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Abstract Focus stacking and high dynamic range (HDR) imaging are two paradigms of
computational photography. Focus stacking aims to produce an image with greater depth of
field (DOF) from a set of images taken with different focus distances; HDR imaging aims
to produce an image with higher dynamic range from a set of images taken with different
exposure values. In this paper, we present an algorithm which combines focus stacking and
HDR imaging in order to produce an image with both extended DOF and dynamic range
from a set of differently focused and exposed images. The key step in our algorithm is
focus stacking regardless of the differences in exposure values of input images. This step
includes photometric and spatial registration of images, and image fusion to produce all-in-
focus images. This is followed by HDR radiance estimation and tonemapping. We provide
experimental results with real data to illustrate the algorithm.

Keywords High dynamic range imaging · Focus stacking · Photometric and spatial
registration

1 Introduction

One of the goals of computational photography is to exceed the limitations (such as spatial
resolution, depth of field, field of view, and dynamic range) of cameras through some mod-
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ification of the camera and/or capturing multiple images. Focus stacking and high dynamic
range (HDR) imaging are two well-known paradigms of computational photography where
multiple images with different camera settings are captured and merged. In focus stacking,
the goal is to extend the depth of field by using multiple images that are focused at different
depths. In HDR imaging, the goal is to improve the dynamic range by using multiple images
that have different exposure values.

Focus stacking is a relatively old research area; a large volume of papers have been
published on this topic since early 1980s (Pieper and Korpel 1983; Sugimoto and Ichioka
1985; Burt and Kolczynski 1993; Li et al. 1995; Subbarao and Choi 1998; Valdecasas et al.
2001; Li et al. 2001; Forster et al. 2004;Antunes et al. 2005;Huang and Jing 2007;Aguet et al.
2008; Tian et al. 2011; Pertuz et al. 2013). A typical focus stacking algorithm consists of two
steps: (1) application of a focusmeasure to each input image to determine the amount of focus
at each pixel, and (2) fusion of input images based on the focus measure. Focus measures can
be based on point-wise intensity values in the image stack (Pieper and Korpel 1983), spatial
energy (measured using variance, gradient energy, Laplacian energy, edge pixel count, etc.)
(Sugimoto and Ichioka 1985; Subbarao and Choi 1998; Li et al. 2001; Antunes et al. 2005;
Huang and Jing 2007; Tian et al. 2011), and wavelet coefficients (Burt and Kolczynski 1993;
Li et al. 1995; Valdecasas et al. 2001; Forster et al. 2004). Comparisons of some of these
measures can be found in (Valdecasas et al. 2001; Huang and Jing 2007). The fusion process
picks up the pixel value from the image with the highest focus value or does a weighted sum
of pixel intensities, where the weights depend on the focus values. The fusion process can be
done in spatial domain, scale-space domain, or wavelet-domain (Aguet et al. 2008; Pertuz
et al. 2013).

HDR imaging from multiple differently exposed images has been receiving increasing
attention in the last decade.HDR imaging algorithms produce a radiancemap,which typically
has much higher dynamic range than a typical display can show; therefore, a tonemapping
step is required to display HDR images. Camera response function (CRF) is needed to
obtain the radiance map. CRF estimation can be based on a non-parametric (Debevec and
Malik 1997) or a parametric (Mann and Mann 2001; Mitsunaga and Nayar 1999) model.
When merging multiple images to obtain the radiance map, a reliability function, e.g. a “hat”
function (Debevec and Malik 1997) or CRF derivative (Mann and Mann 2001), is used. For
tone-mapping, global (Reinhard et al. 2002) and local (Fattal et al. 2002; Pattanaik et al.
2000; Durand and Dorsey 2002) operators have been developed.

Both focus stacking and HDR imaging in general require image registration before the
fusion process. The registration problem is easier for focus stacking because the input images
have the same exposure values; thus standard motion estimation algorithms can be used.
Whereas, in HDR imaging standard optical flow algorithms cannot be used directly because
brightness constancy assumption no longer holds. The problem is further complicated due
to saturation when the exposure difference is large. There are several approaches addressing
the image registration problem in HDR imaging. Global translational motion estimation
can be achieved through phase correlation, which is robust to illumination changes. Global
parametric transformations can be estimated through interest point extraction and matching
(Gevrekci and Gunturk 2007; Gunturk and Gevrekci 2006; Gevrekci and Gunturk 2007).
While well-known Harris or SIFT interest point detectors can be used for this purpose, there
are also techniques specifically designed to extract features robust to illumination variations
(Gevrekci and Gunturk 2009). Another method to estimate global parametric transformation
is the Median Threshold Bitmap (MTB) method (Ward 2003); it binarizes the image in a
way to eliminate the effect of illumination. While these methods are limited to parametric
motion, a two-step procedure we presented in (Hossain and Gunturk 2011) allows estimating
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dense flow: a histogram-based intensity mapping function estimation (Grossberg and Nayar
2003) is first used for photometric registration, followed by an optical flowmethod for spatial
registration. In our paper, we also adopted this approach. The preliminary results of this paper
were presented at a conference (Qian et al. 2013); compared to the conference version, the
current manuscript includes detailed algorithm, analysis, discussion, and experiments; also,
alternative approaches are compared against.

Although many sophisticated algorithms have been proposed for either focus stacking or
HDR image creation individually, extending both DOF and dynamic range simultaneously
has not been investigated. In this paper, we show that by introducing diversity in both focus
and exposure settings in the images that are captured, we can at the end produce an image
that has larger DOF and dynamic range than any of the input images. Our approach is first
to achieve focus stacking regardless of the exposure settings of the input images. We should
note that standard focus stacking algorithms cannot be used even after photometric/spatial
registration because there might be image regions that do not have any correspondence in the
registered image due to saturation. We will present a method to handle saturation as well as
registration errors. The focus stacking process is repeated for different exposure levels, and
followed by radiance map estimation and tonemapping to produce an all-in-focus and HDR
image.

The paper is organized as follows. In Sect. 2, we will first present the proposed algorithm,
including photometric and spatial image registration, then describe extension to color images.
HDR image creation is explained in Sect. 3. In Sect. 4, we will provide experimental results
with real data to demonstrate the proposed method. We will conclude our paper in Sect. 5.

2 Focus stacking under exposure diversity

In this section we explain our approach to achieve focus stacking when the input images
do not necessarily have the same exposure settings. We first present the method assuming
the input images are grayscale, with the purpose of notational simplicity; and at the end we
explain how to treat color images. The method is illustrated in Fig. 1, and briefly works as
follows. The input images I1, . . . , IN are first spatially registered using the reference image

Fig. 1 Focus stacking from differently exposed images. I1 to IN are input images. Ir is the reference image
for spatial registration. ˜Ii , i = 1, . . . , N , are registered images. ˜Ik is the reference image for photometric

registration and focus stacking. gik (˜Ii , i = 1, . . . , N , are photometrically registered images. I fk is the focus
stacked image
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Fig. 2 Spatial registration of differently exposed images. An input image Ii is first photometrically registered
to the reference image Ir by applying the intensity mapping function (IMF). The motion field uir between the
photometrically mapped image gir (Ii ) and the reference image Ir is then estimated by applying an optical
flow (OF) estimation method. The input image Ii is finally warped to achieve spatial registration

Ir , which is chosen among the input images. The registered images ˜I1, . . . , ˜IN are then
photometrically mapped to the reference image ˜Ik , which is chosen among the registered
images. Next, the weight maps are calculated. The weight maps take two things into account:
local sharpness and registration errors. Local sharpness is an indicator of focus; if a pixel
is in an in-focus area, its local sharpness is large. Registration error is an indicator about
the accuracies of spatial and photometric registration steps. The weight of a pixel is linearly
proportional with the local sharpness and inversely proportional with the registration error.
The photometrically mapped images gik(˜Ii ), . . . , gik(˜IN ) are finally merged as a pixel-by-
pixel weighted sum to produce the focus stacked image I f

k . We now explain these steps in
detail.

2.1 Spatial registration

Suppose we have N grayscale images Ii , i = 1, . . . , N with different in-focus regions and
exposure settings. Our first task is to estimate the motion field and register the images. We
start with choosing a reference image Ir among the input images. The optical flow equation
between an input image Ii and the reference image Ir should reflect the intensity mapping
to take care of different exposure settings and can be formulated as

gir (Ii (x + uir (x))) = Ir (x), (1)

where x is a pixel position, uir (x) is the motion vector at pixel x from the reference image Ir
to input image Ii , and gir (·) is the intensity mapping function (IMF) from Ii to Ir . (Note that
when two images have the same exposure settings, gir (·) is identity function and equation
(1) reduces to the standard optical flow equation.) Once the IMF is applied to an input
image, the photometrically mapped image gir (Ii ) and the reference image Ir satisfy the
constant brightness assumption; and therefore, standard optical flow estimation methods
can be utilized to estimate the motion field uir . In our implementation, we estimated the
IMF using the histogram-based method (Mitsunaga and Nayar 2000), which is robust to
small misalignments, and the motion field using (Liu 2009), which has a robust data fidelity
term and a discontinuity-preserving total-variation regularization term. Using the estimated
motion field, we warp the input image Ii onto the reference image Ir . The warped images
˜Ii , i = 1, . . . , N are now expected to be spatially registered. The flowchart of the spatial
registration process is given in Fig. 2.
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2.2 Photometric registration and focus stacking

The images ˜Ii , i = 1, . . . , N are spatially registered but with possibly different exposure
settings and focus areas. The next step is to produce an image with extended depth of field.
Standard focus stacking methods cannot be applied to ˜Ii , i = 1, . . . , N because of different
exposure settings. One may suggest to apply a standard focus stacking to photometrically
mapped images gir (˜Ii ); however, this approachwould not generallywork either because satu-
rated regions in a long-exposure image cannot be mapped photometrically to corresponding
unsaturated regions in shorter-exposure images. To handle complications due to different
exposure settings, we propose the following approach.

We choose a reference image ˜Ik among the spatially registered images ˜Ii , i = 1, . . . , N .
We estimate the IMF gik(·) and obtain photometrically registered images gik(˜Ii ). As men-
tioned earlier, the focus stacked image I f

k is obtained as a weighted sum of gik(˜Ii ), i =
1, . . . , N . Theweights reflects two things at each pixel: (1) local sharpness, which is expected
to be correlated with focus, and (2) spatial and photometric registration errors. We would like
to have a large weight for a pixel that is in an in-focus area and has low spatial/photometric
registration error.

The use of local sharpness as an indicator of focus is common in focus stacking. The local
sharpness s̃ik(x) at pixel x of image gik(˜Ii ) is defined as

s̃ik(x) =
∑

y∈Nh(x)

‖∇gik
(

˜Ii (y)
) ‖, (2)

where ∇gik(˜Ii )(y) is the gradient vector at pixel y obtained by applying Sobel filter, ‖ · ‖
denotes the gradient magnitude, and Nh(x) is an h × h window around pixel x. (In our
experiments, h = 3.)

Now we have spatially and photometrically registered images gik(˜Ii ) and the correspond-
ing weight maps s̃ik indicating in-focus regions for each image. Before fusing the images,
we need to take care of two possible issues. The first one is the saturation issue. If there are
saturated pixels in an input image, then we cannot photometrically map them to the reference
image. If used, these pixels cause artifacts in the final focus stacked image. The second issue
is registration errors due to occlusion or inaccurate motion vectors. It is necessary to elimi-
nate pixels that are saturated or misregistered from the fusion process to avoid artifacts. We
decided to use a reliability mask for each input image and use pixels that are reliable during
fusion. The reliability mask Mik(x) has two components, one to eliminate saturated pixels
and the other to eliminate misregistered images:

Mik(x) = H(Ts − ˜Ii (x))H(Tm − |gik(˜Ii (x)) − ˜Ik(x)|), (3)

where H(·) is a step function, outputting 1 when the input is greater than or equal to zero,
0 otherwise. The first term H(Ts − ˜Ii (x)) outputs 1 when ˜Ii (x) is less than or equal to the
saturation threshold Ts . The second term H(Tm − |gik(˜Ii (x)) − ˜Ik(x)|) outputs 1 when the
absolute difference |gik(˜Ii (x))−˜Ik(x)| between the registered input image and the reference
image is less than or equal to the misregistration threshold Tm . Mik(x) is 1 when both terms
are 1; that is, when there is no saturation and no misregistration. (Note that Mkk(x) = 1 with
this definition as it should be.) In our experiments, we set the saturation threshold Ts = 253,
eliminating pixels with values 254 and 255. This threshold selection is a relatively easy
decision; whereas, for the misregistration threshold Tm , we had to test different values as
there is no obvious choice. We cannot set the threshold too low because the input images
have different focus distances and the absolute difference may be large even when the images
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are correctly registered. We noticed that when Tm is too low, we start to eliminate pixels from
sharp regions. We cannot set the threshold too high, which would result in artifacts due to
misregistration. After extensive experiments, we set Tm = 60, which provides a good overall
performance.

The reliability mask is then applied on the sharpness map s̃ik(x) to get the weights of the
pixels:

w̃ik(x) = Mik(x)̃sik(x). (4)

Before we do the image fusion, we need to normalize the calculated weight maps:

wik(x) = w̃ik(x)
∑N

i=1 w̃ik(x)
. (5)

Note that when all weights are zero at a pixel, then division by zero occurs in the above
normalization. We considered two options to address this issue. The first option is to assign
1/N to each weight. The second option is to assign 1 to the weight associated with the
reference image, and 0 to all other target images. In our paper, we choose the second option
because we trust the reference image more than other input images. This second option is
incorporated by adding a small scalar to the weight associated with the reference image
before the normalization: w̃kk(x) = s̃kk(x) + ε, where ε is a small scalar number, which is
set to 0.01 in our paper. As the final step of focus stacking, we fuse all images to get the
all-in-focus image I f

k :

I f
k (x) =

N
∑

i=1

wik(x)gik(˜Ii (x)). (6)

2.3 Extension to color images

So far, we discussed the method for grayscale images. We extend it to the color images
as follows. For spatial registration, we use the luminance channel of input images to esti-
mate the motion vectors, which are then used to warp all three color channels. For pho-
tometric registration, we estimate the IMF for each color channel separately because the
IMF may differ from one channel to another. After photometric registration comes the
fusion step. We do not want to have different weights for different channels to avoid
color artifacts. Therefore, the green channel is used to get the weight maps. Red, green,
and blue channels are finally fused using the same weight maps obtained from the green
channel.

3 HDR radiance estimation and tone mapping

I f
k is the all-in-focus image where the kth image and therefore its exposure level is used as
the reference. If we have K with K ≤ N different exposure levels, then we may repeat the
focus stacking process for each of those K different exposure levels. The resulting all-in-
focus images with different exposure levels can then be processed to obtain an HDR image
using a standard HDR creation algorithm. In our paper, we used (Debevec and Malik 1997)
to estimate the HDR radiance map. After the HDR radiance map is obtained, we should do
tonemapping for low dynamic range displays. In this paper, we use the local tonemapping
method given in (Fattal et al. 2002) to display the images.
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Fig. 3 Original four images with different focus regions and exposure levels. a Far focused with long (1/200s)
exposure. b Near focused with long exposure. c Far focused with short (1/1600s) exposure. d Near focused
with short exposure

4 Experimental results

Weprovide experimental resultswith real data to illustrate our proposedmethod for extending
DOF and dynamic range from differently exposed and focused images. We captured four
images with a hand-held DSLR camera. Each image has a different focus area and exposure
time combination. These images are given Fig. 3. Figure 3a is near focused with long (1/200
sec) exposure. Figure 3b is far focused with long (1/200 sec) exposure. Figure 3c is far
focused with with short (1/1600s) exposure. Finally, Fig. 3d is near focused with with short
(1/1600s) exposure. All other settings are identical.

Figure 4 shows the spatial registration process. The first row shows the luminance channels
of the input images given in Fig. 3. The first image I1 is set as the reference image; and the
other images are the target images. The second row shows the estimated intensity mapping
functions (IMFs). The third row shows the photometrically registered images. And finally,
the fourth row shows the estimated motion fields between the photometrically registered
target images and the reference image. The motion fields are displayed with the colormap
given in [http://vision.middlebury.edu/flow/].

Spatial registration is done by warping all three color channels using the estimated motion
fields. The spatially registered images are shown in Fig. 5. (Note that the first image is the
reference image, therefore, it is not warped but shown for convenience.)

The accuracy of the photometric and spatial registration may not be obvious from figs. 4
and 5. Therefore, we include Fig. 6, which shows the absolute differences between the
reference image and the input images for the luminance channel. Figure 6a1–a3 show the
differences between the input reference image and each of the three target images without
any photometric or spatial registration. Figure 6b1–b3 show the differences after photometric
registration. The residuals are reduced compared to Fig. 6a1–a3; however, it is obvious that
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I1 I2 I3 I4

g21( ) g31( ) g41( )

g11( I1) I1 g21( I2) g31( I3) g41( I4)

Colormap u21 u31 u41

Fig. 4 Photometric and spatial registration. First row Input images, where I1 is set as the reference image.
Second row Estimated intensity mapping functions (IMFs) from target images (I2, I3, and I4) to reference
image I1. Third row Photometrically registered input images. Fourth row Estimated motion fields, displayed
with the shown color coding

Fig. 5 Spatially registered images. a Original reference image from Fig. 3a; b–d Spatially registered target
images from using the estimated motion vectors given in Fig. 4
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Fig. 6 Absolute difference values between the reference image and the target images before and after pho-
tometric/spatial registration for the luminance channel. a1–a3 Difference between the reference image and
three target images. The mean absolute differences (MADs) are 9.4, 82.6 and 80.6, respectively. b1–b3 Dif-
ference between the reference image and photometrically registered target images. (MADs are 12.8, 18.0 and
17.3, respectively). c1–c3 Difference after photometric and spatial registration. (MADs are 6.9, 3.0 and 5.1,
respectively)

there is some movement between the images. Figure 6c1–c3 show the differences after both
photometric and spatial registration. The residuals are reduced significantly, demonstrating
the effectiveness of the registration process. In Fig. 7, we include registration results of
two commonly used registration software. One is the MTB alignment method (Ward 2003),
and the other is the Hugin alignment method [http://hugin.sourceforge.net/]. Both meth-
ods are available as a part of the Luminance HDR software [http://qtpfsgui.sourceforge.
net/]. As seen in the results, these methods fail compared to the proposed registration
method.

In Figs. 8, 9, 10, we demonstrate focus stacking fromdifferently exposed images. Figure 8
shows two input images selected from the registered images inFig. 5. Figure 8a1 is far focused
with short exposure, and Fig. 8b1 is near focused with long exposure. Zoomed-in regions
from these images are also included. To show the details, the zoomed-in region in Fig. 8a3
includes a version where the brightness is increased. Note that Fig. 8a3 is out of focus and
noisy, whereas Fig. 8a2 is in focus. When we look at the corresponding regions in the second
image, we note that the near field (Fig. 8b3) is well focused and exposed, but the far field
(Fig. 8b2) is out of focus and over exposed.

Now, we would like to achieve focus stacking from these two images. First, Fig. 8a1 is set
as the reference image. The resulting focus stacked image is given in Fig. 9a1. The exposure
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Fig. 7 Absolute difference values between the reference image and the target images after spatial registra-
tion with alternative registration methods. a1–a3 MTB alignment. b1–b3 Hugin alignment. These alignment
methods are included in the Luminance HDR software [http://qtpfsgui.sourceforge.net], and the results are
obtained directly using this software

Fig. 8 a1 First input image. a2A zoomed-in region. a3Another zoomed-in region (with increased brightness
for visibility purposes). b1–b3 Second input image and the zoomed-in regions
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Fig. 9 a1 Focus-stacked image when Fig. 8a1 is the reference. a2 Zoomed-in region. a3 Zoomed-in region
(with increased brightness for visibility purposes)

Fig. 10 a1 Focus-stacked image when Fig. 8b1 is the reference. a2–a3 Corresponding zoomed-in regions

level of Fig. 8a1 is preserved, but when we look at the zoomed-in regions, we note that both
near and far fields are in focus. Specifically, when we compare Fig. 9a3 with the original
Fig. 8a3, we note the improvement, which is coming from the second image.

Second, we set Fig. 8b1 as the reference image. The resulting focus stacked image is
given in Fig. 10a1. This time, the exposure level of Fig. 8b1 is preserved but the entire
image is in focus. This is clearly observed when Fig. 10a2 and the original Fig. 8b2 are
compared.

These results clearly show that the proposed focus stacking from differently exposed
imaging algorithm is working effectively regardless of which (short or long exposure) image
is set as the reference. It is also possible to create an all-in-focus and HDR image using the
procedure explained in the previous section: For each exposure level, choose one image as
the reference, and use all others to form the all-in-focus image; and then apply a standard
HDR imaging algorithm to these all-in-focus images to form the all-in-focus andHDR image.
Figure 11 shows the HDR image for the dataset that we have, tone-mapped with (Fattal et al.
2002).
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Fig. 11 Tonemapped HDR image

Fig. 12 Alternative approaches. a Output of the Luminance HDR software with Hugin alignment. b Output
with the cascade application of Helicon Focus software followed by Luminance HDR software

In Fig. 12a, we provide the result obtained by Luminance HDR software using the Hugin
alignment method. We see that the result is far from satisfactory because this particular
alignment fails as we showed previously. In Fig. 12b, we tested an alternative approach: we
first aligned the images using our proposedmethod; thenwe applied a commercially available
focus stacking software (Helicon Focus, www.heliconsoft.com) to images of same exposure
value. These focus stacked images are thenmerged using LuminanceHDR software. Because
our registrationmethodworks quite well, we do not see any registration errors, however, there
are still objectionable artifacts in the final result.

Figures 13 to 16 demonstrate the algorithm for another dataset. Figure 13 shows the
two input images. Figure 14 shows the estimated IMF and motion field. Figure 15 shows the
differences between the reference and target images before and after registration. And finally,
Fig. 16 shows the focus stacking result. Figure 16a1 is the reference image, with zoomed-in
regions in Fig. 16a2. Figure 16b1 is the reference image, with zoomed-in regions in Fig.
16b2. Figure 16c1 is the focus stacked image, where both near and far fields are in focus.

Figure 17 shows another dataset consisting of four images with saturation and reflection
regions. Figure 18 shows that the registration works robustly. And, finally, Fig. 19 shows the
tonemapped HDR image, with good sharpness in all regions.
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Fig. 13 Original images with different focus regions and exposure levels. a Far focused with long (1/20 s)
exposure. b Near focused with short (1/33 s) exposure

Fig. 14 Photometric and spatial registration. I1 is the reference image. g21(·) is estimated IMF. g21(I2) is
the photometrically registered target image. u21 is the estimated motion field

Fig. 15 Absolute difference between the reference and target image before/after registration. a Difference
before registration. b Difference after photometric registration. c Difference after photometric and spatial
registration

5 Conclusions

In this paper, we presented an algorithm for extending depth of field and dynamic range from
differently focused and exposed images. The core process is focus stacking regardless of
the exposure value; it requires photometric and spatial registration, and includes pixel-by-
pixel weight calculation (involving sharpness, saturation, and registration errors) for fusion.
For HDR imaging, we proposed to do focus stacking for each exposure level and fuse the
focus-stacked imaging using a standard HDR imaging algorithm. We have done experiments
with real data and obtained satisfactory results. There is some future work that may improve
results and provide further understanding. The most important one is threshold selection.
We have done threshold selection empirically; one may further investigate this, and come
up with an optimal threshold selection that may depend on, for example, spatial location,
exposure value, and IMF. It is known that photometric registration error is higher when
mapping from a long exposure image to a short exposure image compared to mapping in
the opposite direction. This could be used to modify the algorithm and adjust the threshold
value. Other than the threshold selection the choice of the optical flow algorithm is also
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Fig. 16 a1–a2 First input image and zoomed-in regions. b1–b2 Second input image and zoomed-in regions.
c1–c2 Focus-stacked image with Fig. 13a1 as the reference, and zoomed-in regions

Fig. 17 Input images. The exposure times are 1/200 and 1/80 s for dark and bright images, respectively
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Fig. 18 Photometric and spatial registration of images, with fourth image is as the reference image. First
row Residuals before registration. Second row Estimated intensity mapping functions. Third row Estimated
motion fields. Fourth row Residuals after photometric and spatial registration

Fig. 19 Tonemapped HDR image
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critical and should be investigated further as spatial registration errors may lead to artifacts.
Another possible future work is the use of other focus measures and fusion methods within
the proposed framework.
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