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Spatial and Angular Resolution Enhancement of
Light Fields Using Convolutional Neural Networks

M. Shahzeb Khan Gul and Bahadir K. Gunturk

Abstract— Light field imaging extends the traditional photog-
raphy by capturing both spatial and angular distribution of light,
which enables new capabilities, including post-capture refocusing,
post-capture aperture control, and depth estimation from a single
shot. Micro-lens array (MLA) based light field cameras offer a
cost-effective approach to capture light field. A major drawback
of MLA based light field cameras is low spatial resolution, which
is due to the fact that a single image sensor is shared to capture
both spatial and angular information. In this paper, we present
a learning based light field enhancement approach. Both spatial
and angular resolution of captured light field is enhanced using
convolutional neural networks. The proposed method is tested
with real light field data captured with a Lytro light field
camera, clearly demonstrating spatial and angular resolution
improvement.

Index Terms—Light field, super-resolution, convolutional
neural network.

I. INTRODUCTION

IGHT field refers to the collection of light rays in 3D

space. With a light field imaging system, light rays in
different directions are recorded separately, unlike a traditional
imaging system, where a pixel records the total amount of
light received by the lens regardless of the direction. The
angular information enables new capabilities, including depth
estimation, post-capture refocusing, post-capture aperture size
and shape control, and 3D modelling. Light field imaging can
be used in different application areas, including 3D optical
inspection, robotics, microscopy, photography, and computer
graphics.

Light field imaging is first described by Lippmann, who
proposed to use a set of small biconvex lenses to capture
light rays in different directions and refers to it as integral
imaging [1]. The term “light field” was first used by Gershun,
who studied the radiometric properties of light in space [2].
Adelson and Bergen used the term “plenoptic function” and
defined it as the function of light rays in terms of intensity,
position in space, travel direction, wavelength, and time [3].

Manuscript received June 20, 2017; revised November 3, 2017; accepted
January 3, 2018. Date of publication January 15, 2018; date of current
version February 9, 2018. This work was supported by TUBITAK under
Grant 114E095. The associate editor coordinating the review of this manu-
script and approving it for publication was Dr. Nilanjan Ray. (Corresponding
author: Bahadir K. Gunturk.)

The authors are with the Department of Electrical and Electronics
Engineering, Istanbul Medipol University, 34810 Istanbul, Turkey (e-mail:
mskhangul @st.medipol.edu.tr; bkgunturk@medipol.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TTP.2018.2794181

Adelson and Wang described and implemented a light field
camera that incorporates a single main lens along with a
micro-lens array [4]. This design approach is later adopted
in commercial light field cameras [5], [6]. In 1996, Levoy and
Hanrahan [7] and Gortler et al. [8] formulated light field as
a 4D function, and studied ray space representation and light
field re-sampling. Over the years, light field imaging theory
and applications have continued to be developed further. Key
developments include post-capture refocusing [9], Fourier-
domain light field processing [10], light field microscopy [11],
focused plenoptic camera [12], and multi-focus plenoptic
camera [13].

Light field acquisition can be done in various ways, such
as camera arrays [14], optical masks [15], angle-sensitive
pixels [16], and micro-lens arrays [10], [12]. Among these
different approaches, micro-lens array (MLA) based light
field cameras provide a cost-effective solution, and have been
successfully commercialized [5], [6]. There are two basic
implementation approaches of MLA-based light field cameras.
In one approach, the image sensor is placed at the focal
length of the micro-lenses [5], [10]. In the other approach,
a micro-lens relays the image (formed by the objective lens
on an intermediate image plane) to the image sensor [6], [12].
These two approaches are illustrated in Figure 1. In the first
approach, the sensor pixels behind a micro-lens (also called a
lenslet) on the MLA record light rays coming from different
directions. Each lenslet region provides a single pixel value for
a perspective image; therefore, the number of lenslets corre-
sponds to the number of pixels in a perspective image. That is,
the spatial resolution is defined by the number of lenslets in
the MLA. The number of pixels behind a lenslet, on the other
hand, defines the angular resolution, that is, the number of
perspective images. In the second approach, a lenslet forms an
image of the scene from a particular viewpoint. The number
of lenslets defines the angular resolution; and, the number
of pixels behind a lenslet gives the spatial resolution of a
perspective image.

In the MLA-based light field cameras, there is a trade-
off between spatial resolution and angular resolution, since
a single image sensor is used to capture both. For example,
in the first generation Lytro camera, an 11 megapixel image
sensor produces 11 x 11 sub-aperture perspective images, each
with a spatial resolution of about 0.1 megapixels. Such a
low spatial resolution prevents the widespread adoption of
light field cameras. In recent years, different methods have
been proposed to tackle the low spatial resolution issue.
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Fig. 1. Two main approaches for MLA-based light field camera design. Top:
The distance between the image sensor and the MLA is equal to the focal
length of a micro-lens (lenslet) in the MLA. Bottom: The objective lens forms
an image of the scene on an intermediate image plane, which is then relayed
by the lenslets to the image sensor.

Hybrid systems, consisting of a light field sensor and a
regular sensor, have been presented [17]-[19], where the high
spatial resolution image from the regular sensor is used to
enhance the light field sub-aperture (perspective) images. The
disadvantages of hybrid systems include increased cost and
larger camera dimensions. Another approach is to apply multi-
frame super-resolution techniques to the sub-aperture images
of a light field [20], [21]. It is also possible to apply learning-
based super-resolution techniques to each sub-aperture image
of a light field [22].

In this paper, we present a convolutional neural network
based light field super-resolution method. The method has two
sub-networks; one is trained to increase the angular resolution,
that is, to synthesize novel viewpoints (sub-aperture images);
and the other is trained to increase the spatial resolution of
each sub-aperture image. We show that the proposed method
provides significant increase in image quality, visually as
well as quantitatively (in terms of peak signal-to-noise ratio
and structural similarity index [23]), and improves depth
estimation accuracy.

The paper is organized as follows. We present the related
work in the literature in Section II. We explain the proposed
method in Section III, present our experimental results in
Section IV, and conclude the paper in Section V.

II. RELATED WORK
A. Super-Resolution of Light Field

One approach to enhance the spatial resolution of images
captured with an MLA-based light field camera is to apply
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Fig. 2. Light field captured by a Lytro Illum camera. A zoomed-in region
is overlaid to show the individual lenslet regions.
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Fig. 3. Light field parameterization. Light field can be parameterized by the
lenslet positions (s,¢) and the pixel positions (u,v) behind a lenslet.
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Fig. 4. Sub-aperture (perspective) image formation. A perspective image can
be constructed by picking specific pixels from the lenslet regions. The size
of a perspective image is determined by the number of lenslets.

a multi-frame super-resolution technique on the perspective
images obtained from the light field capture. The Bayesian
super-resolution restoration framework is commonly used,
with Lambertian and textual priors [20], Gaussian mixture
models [24], and variational models [21].

Learning-based single-image super-resolution methods can
also be adopted to address the low spatial resolution issue
of light fields. In [22], a dictionary learning based super-
resolution method is presented, demonstrating a clear improve-
ment over standard interpolation techniques when converting
raw light field capture into perspective images. Another learn-
ing based method is presented in [25], which incorporates
deep convolutional neural networks for spatial and angular
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Fig. 5. An illustration of the proposed LFSR method. First, the angular resolution of the light field (LF) is doubled; second, the spatial resolution is doubled.
The networks are applied directly on the raw demosaicked light field, not on the perspective images.
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Fig. 6. Overview of the angular SR network to estimate a higher-angular resolution version of the input light field. A lenslet is drawn as a circle; the A x A
region behind a lenslet is taken as the input and processed to predict the corresponding 2A x 2A lenslet region. Each convolution layer is followed by a

non-linear activation layer of ReL.U.
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Overview of the proposed spatial SR network to estimate a higher-spatial resolution version of the input light field. Four lenslet regions are stacked

and given as the input to the network. The network predicts three new pixels to be used in the high-resolution perspective image formation. Each convolution

layer is followed by a non-linear activation layer of ReLU.

resolution enhancement of light fields. Alternative to spatial
domain resolution enhancement approaches, frequency domain
methods, utilizing signal sparsity and Fourier slice theorem,
have also been proposed [26], [27].

In contrast to single-sensor light field imaging systems,
hybrid light field imaging system have also been introduced
to improve spatial resolution. In the hybrid imaging system
proposed by Boominathan et al. [17], a patch-based algo-
rithm is used to super-resolve low-resolution light field views
using high-resolution patches acquired from a standard high-
resolution camera. There are several other hybrid imaging

system presented [18], [19], [28], combining images from
a standard camera and a light field camera. Among these,
the work in [19] demonstrates a wide baseline hybrid stereo
system, improving range and accuracy of depth estimation in
addition to spatial resolution enhancement.

B. Deep Learning for Image Restoration

Convolutional neural networks (CNNs) are variants of
multi-layer perceptron networks. Convolution layer, which is
inspired from the work of Hubel and Wiesel [29] showing
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TABLE I
COMPARISON OF DIFFERENT SPATIAL AND ANGULAR RESOLUTION ENHANCEMENT METHODS

PSNR (dB) SSIM
Methods Min Avg Max Min Avg Max
Bicubic resizing (imre- | 24.2029 27.6671 34.6330 0.7869 0.8744 0.9457
size)
LFCNN [25] 25.5963 28.9661 34.8231 0.7838 0.8904 0.9407
Bicubic interpolation 27.2620 30.6245 37.1640 0.5780 0.9256 0.9659
Proposed (LFSR) 29.7515 33.4273 39.5655 0.9360 0.9559 0.9823

Low resolution perspective
image

Fig. 8.  Constructing a high-resolution perspective image. A perspective
image can be formed by picking a specific pixel from each lenslet region,
and putting all picked pixels together. Using the additional pixels pre-
dicted by the spatial SR network, a higher-resolution perspective image is
formed.

that visual neurons respond to local regions, is the funda-
mental part of a CNN. In [30], LeCun er al. presented a
convolutional neural network based pattern recognition algo-
rithm, promoting further research in this field. Deep learning
with convolutional neural networks has been extensively and
successfully applied to computer vision applications. While
most of these applications are on classification and object
recognition, there are also deep-learning based low-level vision
applications, including compression artifact reduction [31],
image deblurring [32] [33], image deconvolution [34], image
denoising [35], image inpainting [36], removing dirt/rain
noise [37], edge-aware filters [38], image colorization [39],
and in image segmentation [40]. Recently, CNNs are also
used for super-resolution enhancement of images [41]-[44].
Although these single-frame super-resolution methods can be
directly applied to light field perspective images to improve
their spatial resolution, we expect better performance if the
angular information available in the light field data is also
exploited.

III. LIGHT FIELD SUPER RESOLUTION USING
CONVOLUTIONAL NEURAL NETWORK

In Figure 2, a light field captured by a micro-lens array
based light field camera (Lytro Illum) is shown. When
zoomed-in, individual lenslet regions of the ML A can be seen.
The pixels behind a lenslet region record directional light
intensities received by that lenslet. As illustrated in Figure 3,
it is possible to represent a light field with four parameters
(s,t,u,v), where (s,t) indicates the lenslet location, and (u,v)
indicates the angular position behind the lenslet. A perspective
image can be constructed by taking a single pixel value with a

specific (u,v) index from each lenslet. The process is illustrated
in Figure 4. The spatial resolution of a perspective image
is controlled by the size and the number of the lenslets.
Given a fixed image sensor size, the spatial resolution can be
increased by having smaller size lenslets; given a fixed lenslet
size, the spatial resolution can be increased by increasing the
number of lenslets, thus, the size of the image sensor. The
angular resolution, on the other hand, is defined by the number
of pixels behind a lenslet region.

Our goal is to increase both spatial and angular resolution
of a light field capture. We propose a convolutional neural
network based learning method, which we call light field super
resolution (LFSR). It consists of two steps. Given a light field
where there are A x A pixels in each lenslet area and the size
of each perspective is H x W, the first step doubles the angular
resolution from A x A to 2A x 2A using a convolutional neural
network. In the second step, the spatial resolution is doubled
from H x W to 2H x 2W by estimating new lenslet regions
between given lenslet regions. Figure 5 gives an illustration of
these steps.

The closest work in the literature to our method is the
one presented in [25], which also uses deep convolutional
networks. There is a fundamental difference between our
approach and the one in [25]; while our architecture is
designed to work on raw light field data, that is, lenslet
regions; [25] is designed to work on perspective images.
In the experimental results section, we provide both visual
and quantitative comparisons with [25].

A. Angular Super-Resolution (SR) Network

The proposed angular super-resolution network is shown
in Figure 6. It is composed of two convolution layers and a
fully connected layer. The input to the network is a lenslet
region with size A x A; and the output is a higher resolution
lenslet region with size 2A x2A. That is, the angular resolution
enhancement is done directly on the raw light field (after
demosaicking) as opposed to doing on perspective images.
Each lenslet region is interpolated by applying the same
network. Once the lenslet regions are interpolated, one can
construct the perspective images by rearranging the pixels,
as mentioned before. At the end, 2A x 2A perspective images
are obtained from A x A perspective images.

The convolution layers in the proposed architecture are
based on the intuition that the first layer extracts a high-
dimensional feature vector from the lenslet and the sec-
ond convolution layer maps it onto another high-dimensional
vector. After each convolution layer, there is a non-linear
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Fig. 9.
(d) LFCNN [25]/25.76 dB. (e) DRRN [51]/31.63 dB. (f) LFSR/32.25 dB.

activation layer of Rectified Linear Unit (ReLU). In the end,
a fully connected layer aggregates the information of the last
convolution layer and predicts a higher-resolution version of
the lenslet region.

The first convolution layer has n filters, each with size
no x k1 x k1. (In our experiments, we treat each color channel
separately, thus ng = 1.) The second convolution layer has n;
filters, each with size n1 x k2 x k. The final layer is a fully
connected layer with 4A2 neurons, forming a 2A x 2A lenslet
region.

B. Spatial Super-Resolution (SR) Network

Figure 7 gives an illustration of the spatial super-resolution
network. Similar to the angular super-resolution network,
the architecture has two convolution layers, each followed by
a ReLU layer, followed by a fully connected layer. Different
from the angular resolution network, four lenslet regions are
stacked together as the input to the network. There are three
outputs at the end, predicting the horizontal, vertical, and
diagonal sub-pixels of a perspective image. To clarify the
idea further, Figure 8 illustrates the formation of a high-
resolution perspective image. As mentioned earlier, a perspec-
tive image of a light field is formed by picking a specific
pixel from each lenslet region and putting all picked pixels
together according to their respective lenslet positions. Using
four lenslet regions, the network predicts three additional

Ir'="’,!~"‘_ 1{""?%, :

Visual comparison of different methods. (a) Ground truth.
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(b) Bicubic resizing (imresize)/25.34 dB. (c) Bicubic interp./27.7 dB.

pixels in between the pixels picked from the lenslet regions.
The predicted pixels, along with the picked pixels, form a
higher resolution perspective image.

C. Training the Networks

We used a dataset that is captured by a Lytro Illum cam-
era [45]. The dataset has more than 200 raw light fields, each
with an angular resolution of 14 x 14 and a spatial resolution of
374 x 540. In other words, each light field consists of 14 x 14
perspective images; and each perspective image has a spatial
resolution of 374 x 540 pixels. The raw light field is of size
5236 x 7560, consisting of 374 x 540 lenslet regions, where
each lenslet region has 14 x 14 pixels. We used 45 light fields
for training and reserved the others for testing. The training
data is obtained in two steps. First, we drop every other
lenslet region to obtain a low-spatial-resolution (187 x270) and
high-angular-resolution (14 x 14) light field. Second, we drop
every other pixel in a lenslet region to obtain a low-spatial-
resolution (187 x 270) and low-angular-resolution (7 x 7) light
field.

The angular SR network, as shown in Figure 6, has low-
spatial-resolution and low-angular-resolution light field as its
input, and low-spatial-resolution and high-angular-resolution
light field as its output. Each lenslet region is treated sep-
arately by the network, increasing the size from 7 x 7 to
14 x 14. The first convolution layer consists of 64 filters,
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Fig. 10.
(d) LFCNN [25]/25.12 dB. (e) DRRN [51]/32.20 dB. (f) LFSR/32.35 dB.

each with size 1 x 3 x 3. It is followed by a ReLU layer.
The second convolution layer consists of 32 filters of size
64 x 1 x 1, followed by a ReLU layer. Finally, there is a fully
connected layer with 196 neurons to produce a 14 x 14 lenslet
region.

The spatial SR network, as shown in Figure 7, has low-
spatial-resolution and high-angular-resolution light field as its
input, and high-spatial-resolution and high-angular-resolution
light field as its output. Four lenslet regions are stacked to form
a 14 x 14 x4 input. The first convolution layer consists of 64 fil-
ters, each with size 4 x 3 x 3. The second convolution layer
consists of 32 filters of size 64 x 1 x 1. Each convolution layer
is followed by a ReLU layer. Finally, there is a fully connected
layer with three neurons to produce the horizontal, vertical and
diagonal pixels. This network generates one high-spatial reso-
lution perspective. For each perspective, the network is trained
separately.

We implement and train our model using the Caffe pack-
age [46]. For the weight initialization of both networks,
we used the initialization technique given in [47], with mean
value set to zero and standard deviation set to 10_3, to prevent
vanishment or over-amplification of weights. The learning

Visual comparison of different methods. (a) Ground truth.

(b) Bicubic resizing (imresize)/25 dB. (c) Bicubic interp. /28.11 dB.

rates for the three layers of the networks are 1073, 1073,
and 1073, respectively. Mean squared error is used as the
loss function, which is minimized using the stochastic gradient
descent method with standard backpropagation [30]. For each
network, the input size is about 13 million; and the number
of iterations is about 108,

IV. EXPERIMENTS

We evaluated our LFSR method on 25 test light fields
which we reserved from the Lytro Illum camera dataset [45]
and on the HCI dataset [48]. For spatial and angular res-
olution enhancement, we compared our method against the
LFCNN [25] method and bicubic interpolation. There are sev-
eral methods in the literature that synthesize new viewpoints
from a light field data; thus, we compared the angular SR
network of our method with two such view synthesis methods,
namely, Kalantari ef al. [49] and Wanner and Goldluecke [50].
Finally, there are single-frame spatial resolution enhancement
methods; we chose the latest state-of-the-art method, called
DRRN [51], and included it in our comparisons.

In addition to spatial and angular resolution enhancement,
we investigated depth estimation performance, and compared
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(a) (b) (© (d) (e) ®

Fig. 11. Visual comparison of different methods. (a) Ground truth.
(d) LFCNN [25]/29.06 dB. (e) DRRN [51]/36.78 dB. (f) LFSR/34.21 dB.

the depth maps generated by low-resolution light fields and the
resolution-enhanced light fields. In the end, we investigated
the effect of the network parameters, including the filter size
and the number of layers, on the performance of the proposed
spatial SR network.

A. Spatial and Angular Resolution Enhancement

The test images are downsampled from 14 x 14 perspective
images, each with size 374 x 540 pixels, to 7 x 7 perspective
images with size 187 x 270 pixels by dropping every other
lenslet region and every pixel in each lenslet region. The
trained networks are applied to these low-spatial and low-
angular resolution images to bring them back to the original
spatial and angular resolutions. The networks are applied on
each color channel separately. Since the original perspective
images available, we can quantitatively calculate the perfor-
mance by comparing the estimated and the original images.
In Table I, we provide peak-signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [23] results of our method,
in addition to the results of the LFCNN [25] method and
bicubic interpolation. Here, we should make two notes about
the LFCNN method. First, we took the learned parameters
provided in the original paper and fine tuned them with

(b) Bicubic resizing (imresize)/28.92 dB. (c) Bicubic interp. /28.11 dB.

our dataset as described in [25]. This revision improves the
performance of the LFCNN method for our dataset. Second,
the LFCNN method is designed to split a low-resolution image
pixel into four sub-pixels to produce a high-resolution image;
therefore, we included the results of bicubic resizing (imresize
function in MATLAB) to evaluate the quantitative performance
of the LFCNN method. In Table I, we see that the LFCNN
method produces about 1.3 dB better than the bicubic resizing.
The proposed method produces the best results in terms of
PSNR and SSIM.

Visual comparison is critical when evaluating spatial reso-
lution enhancement. Figures 9, 10, and 11 are typical results
from the test dataset. Figure 12 is our worst result among
all test images. In these figures, we also include the results of
the single-image spatial resolution method, called DRRN [51].
This method is based on deep recursive residual network
technique, and produces state-of-the-art results in spatial res-
olution enhancement. Examining the results visually, we con-
clude that our method performs better the LFCNN method
and bicubic interpolation, and produces comparable results
with the DRNN method. We notice that the LFCNN method
produces sharper results compared to bicubic interpolation
despite having lower PSNR values. In our worst result, given
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Visual comparison of different methods. (The worst result image from the dataset is shown here). (a) Ground truth. (b) Bicubic resizing

(imresize)/25.99 dB. (c) Bicubic interp. /28.15 dB. (d) LFCNN [25]/24.09 dB. (e) DRRN [51]/33.65 dB. (f) LFSR/29.75 dB.

in Figure 12, the DRNN method outperforms all methods. This
particular image has highly complex texture, which seems to
be not modelled well with the proposed architecture. Training
with similar images or using more complex architecture may
improve the performance. When comparing deep networks,
we should consider the computational cost as well. The com-
putation time for one image with the DRRN method is about
859 seconds, whereas, the proposed SR network takes about
53 seconds, noting that both are implemented in MATLAB on
the same machine.

In Figure 13, we test our method on the HCI dataset [48].
We compare against the networks in [25] and [52]. The method
in [52] produces less ringing artifacts compared to the LFCNN
network [25]. The proposed method again produces the best
visual results.

Although we have showed results for resolution enhance-
ment of the middle perspective image so far, the proposed
spatial SR network can be used for any perspective image
as well. In Table II, average PSNR and SSIM on test images

TABLE II

EVALUATION OF THE PROPOSED METHOD FOR
DIFFERENT PERSPECTIVE IMAGES

?ggsvlv)e;,uéiﬁ?:sfe#) Method PSNR (dB) | SSIM
a.n Bicubic interp. 28.21 0.8631
? Proposed 28.74 0.8789
5.5) Bicubic interp. 31.12 0.9310
? Proposed 32.95 0.9496
6.6) Bicubic interp. 30.74 0.9272
? Proposed 32.71 0.9485
6.8) Bicubic interp. 30.73 0.9267
? Proposed 32.94 0.9504
8.6) Bicubic interp. 30.69 0.9270
’ Proposed 32.69 0.9492
8.8) Bicubic interp. 27.71 0.8793
? Proposed 28.16 0.8917

for different perspective images (among the 14 x 14 set) are
presented. It is seen that similar results are obtained on all
perspective images, as expected.
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(@)

Fig. 13.  Visual comparison of different methods for generating novel views from the HCI dataset. (a) Yoon et al. [52]. (b) Yoon et al. [25]. (c) Proposed
LFSR. (d) Ground truth.

(b) (©) (@

Fig. 14.  Visual comparison of different methods for novel view synthesis. The picture (“Leaves”) is taken from Kalantari er al. [49]. (a) [50] with
disparity [53]. (b) [50] with disparity [54]. (c) [50] with disparity [55]. (d) [50] with disparity [56]. (e) Kalantari et al. [49]. (f) Proposed angular SR network.
(g) Ground truth.
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Depth map estimation accuracy. (a) Middle perspective image. (b) Estimated depth map from the input light field with 7 x 7 angular resolution.

(c) Estimated depth map from enhanced light field with 14 x 14 angular resolution.
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Depth map estimation accuracy. (a) Middle perspective image. (b) Estimated depth map from the input light field with 7 x 7 angular resolution.

(c) Estimated depth map from enhanced light field with 14 x 14 angular resolution.

B. Angular Resolution Enhancement

In this section, we evaluate the individual performance of
our angular SR network. For this experiment, the angular
resolution of the test images are downsampled from 14 x 14
to 7 x 7 while keeping the spatial resolution at 374 x 540
pixels. These low-angular images are then input to the angu-
lar SR network to bring them back to the original angular
resolution. The network is trained for each color channel sep-
arately. We compare our method against Kalantari et al. [49],
which is a very recent convolutional neural network based
novel view synthesis method, and against Wanner and
Goldluecke [50], which utilizes disparity maps in a variational
optimization framework. Wanner and Goldluecke [50] may
work with any disparity map generation algorithm; thus,
we report results with the disparity generation algorithms
given in [53], [54], [55], and [56]. In Table III, we quanti-
tatively compared the results with the state-of-the-art angular
resolution enhancement methods using PSNR and SSIM.
In Figure 14, we provide a visual comparison. The scene
contains occluded regions, which are generally difficult for
view synthesis. Our angular SR method produces significantly
better results compared to all other approaches.

Finally, we would like to note that the angular SR network,
by itself, may turn out to be useful, since it may be combined
with any single-image resolution enhancement method to
enhance the spatial and angular resolution of a light field
capture.

C. Depth Map Estimation Accuracy

One of the capabilities of light field imaging is depth
map estimation, whose accuracy is directly related to the
angular resolution of light field. In Figure 15 and Figure 16,
we compare depth maps obtained from the input light fields
and the light fields enhanced by the proposed method. The
depth maps are estimated using the method in [56], which
is specifically designed for light fields. It is clearly seen
that depth maps obtained from light fields enhanced with the
proposed method show higher accuracy. With the enhanced
light fields, even close depths can be differentiated, unlike the
low-resolution light fields.

D. Model and Performance Trade-Offs

To evaluate the trade-off between performance and speed,
and to investigate the relation between performance and the
network parameters, we modify different parameters of the
network architecture and compare with the base architecture.
All the experiments are performed on a machine with Intel
Xeon CPU E5-1650 v3 3.5GHz, 16GB RAM and Nvidia 980ti
6GB graphics card.

1) Filter Size: In the proposed spatial SR network, the filter
sizes in the two convolution layers are k1 = 3 and k» = 1,
respectively. The filter size of the first convolution layer is
kept at k; = 3; this means, for each light ray (equivalently,
perspective image), the network is considering the light rays
(perspective images) in a 3 x 3 neighborhood in the first
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TABLE IIT
COMPARISON OF DIFFERENT METHODS FOR ANGULAR RESOLUTION ENHANCEMENT

Wanner and Goldluecke [50]
Picture name | Evaluation metric Disparity Disparity Disparity Disparity Kalantari er | Angular SR
[53] [54] [55] [56] al. [49] network
Flower 1 PSNR (dB) 22.03 29.52 24.39 28.21 33.31 35.95
SSIM 0.789 0.941 0.910 0.934 0.969 0.982
Car PSNR (dB) 19.74 27.27 22.09 27.51 31.65 35.21
ars SSIM 0.792 0.946 0911 0.949 0.966 0.983
Flower 2 PSNR (dB) 20.61 27.56 23.65 27.04 31.93 36.75
SSIM 0.645 0.919 0.899 0.924 0.959 0.980
Rock PSNR (dB) 16.57 30.46 30.55 30.21 34.67 34.09
oc SSIM 0.488 0.945 0.948 0.946 0.970 0.963
L PSNR (dB) 15.03 23.54 20.08 23.88 27.80 33.08
eaves SSIM 0.481 0.882 0.855 0.893 0.963 0.956
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Fig. 17. Effect of the filter size on performance.

TABLE IV

EFFECT OF THE FILTER SIZE ON PERFORMANCE AND THE
SPEED OF THE SPATIAL SR NETWORK

Filter size | PSNR (dB) | Time (sec)

ko =1 36.31 17.58

ko =3 35.81 27.62

ko =5 36.40 45.18
TABLE V

DIFFERENT NETWORK CONFIGURATIONS USED TO EVALUATE THE
PERFORMANCE OF THE SPATIAL SR NETWORK

Convolution Layers
First Second Third Fourth
3 layer 1x3x3x64 64x1x1x32 - -
4 layer 1x3x3x64 64x1x1x32 32x1x1x32 -
4 layer 1x3x3x64 64x1x1x16 16x1x1x16 -
4 layer 1x3x3x64 64x1x1x32 32x1x1x16 -
5 layer 1x3x3x64 64x1x1x16 16x1x1x16 16x1x1x16

convolution layer. Since higher dimensional relations are taken
care of in the second convolution layer, and since keeping
the filter size small minimizes the boundary effects—note
that the input size in the first layer is 14 x 14—this seems
to be a reasonable choice for the first layer. On the other
hand, we have more flexibility in the second convolution
layer. We examined the effect of the filter size in the second

Number of backprops. x107

Fig. 18. Effect of number of layers and number of filters on performance.

convolution layer by setting ko = 3 and k» = 5 while keeping
the other parameters intact. In Figure 17, we provide the
average PSNR values on the test dataset for different values of
ko as a function of training backpropagation numbers. When
ko = 5, the convergence is slightly better than the case with
ky = 1. In Table IV, we show the final PSNR values and the
computation times per channel (namely, the red channel) for
a perspective image. It is seen that while the PSNR is slightly
improved the computation time is more than doubled when
we increase the filter size from kp =1 to kp = 5.

2) Number of Layers and Number of Filters: We also
examine the network performance for different number of
layers and different number of filters. We implemented deeper
architectures by adding new convolution layers after the sec-
ond convolution layer. The three-layer network presented in
the previous section is compared against the four-layer and
five-layer networks. For the four-layer network, we evaluated
the performance for different filter combinations. The network
configurations we used are shown in Table V. In Figure 18,
we provide the convergence curves for these different network
configurations. We observe that the simple three-layer network
performs better than the others. This means that increasing
the number of convolution layers is causing overfitting and
degrading the performance.
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Fig. 19.
LFSR. (f) Bicubic resizing (imresize). (g) Bicubic interpolation. (h) LFCNN [25]. (i) DRRN [51]. (j) Proposed LFSR.

E. Further Increasing the Spatial Resolution

For quantitative evaluation, we need to have the ground
truth; thus, we downsample the captured light field to generate
its lower resolution version. In addition, we can visually
evaluate the performance of the proposed method without
downsampling and further increasing the spatial resolution

Visual comparison of different methods. (a) Bicubic resizing (imresize). (b) Bicubic interpolation. (c) LFCNN [25]. (d) DRRN [51]. (e) Proposed

of the original images. In Figure 19, we provide a compar-
ison of bicubic resizing, bicubic interpolation, the LFCNN
method [25], the DRRN method [51], and the proposed LFSR
method. The spatial resolution of each perspective image is
increased from 374 x 540 to 748 x 1080. The results of the
proposed method seem to be preferable over the others with
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less artifacts. The LFCNN results in sharp images but has
some visible artifacts. The DRNN method seems to distort
some texture, especially visible in the second example image,
while the proposed method preserves the texture well.

V. DISCUSSION AND CONCLUSIONS

In this paper, we presented a convolutional neural network
based light field super-resolution method. The method consists
of two separate convolutional neural networks trained through
supervised learning. The architecture of these networks are
composed of only three layers, reducing computational com-
plexity. The proposed method shows significant improvement
both quantitatively and visually over the baseline bicubic
interpolation and another deep learning based light field super-
resolution method. In addition, we compared the angular res-
olution enhancement part of our method against two methods
for novel view synthesis. We also demonstrated that enhanced
light field results in more accurate depth map estimation due
to the increase in angular resolution.

The spatial super-resolution network is designed to gen-
erate one perspective image. One may suggest to generate
all perspectives in a single run; however, this would result
in a larger network, requiring larger size dataset and more
training. Instead, we preferred to have a simple, specialized,
and effective architecture.

Similar to other neural network based super-resolution tech-
niques, the method is designed to increase the resolution by
an integer factor (two). It can be applied multiple times to
increase the resolution by factors of two. A non-integer factor
size change is also possible by first interpolating using the
proposed method and then downsampling using a standard
technique.

The network parameters are optimized for a specific light
field camera. For different cameras, the specific network para-
meters, such as filter dimensions, may need to be optimized.
We, however, believe that the overall architecture is generic
and would work well with any light field imaging system once
optimized.
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