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Abstract—Sparse coding over a redundant dictionary
has recently been used as a framework for downlink
channel estimation in frequency division duplex massive
multiple-input multiple-output antenna systems. This usage
allows for efficiently reducing the inherently high training
and feedback overheads. We present an algorithm for
downlink channel estimation via selective sparse coding
over multiple cluster dictionaries. A channel training
set is divided into clusters based on the angle of the
arrival/departure of the majority physical subpaths corre-
sponding to each channel tap. Then, a compact dictionary
is trained in each cluster. Channel estimation is done by
first identifying the channel cluster and then using its
dictionary for reconstruction. This selective sparse coding
allows for adaptive regularization via sparse model selec-
tion, thereby offering additional regularization to the ill-
posed channel estimation problem. We empirically validate
the selectivity of the cluster dictionaries. Simulation results
show the advantage of the proposed algorithm in achieving
better estimation quality at lower computational cost, as
compared the case of using standard sparse coding.

I. INTRODUCTION

Massive multiple-input-multiple-output (MIMO) is re-

ported as a key enabler for the fifth generation (5G) com-

munication standard. However, reaping the advantages

of massive MIMO requires the knowledge of the channel

impulse response (CIR). This can be achieved either by

frequency division duplex (FDD) or time division duplex

(TDD). FDD has several advantages over TDD. Still,

its underlying training and feedback overhead forms the

bottleneck against utilizing such advantages [1].

A massive MIMO channel is known to have correla-

tions [2]. Thus, it can be sparsely represented with a few

low-dimensional measurements. In a compressive sens-

ing context, this suggests sub-Nyquist channel sampling

and reduced-dimensional processing. Consequently, the

number of training pilots becomes proportional to the

assumed sparsity, rather than the number of antennas.

Besides, CIR estimation becomes a sparse recovery

problem [3] where sparsity is exploited as a natural

regularizer.

The early works utilizing channel sparsity considered

the discrete Fourier transform (DFT) as a sparsifying

basis [4], [5], [6]. However, channel sparsity with a DFT

basis is valid only under the conditions of extremely

poor scattering and infinitely many transmitting antennas

at the base station [2]. Subsequently, Ding and Rao

proposed a dictionary learning channel model (DLCM)

[7], [8], [9] where a sparsifying dictionary is obtained by

training. Despite efficiently using sparsity as a regular-

izer, DLCM [7], [8], [9] does not consider discriminative

channel properties such as spatial directionality char-

acterized by the angle of arrival/departure (AoA/AoD)

[10], [11].

This paper presents an algorithm for FDD massive

MIMO downlink CIR estimation based on selective

sparse coding over cluster dictionaries. We divide train-

ing data into several clusters based on the AoA/AoD of

their respective physical subpaths, and train a compact

dictionary for each cluster. The result is improved CIR

estimation with reduced computational complexity. We

show that each dictionary is well-suited for reconstruct-

ing the CIRs of its own cluster, exclusively. Besides,

sparsity minimization is empirically shown to point to

the best cluster. Experiments validate a performance

improvement in terms of the normalized mean-squared

error (NMSE) measure.

Notation: Lower-case plain, lower-case bold-faced

and upper-case bold-faced letters represent scalars, vec-

tors and matrices, respectively. ‖.‖2 and ‖.‖0 represent

the 2-norm and the number of nonzero elements, respec-

tively.

II. BACKGROUND AND RELATED WORK

A. System Model

This work considers a single-cell FDD massive

MIMO system. The base station (BS) has a uniform lin-

ear antenna array (ULA) of N antennas serving a single-

antenna user equipment (UE) as illustrated in Fig. 1.

The downlink channel is a narrow-band block flat-fading

channel, and its CIR is denoted by h ∈ C
N . We model

h using the geometry-based stochastic channel model

(GSCM) [12], where the channel measurement at the BS

consists of the effects of signals from both; far scatterers

in the cell and local scatterers around the UE.
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Fig. 1. Pilot downlink and feedback setup for CIR estimation.

The CIR h can be modeled as follows [13].

h =

Nc∑

i=1

Ns∑

l=1

αilβ(θil), (1)

where αil is the complex gain of the l-th subpath in

the i-th scattering cluster, Nc is the number of clusters,

and Ns is the number of subpaths in each cluster. The

symbol θil denotes the AoA/AoD of the l-th subpath

in the i-th scattering cluster, as depicted in Fig. 2. The

steering vector β(θil) represents the normalized array

response at the UE.

For a ULA, β(θil) can be modeled as follows [14].

β(θil) =
1√
N

[1, ejc sin(θil), . . . , ejc sin(θil)(N−1)]tr, (2)

where c = 2π d
λd

, with d and λd denoting the antenna

spacing and the propagation wavelength, respectively,

and tr denoting the transpose operator.

Fig. 1 shows the setup for downlink CIR estimation.

The BS transmits training pilots to the UE through h.

Each pilot is a vector in C
1×N . The BS sends T pilots,

where T is referred to as the pilot period. So the pilot

matrix is A ∈ C
T×N . The signal received at the UE is.

y =
√
ρAh+ n, (3)

where ρ is the signal power and n is additive white

Gaussian noise. Then, the UE feeds back y to the BS

through the uplink channel. To this end, the BS estimates

h based on A and y. While classical solutions such as

least-squares lack robustness due to insufficient priors,

sparsity is shown to be an efficient regularizer.

B. CIR Estimation as a Sparse Recovery Problem

If a signal x ∈ R
N admits sparse coding over

a dictionary D ∈ R
N×K , then x ≈ Dw, where

w ∈ R
K is said to be a sparse coding coefficient vector.

For a given x and D, w can be obtained through the

following sparse coding process.

argmin
w

‖w‖0 s.t. ‖x−Dw‖22 < ε, (4)

where ε is the error tolerance.

A collection of predefined basis function such as the

DFT can be used as a dictionary. However, learning a

redundant dictionary over a set of training data points

X ∈ RN×m is a better alternative [15]. This is referred

to as dictionary learning (DL), formulated as.

argmin
W,D

‖W i‖0 s.t. ‖Xi −DW i‖22 < ε ∀ i, (5)

Fig. 2. A top view showing the AoA/AoD for a ULA [1].

where i indicates the i-th column in the matrix.

DLCM [7], [8], [9] reformulates CIR estimation as a

sparse coding problem. This is based on assuming that

h admits a sparse coding over a dictionary D trained

over a training set of example CIR realizations H. This

means that h ≈ Dw. Since y =
√
ρAh, then h−Dw

corresponds to
√
ρAh − √

ρADw = y − √
ρADw.

Accordingly, w is calculated based only on y, A and

D through the sparse recovery process in (6). Finally, a

CIR estimate is obtained as ĥ = Dw.

argmin
w

‖w‖0 s.t. ‖y −√
ρADw‖22 < ε. (6)

III. SELECTIVE SPARSE CODING OVER AOA/AOD

CLUSTER DICTIONARIES FOR CIR ESTIMATION

A. Motivation for Clustered Sparse Coding

The early used DFT basis does not promote sparsity,

and its basis vectors have an inherent directional mis-

match with channel subpaths. To address these draw-

backs, DLCM uses a learned dictionary that promotes

sparsity and provides a denser sampling grid thereby

relatively reducing the mismatch. Still, a significant

mismatch reduction requires a very dense grid, and thus

a highly redundant dictionary. In a sparse coding context,

high redundancy facilitates the recovery search space.

However, this comes at the cost of dramatically increas-

ing the search computational cost and the likelihood of

instabilities [16] and degradation [17]. Furthermore, it

necessitates using very large training sets for the DL

process [18]. To this end, a compact dictionary selected

from a set of cluster dictionaries is promising to achieve

finer sampling at reduced computational cost compared

to a single highly-redundant dictionary.

In the massive MIMO setting, the number of scatter-

ing clusters is typically small [12]. Also, the effective

subpaths associated with a scattering cluster are likely

to concentrate in a small angular spread around the

line-of-sight scattering direction [18]. Thus, a compact

dictionary dedicated for this directionality would pro-

vide a sufficient number of relevant atoms (sampling

grid points). This directionality is characterized by the

propagation AoA/AoD as shown in (2).

B. The Proposed Algorithm

The proposed algorithm is composed of the following

two stages.



Algorithm 1 Cluster DL Stage.

Input: Error tolerance ε and the number of clusters M .
Output: Cluster dictioanries Di, i = 1, 2, . . . ,M .
1: Generate H , and record the value of θ for each Hi.
2: Cluster H , into Hi, i = 1, 2, . . . ,M using the recorded

angles.
3: for i = 1, 2, . . . ,M ,

Use a DL algorithm to solve for

argmin
W i,Di

‖W i
k‖0 s.t. ‖Hi

k −DiW i
k‖22 < ε ∀ k

4: end for

1) Training Stage: This stage trains for M cluster

dictionaries Di, i = 1, 2, . . . ,M , where the superscript

denotes the cluster index. The AoA/AoD is used as

a clustering criterion to split a training set H into

cluster datasets Hi, i = 1, 2, . . . ,M . Then, a compact

dictionary is trained for each cluster over its own data

Hi using any standard DL algorithm. This stage is

illustrated in Algorithm 1. It is noted that the number of

clusters and their bounds can be empirically set. In this

context, one may balance the trade-off between dictio-

nary selectivity and the accuracy of model selection.

2) Testing Stage: This stage uses the fed-back re-

ceived signal y along with cluster dictionaries to obtain

a CIR estimate ĥ. First, model selection is applied to

identify the correct channel cluster, as in (7). Motivated

by the selectivity of the cluster dictionaries, it is intu-

itively expected that the most appropriate model is the

one that yields the sparsest solution. This means that one

can select the dictionary that minimizes the sparsity. The

proposed testing stage is outlined in Algorithm 2.

argmin
wi

‖wi‖0 s.t. ‖y −√
ρADiwi‖22 < ε

s = argmin
i

‖wi‖0.
(7)

C. CIR Estimation Error with Cluster Dictionaries

It is interesting to analyze the impact of the proposed

cluster regularization on the CIR estimation error. Let

δ denote the maximum mismatch between the sine

function of the estimated θil, and that of the true θtil,
so sin θil = sin θtil + δ. For simplicity, let us assume

unity complex gains αil, and perfect model selection.

Recalling (1), the error between an estimate h and the

true ht can be expressed as follows.

e = ||ht − h||22 = ||
Nc∑

i=1

Ns∑

l=1

β(θtil)− β(θil)||22. (8)

Let us define the following difference vector.

d(θil) = β(θtil)− β(θil) (9)

Using (2), the k-th element in d(θil) is as follows.

dk(θil) = ejc(k−1) sin(θt
il) − ejc(k−1) sin(θil) (10)

Algorithm 2 CIR Estimation Stage.

Input: cluster dictionaries Di, i = 1, 2, . . . ,M , training
pilots A, and error tolerance ε.

Output: a CIR estimate ĥ.
1: Send A over the channel to receive y.
2: for i = 1, 2, . . . ,M ,

Solve argmin
wi

‖wi‖0 s.t. ‖y −√
ρADiwi‖2

2
< ε

3: end for
4: Identify the cluster s = argmin

i
‖wi‖0

5: Reconstruct: ĥ = Dsws

For simplicity, let us denote the quantity c(k − 1) by

x. With some simplification, (10) reduces to (11).

dk(θil) = cos(x sin θtil)− cos(x sin θtil + xδ)

+j(sin(x sin θtil)− sin(x sin θtil + xδ)).
(11)

Doing a few further trigonometric and algebraic steps,

the square of the k-th element in d(θil) is as follows.

dk(θil)
2 = 2 sin(

xδ

2
). (12)

The energy of d(θil) is thus the summation of the

terms in (12). Using the triangle inequality, we can write.

||d(θil)||2 ≤ ||
N−1∑

k=1

dk(θil)||2 (13)

From (8) and (13), we can write.

e = ||
Nc∑

i=1

Ns∑

l=1

d(θil)||2 ≤
Nc∑

i=1

Ns∑

l=1

N−1∑

k=1

dk(θil)
2 (14)

Substituting (13) into (14) reveals.

e ≤
Nc∑

i=1

Ns∑

l=1

N−1∑

k=1

2 sin(
c(k − 1)δ

2
) (15)

From (15), it is clear that the error upper bound is

directly dependent on the sine function error δ which is

equal to 2 for the case of standard reconstruction where

as it is 2/M for the case of using M clusters.

D. Computational Complexity Discussion

Sparse coding forms the bottle neck in CIR estimation

computational cost. So, we can roughly model this cost

in terms of that of sparse coding. Considering basis

pursuit denoising (BPDN) [19] as an example sparse

coding technique, its computational cost working on

D ∈ C
N×K is approximately O((NK)3) [20]. If one

employs M dictionaries, each being γ times smaller than

the standard universal dictionary, the overall computa-

tion of CIR estimation is approximately O(M(NK)3

γ3 ).
Therefore, the computational complexity will be reduced

by a factor of (Mγ3 ). The same argument holds for

the computational complexity of DL. This is because

the computational burden of the DL process is mainly

caused by sparse coding.
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Fig. 3. NMSE of downlink channel estimation versus training period.

IV. EXPERIMENTAL VALIDATION

We compare the proposed algorithm to the DLCM

algorithm with: a learned dictionary, an overcomplete

DFT dictionary, and a DFT basis. These are denoted

by (Prop.), (DLCM), (DFT Dict.), and (DFT Basis),

respectively. We also include the proposed algorithm

with perfect model selection (denoted by PMS). This

is the case where a CIR estimate is obtained using

each dictionary, and the best estimate to approximate the

ground-truth CIR is chosen. This scenario is impractical,

and is included only to investigate the impact of model

selection on the performance of the proposed algorithm.

We adopt the experimental setup of the DLCM al-

gorithm reported in [9]. This contains a single urban

macro cell with a radius of 1200 meters, centered at the

BS. The BS has a ULA of N=100 antennas and the UE

has one antenna. The principles of the GSCM channel

model [12] are used to generate the channel coefficients

for training and testing. The channel parameters are

set according to the spatial channel model [21]. The

azimuth angle θ ranges between −π/2 and π/2. The

cell contains seven fixed-location scattering clusters. The

locations of these clusters are randomly selected to range

between 300 meters and 800 meters at the beginning

of the simulation, and are kept unchanged afterwards.

Each channel is modeled using four scattering clusters;

one is at the UE location, and the remaining three

are the closest to the user from the aforementioned

seven scattering clusters. The UE location is drawn

uniformly to be between 500 meters and 1200 meters.

Each scattering cluster has 20 effective subpaths with

a 4-degree angular spread. We generate 104 downlink

CIR realizations for the DL processes. As done in [9],

we use k-svd [15] and BPDN [19] for DL and sparse

coding, respectively. The signal-to-noise ratio is 30 dB.

The proposed algorithm defines 8 AoA/AoD clusters

C1 through C8 with θ bounds of -90◦,-67.8◦, -35.5◦,

-16.8◦, 0◦, 16.8◦, 35.5◦, 67.8◦, and 90◦, respectively.

TABLE I
CLUSTER DICTIONARY RECONSTRUCTION SELECTIVITY IN THE

NMSE SENSE. THE BEST TWO ESTIMATES ARE IN BOLD-FACE.

Cluster Dictionary
Du

Set D1 D2 D3 D4 D5 D6 D7 D8

H1 0.0037 0.4027 2.5971 2.1432 2.4528 7.1593 11.4142 2.6698 0.0161

H2 0.1952 0.0091 1.1032 1.5056 1.8737 7.1348 11.6273 3.119 0.0188

H3 1.4208 1.1108 0.017 0.1793 0.9362 5.0664 8.4372 3.1578 0.0449

H4 1.9346 2.8687 0.3600 0.0226 0.1888 3.3529 6.4138 3.0551 0.0490

H5 2.8546 6.5632 3.1024 0.1736 0.0215 0.3006 2.7644 2.0817 0.0464

H6 2.8726 8.3330 4.5589 0.7382 0.2293 0.0152 1.2721 1.5800 0.0439

H7 2.8225 11.1688 6.300 1.6675 1.6574 1.4051 0.0071 0.2015 0.0198

H8 2.4423 11.2631 6.793 2.3085 2.4536 3.2952 0.3578 0.0037 0.0153

These bound are chosen to quantize the trigonometric

sine function range of -1 to 1 into 8 fair ranges.

Then, a compact 100×100 dictionary is trained for each

cluster, following the steps in Algorithm 1. The DLCM

algorithm uses a single 100×400 dictionary.

With the above specifications, we randomly generate

a test set of 103 CIR vectors for the testing part of

this experiment. For each test CIR, we generate random

pilots A with periods T of 10, 20, . . ., 100. For each

T value, a channel estimate ĥ is obtained via the

aforementioned methods and compared to the true CIR

in the NMSE sense. Then, we average the NMSE values.

The results of this experiment are presented in Fig. 3.

In view of Fig. 3, the advantage of basis redun-

dancy is clear as the over-complete DFT is superior to

the orthogonal DFT. Moreover, DLCM is consistently

superior to the two DFT scenarios indicating the the

advantage of a learned dictionary over predefined bases.

Besides, the proposed algorithm is superior to DLCM,

indicating the added benefit of selective sparse coding.

Moreover, the proposed algorithm with actual model

selection coincides with its pms variant except for small

T values, where model selection is less accurate.

The selectivity of a cluster dictionary is seen in its

suitability to exclusively reconstruct the channels in its

cluster. To investigate the selectivity of the designed

dictionaries, the following experiment is conducted. For

each cluster, we randomly select 103 training CIR vec-

tors as a cluster testing set Hi, i = 1 through 8. For

each testing CIR vector h, we generate random pilots

A and send them over this channel. Next, based on

received signal y, we obtain a channel estimate ĥ using

each of Di, i = 1, 2, . . . 8, and the DLCM dictionary

Du. We calculate the NMSE between the ground-truth

CIR vector, and each of these reconstructions. Finally,

we average the reconstruction NMSE for the 1000 CIR

vectors of each cluster. The results are listed in Table I.

In view of Table I, one can make the following

conclusions. First, the designed cluster dictionaries are

selective as the correct cluster dictionary results in

the best reconstruction of its cluster channels. Second,

using the “best” dictionary is consistently better than

using Du. This indicates the advantage of using cluster

dictionaries over a universal dictionary. Third, a given



y can be used to identify the best cluster to reconstruct

its underlying channel by selecting the “best” dictionary

that minimizes the reconstruction NMSE.

TABLE II
AVERAGE SPARSITY OF RECEIVED SIGNALS IN CLUSTERS. THE

MINIMAL SPARSITY IS IN BOLD-FACE.

Average Sparsity with Dictionary

CIR’s in D1 D2 D3 D4 D5 D6 D7 D8

H1 31.1 54.9 78.7 64.8 65.7 89.0 99.6 100

H2 57.1 34.3 67.0 62.7 64.4 89.0 99.6 100

H3 99.9 68.3 42.5 51.9 60.6 86.7 99.6 100

H4 100 92.1 52.5 44.1 52.9 82.5 99.4 100

H5 100 99.3 79.5 53.2 44.7 51.4 93.2 100

H6 100 99.3 83.1 59.4 53.3 41.6 69.9 100

H7 100 99.3 85.8 62.6 64.2 69.4 34.5 56.5

H8 100 99.2 85.9 64.0 66.8 83.3 56.3 31.2

It is intuitively expected that the best dictionary is

the one that minimizes the sparsity of coding y. To

investigate this expectation, we repeated the previous

experiment calculating the sparsity of the sparse coding

vector w over each cluster dictionary. The average

sparsity of each test dataset Hi, i = 1 through 8 over

each dictionary Di is reported in Table II. It is noted

that best cluster dictionary for each given test set, is the

one that results in minimal sparsity of coding y. This

motivates confidently depending on the sparsity of w for

model selection.

V. CONCLUSION

This work shows the advantage of clustered sparse

coding in FDD massive MIMO downlink channel esti-

mation. The AoA/AoD of effective channel subpaths is

used as a clustering criterion. For each cluster, a compact

dictionary is trained. The designed cluster dictionaries

are shown to be selective to channels in their clusters.

The minimal sparsity measure is employed as a model

selection criterion. We analytically show that using sev-

eral compact dictionaries leads to reducing the maximal

channel reconstruction error, as compared to the case

of standard sparse coding. The proposed algorithm is

shown to improve the channel estimation quality. It is

also shown to reduce the computational complexity of

the underlying sparse coding and DL processes, owing

to the compactness of the dictionaries.
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