are greater than θ̂h|m :

Sh+ =

{
x [n]−median (x)

θ̂h|m −median (x)
|x [n] > θ̂h|m

}
(3)

Then the set of candidate solutions for ϕ is defined in Eq. (4) at the first iteration of the bisection method:

SCSm+ [1] = Sl+ ∪ Sh+ (4)

The solution for ϕ is obtained after at most M iterations, where M is the smallest integer that is greater than

or equal to log2 (Q) and Q is the cardinality of SCSm+ [1] .

The solution candidate at iteration i is defined as ϕ [i] , which is the element of SCSm+ [i] that is

closest to median (SCSm+ [i]) . This yields the threshold pair Θt (ϕ [i]) . If PKS (Θt (ϕ [i])) ≥ α , then the

data that lie in the interval Θt (ϕ [i]) are accepted to obey the truncated noise distribution F
(
z | ζ̂C[i]

)
, where

C[i] = Θt (ϕ [i]) . This implies that the search for the solution can continue in the set SCSm+ [i+ 1] =

{ϕ ∈ SCSm+ [i] |ϕ > ϕ [i]} . If, however, PKS (Θt (ϕ [i])) < α , then the data that lie in the interval Θt (ϕ [i])

are not accepted to obey F
(
z | ζ̂C[i]

)
. This implies that the search for the solution can continue in the set

SCSm+ [i+ 1] = {ϕ ∈ SCSm+ [i] |ϕ < ϕ [i]} . This iterative search continues until the cardinality of the set

of candidate solutions becomes zero. After the iteration terminates, a search is conducted over all solution

candidates ϕ [i] , 1 ≤ i ≤ M , to find the one that maximizes ∆ (Θt (ϕ [i])) and for which PKS (Θt (ϕ [i])) ≥ α .

Let ϕ̂ denote this solution. If PKS (Θt (ϕ [i])) < α for 1 ≤ i ≤ M , then it is inferred that ϕ̂ = 1, since

PKS

(
Θ̂w

)
≥ α . Let Θ̂t = Θt

(
ϕ̂
)
denote the associated threshold pair, which are called ‘truncation thresholds’.
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2.4.2. Computation of the truncation thresholds when PKS

(
Θ̂w

)
< α

If PKS

(
Θ̂w

)
< α , then it is inferred that the truncation thresholds may correspond to an interval that is

narrower than Θ̂w . In that case Θ̂t is computed as Θt

(
ϕ̂
)
using Eq. (1) with a set of candidate solutions that

is constructed as follows. Let Sl− , defined in Eq. (5), denote the set of factors that adjust the lower threshold

to any of the samples in x that are greater than θ̂l|m and smaller than the median:

Sl− =

{
median (x)− x [n]

median (x)− θ̂l|m
| θ̂l|m < x [n] < median (x)

}
(5)

Let Sh− , defined in Eq. (6), denote the set of factors that adjust the upper threshold to any of the samples in

x that are smaller than θ̂h|m and greater than the median:

Sh− =

{
x [n]−median (x)

θ̂h|m −median (x)
|median (x) < x [n] < θ̂h|m

}
(6)

Then the set of candidate solutions for ϕ is defined in Eq. (7) at the first iteration of the bisection method:

SCSm− [1] = Sl− ∪ Sh− (7)

The solution for ϕ is obtained after at most R iterations, where R is the smallest integer that is greater than

or equal to log2 (U) and U is the cardinality of SCSm− [1] .

The solution candidate at iteration i is defined as ϕ [i] , which is the element of SCSm− [i] that is closest

to median (SCSm− [i]) . This yields the threshold pair Θt (ϕ [i]) . If PKS (Θt (ϕ [i])) ≥ α , then the search for the

solution can continue in the set SCSm− [i+ 1] = {ϕ ∈ SCSm− [i] |ϕ > ϕ [i]} . If, however, PKS (Θt (ϕ [i])) < α ,

then the search for the solution can continue in the set SCSm− [i+ 1] = {ϕ ∈ SCSm− [i] |ϕ < ϕ [i]} . This

iterative search continues until the cardinality of the set of candidate solutions becomes zero. After the iteration

terminates, a search is conducted over all solution candidates ϕ [i] , 1 ≤ i ≤ R , to find the one that maximizes

∆ (Θt (ϕ [i])) and for which PKS (Θt (ϕ [i])) ≥ α . Let ϕ̂ denote this solution. Then the truncation thresholds

are obtained again as Θ̂t = Θt

(
ϕ̂
)
. If PKS (Θt (ϕ [i])) < α for 1 ≤ i ≤ R , then it is inferred that truncation

thresholds could not be found for x .

A software suite that computes the truncation thresholds by modeling the noise using the truncated

normal distribution is available at scicrunch.org under RRID:SCR 014637

2.5. Application on real data

Computation of the truncation thresholds is illustrated using data that were recorded in a previous study. The

recording was made using a neuroprosthesis design environment [17] from the primary motor cortex (area M1)

of a rat during lever-pressing in response to visual stimuli. The data segment that is used here is about 12.6 s

long and was recorded with a sampling rate of 40 kHz. It was then digitally band-pass filtered between 400 Hz

and 8 kHz using a 4th order Butterworth filter.
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A truncated normal probability distribution function (Eq. (8)) is used as the noise model F
(
z | ζ̂Θ̂t

)
,

where ζ̂Θ̂t
=
[
µ̂Θ̂t

, σ̂Θ̂t

]
is the maximum likelihood estimate of the parameter vector consisting of the mean

and the standard deviation. Here Φ (·) is the cumulative standard normal distribution function.

F
(
z | ζ̂Θ̂t

)
=

(
Φ

(
z − µ̂Θ̂t

σ̂Θ̂t

)
− Φ

(
θ̂t1 − µ̂Θ̂t

σ̂Θ̂t

))(
Φ

(
θ̂t2 − µ̂Θ̂t

σ̂Θ̂t

)
− Φ

(
θ̂t1 − µ̂Θ̂t

σ̂Θ̂t

))−1

(8)

2.6. Application on simulated data

Simulated neural data were generated and analyzed to determine the dependence of truncation thresholds on

firing rate. These analyses also revealed the accuracy with which σ̂Θ̂t
estimates the noise standard deviation.

Eq. (9) defines the simulated data, which were generated for firing rates f between 0 Hz and 50 Hz with steps

of 5 Hz.
yf [n] = g [n] + af [n] (9)

Each yf had a duration of 10 s and was sampled at 40 kHz. The noise was generated as the Gaussian process

defined in Eq. (10)

g [n] ∼ N (0, σ) (10)

Here, σ = σ̂Θ̂t
is the noise standard deviation estimated from the real data, as explained in Sections 2.2–2.5.

The spiking processes af were generated by repeating a single well-isolated spike, obtained from the

real data, according to Poisson processes with specified frequencies. Truncation thresholds computed for yf

are denoted by Θ̂t,f . These thresholds and thresholds proportional to estimated noise standard deviations are

plotted as a function of f to illustrate their dependence on firing rate. A proportionality constant of k = 4 was

used as a typical value (e.g., [7]). The two standard deviation estimators that are used in addition to σ̂Θ̂t,f
are

given in Eq. (11) [18] and Eq. (12), where µ̂f is the mean value of yf .

σ̂m,f = median (|yf |)
(
Φ−1 (0.75)

)−1
(11)

σ̂f =

√√√√ 1

N

N−1∑
n=0

(yf [n]− µ̂f )
2

(12)

3. Results

Truncation thresholds are first computed for real extracellular neural activity data to show that they can be

computed under the truncated normal distribution noise model. Next, the results on the firing rate dependence

of truncation thresholds and alternative thresholds are illustrated using simulated data.

3.1. Truncation thresholds computed for real data

Figure 1 shows a portion of the real data that are used in this study. The duration of this interval is about 2 s

and it is located near the middle of the whole recording. Spikes of various amplitudes are visible over a steady

background activity. The two horizontal lines show the truncation thresholds that are computed for the whole
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recording with α = 0.05. The location of the truncation thresholds on the 1000 point normalized histogram of

the data is also shown. Only the range between ±100µV is shown for clarity. The number of samples in this

recording was N = 504, 735. Consequently, it took 18 iterations to compute each of θ̂l|m and θ̂h|m , given that

log2 (N/2) = 17.9. The values of θl|m [i] and θh|m [i] are shown in Figure 1 for 1 ≤ i ≤ 18. θ̂l|m and θ̂h|m

were found as θl|m [18] = −25.9µV and θh|m [16] = 23.2µV , respectively. Upon evaluating PKS

(
Θ̂w

)
, it was

found to be smaller than α , indicating that ϕ̂ needed to be searched in the set of candidate solutions defined

in Eq. (7). The cardinality of this set was U = 438, 034. Thus, it took 19 iterations to find ϕ̂ , given that

log2 (U) = 18.7. ϕ [i] and Θt [i] values are shown in Figure 1 for 1 ≤ i ≤ 19. ϕ̂ was found as ϕ [18] = 0.90.

This resulted in Θ̂t = [−23.4, 20.9] µV .
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Figure 1. Computation of the truncation thresholds. (A) A segment of the real extracellular recording after filtering.

Horizontal lines indicate the truncation thresholds. (B) Normalized 1000 point histogram of the samples that make up

the filtered recording, shown in the interval ±100 µV. Vertical lines indicate the truncation thresholds. (C–F) The

values of θl|m [i] , θh|m [i] , ϕ [i] , and Θt [i] , respectively. Filled circles show solutions for which the KS test P-value is at

least 0.05. Arrows indicate θ̂l|m , θ̂h|m , ϕ̂ , and Θ̂t .

3.2. Truncation thresholds computed for simulated data

Figure 2 shows the real action potential that was used in generating the simulated data. Segments of simulated

data for firing rates of f = 0 Hz, 25 Hz, and 50 Hz are also shown in the figure along with the corresponding

truncation thresholds superimposed on 1000 point normalized histograms. Truncation thresholds converged to

the minimum and the maximum sample in the recording when f = 0 Hz.
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OKATAN and KOCATÜRK/Turk J Elec Eng & Comp Sci

Time (ms)

–2 –1 0 1 2 3 4 5

µ
V

–100
0

100
200

A

Time (s)

µ
V

  –50

0

  50
B (0 Hz)

μV

× 10
–3

0

5

E

Time (s)

µ
V

–200

0

200

C (25 Hz)

μV

× 10
–3

0

5

F

Time (s)

4.01 4.51 5.01 5.5 6

µ
V

–200

0

200

D (50 Hz)

μV

–100 0 100

× 10
–3

0

5

G

Figure 2. Generation and analysis of simulated data. (A) The well-isolated action potential that was used for generating

the simulated spike trains. (B–D) The sum of simulated noise and spike trains at firing rates of 0 Hz, 25 Hz, and 50 Hz,

respectively. Graphs show the central 2 s of 10 s long simulated data. (E–G) Normalized 1000 point histograms of the

samples that make up the simulated data. Vertical lines indicate the truncation thresholds.

Figure 3 shows Θ̂t,f , the truncation thresholds computed for the simulated data. For comparison 4× σ̂f ,

4× σ̂m,f , 4× σ̂Θ̂t,f
, and 4× σ curves are also plotted. It can be seen that 4× σ̂f and 4× σ̂m,f increase with

increasing firing rate as expected [7]. Although 4× σ̂Θ̂t,f
also increases with firing rate, it increases slower than

the latter two. All these thresholds start very close to 4× σ at f = 0 Hz. Unlike these thresholds, truncation

thresholds exceed ±4× σ at f = 0 Hz and decrease in absolute value with increasing firing rate.

4. Discussion

The most widely used method for computing spike detection thresholds is amplitude thresholding using thresh-

olds that are proportional to estimated standard deviation of noise. Truncation thresholds overcome all of

the known shortcomings of this method. The results show that truncation thresholds can be computed for

real extracellular recordings by modeling the noise using the truncated normal probability distribution (Figure

1). The theory presented here allows computing these thresholds using other continuous-valued probability

distributions as the noise model. Alternative models may be explored in future studies.

Analysis results of the simulated data (Figures 2 and 3) showed that the noise standard deviation

estimator σ̂Θ̂t,f
, which is computed as a byproduct of the computation of the truncation thresholds, is more

accurate than σ̂f and σ̂m,f , which are estimators that are widely used in the literature. This implies that
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Figure 3. Firing rate dependence of truncation thresholds. Truncation thresholds (Θ̂t,f ) that are computed for the

simulated recordings of varying firing rate (f) are observed to decrease in absolute value with increasing firing rate. By

contrast, spike detection thresholds that are set to four times the estimated noise standard deviation increase with firing

rate: 4 × σ̂f : from Eq. (12); 4 × σ̂m,f : from Eq. (11); 4 × σ̂Θ̂t,f
: from Eq. (8). Four times the actual value of the

noise standard deviation is shown as a reference (4 × σ , dashed horizontal line). σ̂Θ̂t,f
, which is estimated as part of

the computation of the truncation thresholds, is observed to estimate σ more accurately than σ̂f and σ̂m,f at all firing

rates.

the noise standard deviation in extracellular recordings can be estimated more accurately by using the method

presented here.

Truncation thresholds accurately classified all samples in the simulated recording as noise when the

simulated recording was indeed a pure noise process (f = 0 Hz in Figures 2 and 3). By contrast, the other

thresholds misclassified some noise samples as signal, since the probability of crossing the threshold 4 × σ is

1 − Φ (4) ∼= 3.2 10−5 . In view of the fact that the simulated recordings contained N = 400, 000 samples, it is

expected that about 13 samples will be above 4× σ . Indeed, 18 samples were found to cross this threshold in

the f = 0 Hz condition.

The decrease in the absolute value of the truncation thresholds with firing rate (Figures 2 and 3) shows

that these thresholds allow more of the signal (action potential waveforms) to be classified as signal rather

than noise as the firing rate increases. This is exactly what is needed by downstream applications that extract

information from the suprathreshold data. In this regard, truncation thresholds have a clear advantage over the

alternative thresholds considered here, because the latter increase with firing rate. Since truncation thresholds

define the limits of the data that obey the truncated noise distribution, suprathreshold samples do not obey

the selected noise distribution. As a result, all samples that exceed the truncation thresholds may contain

information that can be used in applications, such as neural decoding [11]. Although the method presented

here is a proof-of-concept designed for offline analysis, future versions will be adapted for online computation

of the truncation thresholds.

The method presented here may be viewed as a cap-fitting algorithm since it discovers a pair of limits

within which the cap of the probability density of the samples making up the data fits a probability density model

truncated at those limits. The present method has certain advantages over alternative cap-fitting algorithms

[14,15]. First, rather than determining the goodness-of-fit of the noise distribution by comparing the empirical
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and theoretical distributions at a single percentile, the present method makes the comparison over the entire

interval delimited by the truncation thresholds using the KS test. Second, rather than requiring a spike-free

data segment for computing the threshold, which may necessitate deleting spikes from the data, the present

method processes filtered extracellular data as is. Third, rather than using thresholds that are symmetrical

about the mean, the present method does not constrain the truncation thresholds to be symmetrical about any

axis. Because of these advantages, the present method is expected to estimate the noise standard deviation

more accurately and yield a pair of thresholds that separate signal and noise more successfully than alternative

cap-fitting methods.

Truncation thresholds can be computed for any continuous-valued time series, including simulated mem-

brane potential traces. The biophysical processes underlying neuronal spiking can be explored using biophysi-

cally realistic computational neuron models [19,20]. Future studies may explore whether truncation thresholds

computed for simulated membrane potential traces contain any information about the neuronal spiking thresh-

old or the biophysical processes underlying thereof. If that is found to be the case, then truncation thresholds

computed for real intracellular membrane potential recordings may serve as a tool for making inferences about

the biophysical processes underlying neuronal spiking.

Developing a method for computing accurate and objective spike detection thresholds is an active research

area. The method presented here computes a pair of thresholds that have advantages over the alternatives

considered here. Free from constraints of symmetry about the mean or proportionality to an estimated standard

deviation, truncation thresholds are defined by the fact that the data they delimit obey a well-defined noise

distribution according to the KS test at a specified significance level. Because of their flexibility and statistically

precise definition that is entirely data driven, truncation thresholds also allow estimating the noise standard

deviation more accurately than alternative methods. These attributes point to the truncation thresholds as an

accurate and principled method for spike detection in extracellular recordings.
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