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Abstract—Oligodendrocytes wrap around the axons and form
the myelin. Myelin facilitates rapid neural signal transmission.
Any damage to myelin disrupts neuronal communication leading
to neurological diseases such as multiple sclerosis (MS). There is
no cure for MS. This is, in part, due to lack of an efficient method
for myelin quantification during drug screening. In this study, an
image analysis based myelin sheath detection method, DeepMQ,
is developed. The method consists of a feature extraction step
followed by a deep learning based binary classification module.
The images, which were acquired on a confocal microscope
contain three channels and multiple z-sections. Each channel
represents either oligodendroyctes, neurons, or nuclei. During
feature extraction, 26-neighbours of each voxel is mapped onto
a 2D feature image. This image is, then, fed to the deep learning
classifier, in order to detect myelin. Results indicate that 93.38%
accuracy is achieved in a set of fluorescence microscope images
of mouse stem cell-derived oligodendroyctes and neurons. To the
best of authors’ knowledge, this is the first study utilizing image
analysis along with machine learning techniques to quantify
myelination.

Index Terms—myelin, microscopic fluorescence imaging, neu-
ral network, deep learning, LeNet

I. INTRODUCTION

Generally, increases in our understanding of the nature
follow advances in technology. For example, Leuwenhoeks
invention of the microscope brought light on to an invisible
world. At present, advances in microscopy enabled relatively
easy acquisition of images raising a new limitation: extraction
of meaningful data from the images [1]. When the time and

man power required for image analysis exceeds available
resources, life scientists turn to automation. Recently, in a
related work, a team of researchers at the Allen Brain Institute
reconstructed neurons from a large volume of brain images
[2]. On the other hand, myelin, another structure within the
nervous system, poses a different question, because it is com-
posed of parts from two different cell types: the axon of the
neuron and the process of the oligodendrocyte (cf. Fig.1). Life
scientists identify myelin via the shape and the configuration
of overlap between these two structures [3]. An experienced
researcher can annotate myelin over different imaging planes
and can distinguish it from non-myelin overlaps between cells
protrusions (cf. Fig.1). For a large number of images or images
covering a large area, this process can take hours to days [3].
Thus, automation of myelin quantification will not only save
a large amount of researcher hours, but is also a challenging
image analysis question.

In many cases, the methods to analyze the microscopic co-
localization are often simple and descriptive [4]. The overlap
of the two signals are assessed on false colored images.
Such a visual evaluation requires comparable fluorescence
intensities of the two markers, may be subject to biases,
and is hardly quantitative. Recognition of these issues quite
early in the development of fluorescence microscopy led to
use of statistical parameters to evaluate the correlation of
fluorescence-intensities of two (or more) detection channels
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on a pixel-by-pixel basis [4]. For the confocal microscopy,
a method [9] was presented to visualize the total overlap of
two patterns by subtracting one component of an image from
the other and this method provides a clear representation of
complete overlap. However, simply identifying co-localization
is inadequate to segment myelin because the cell protrusions
may overlap resulting in false positives (cf. Fig.1) [3]. Thus,
we employed a machine learning-based approach in order to
automate myelin quantification. To that extent, SVM, DT, and
deep learning based methods were utilized on feature images.
Feature images are obtained by expressing three dimensional
spatial relation between neighboring voxels in two dimensions.
To the best of authors’ knowledge, this is the first study
that aims at quantifying myelination using image analysis
and machine learning methods. Having said that, there are
studies on three-dimensional medical image segmentation and
quantification [5]–[8].

The paper is organized as follows. Myelin and the need for
automated quantification is discussed in Section II. Section III
describes Materials and Methods while Section IV describes
Classification Methods. Experimental Results are presented in
Section V. Conclusion is discussed in Section VI.

Fig. 1. Demonstration of myelin and non-myelin. Oligodendrocytes wrap
around axons to form myelin sheaths. However, not all the overlap between
oligodendrocytes and the neurons correspond to myelin sheaths.

II. MYELIN AND THE NEED FOR AUTOMATED
QUANTIFICATION

In the vertebrate nervous system protrusions of the oligoden-
drocytes wraps around the protrusions of the nerve cells, the
axons, forming the myelin (cf. Fig.1). The insulation provided
by the myelin increases speed and efficiency of the signal
transmission across the neurons and supports the survival of
the neurons [10]. Myelin is a vital structure for the function of
the nervous system, thus, any damage to myelin disrupts the
life of the individual leading to neurological diseases, such as,
multiple sclerosis (MS). MS is a neuroinflammatory disease of
the central neurvous system CNS affecting approximately 2.5
million individuals worldwide [11], [12]. Body’s own immune

system attack and destroy myelin [12], [13]. Current therapies
reduce demyelination by suppressing the immune system but
do not enhance remyelination and, thus, fail to cure the disease
[11], [12], [14]. The innate myelin regeneration of the nervous
system is inadequate to overcome the destructive potential of
the immune attack [9]. In order for the nervous system to
regain its function, identification of novel drugs that modulate
the immune system and promote rebuilding of the myelin are
required. The drug development process usually starts with
testing thousands or hundreds of thousands of compounds in a
disease relevant assay [15]. However, as myelin quantification
is time consuming and labor intensive, it is not feasible to
screen for such a high number of compounds. Therefore, rapid
quantification of myelin will expedite drug development for
MS and other myelin diseases by enabling testing of a large
number of candidate chemicals quickly [11]. Additionally, the
newly available automated tracing of the neurons from ultra-
large images will assist in describing the synaptic connections
in the nervous system [2]. When employed on time lapse
images this tool may even highlight the changes in neuronal
connectivity over time. However, describing the neuronal
pattern is only half of the story as myelin influence neuron
function [10]. Changes in myelin pattern in the brain is part
of the plasticity of brain in response to learning and life
experiences [16]. Detecting and cataloguing changes in myelin
along with the neurons is critical in understanding the function
and plasticity of the nervous system. Thus, an automated
myelin quantification method is essential to complement the
advances in automated reconstruction of neurons.

III. MATERIALS AND METHODS

The data used for this study are published in [3]. Briefly,
mouse stem cell-derived oligodendrocytes and axons were
grown in microfluidic device co-cultures optimized for myeli-
nation. Images of an entire chamber of the microfluidic device
were acquired on a Zeiss LSM confocal microscope. A sample
image is shown in (cf. Fig.2).

Fig. 2. A representative image of a myelinating co-culture. In this maximum
intensity projection of the microscopic fluorescence multi-channel image,
oligodendrocytes are in the red channel, axons are in the green channel and
blue channel is for the nuclei. Scale bar: 250µm

In order to accelerate myelin quantification, one of the au-
thors of the current study, previously, developed the Computer-
assisted Evaluation of Myelin (CEM) software [3]. CEM
performed operations on fluorescence images and was imple-
mented mainly on the ImageJ platform [17] to be available to a
wide range of users. It was able to identify and quantify myelin
from large data sets and to detect changes in myelin formation
[3], [18]. The algorithm for identification of myelin formation
was based on detection of co-localization between neurons and
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oligodendrocytes. To perform calculations, the images were
first converted to binary images. The optimal threshold was
determined manually by the researchers. Binary images were
further processed to remove cell bodies of oligodendrocytes
and neurons. The overlap between the resulting images was
identified as ’myelin’ (cf. Fig.3). Despite the removal of the
cell bodies, some overlap between neurons and oligodendro-
cytes remained resulting in false positive identification (cf.
Fig.3). Finally, to calculate the total amount of ’myelin’,
overlapping pixels were counted (cf. Fig.3) [3]. In the current
study, myelin identified by CEM was curated by a researcher
and was used as the gold standard.

Fig. 3. A closeup view of the boxed region in (cf. Fig. 2). Oligodendrocytes
(Red Channel), Axons (Green Channel), and Nuclei (Blue Channel) can be
identified. Bracket shows a myelin region while the blue lines point to non-
myelin overlaps i.e. false positives. Scale bar: 25µm

Fig. 4. CEM identified the myelin (bracket) in a magnified view of the (cf.
Fig. 3). The overlaping regions (Cyan Channel) between oligodendrocytes
(Red Channel) and axons (Green Channel) that were segmented by CEM.
Nuclei (Blue Channel) are also visible. Scale bar: 25µm

As described above, myelin quantification by CEM is a very
simple pixel counting process, which does not take the 3D
shape of the myelin into account in identification of myelin
regions. Despite the best efforts to minimize the false positives,

TABLE I
NUMBER OF DATA

Positive Negative
Feature Vectors 5404 5364

For training 2702 2682
For testing. 2702 2682

some still exist (cf. Fig. 3). Additionally, CEM calculates
neither the length, nor the number of myelin segments. In
the current study, we aimed to overcome these shortcomings
by utilising a machine learning-based approach.

First, 3x3 matrices were formed for each channel (red,
green, blue) carrying the information for the oligodendrocytes,
neurons and nuclei (cf. Fig.5). In order to find myelin regions
in 3D, z-stack continuity is considered by forming 3×3
matrices for the immediate z-section neighbors, namely, (z-
1) and (z+1). These matrices are merged together and reduced
to 2 dimensions, resulting in a 9×9 image (cf. Fig.5) that is
expressed as (1). We termed these feature images ‘spectro-
spatial feature images’.

I (x+ i, y + j, z + k,w + l) (1)

Fig. 5. Feature image, corresponding to each voxel, is composed of oligo-
dendrocytes (red), axons (green), and nuclei (blue) channel intensity values
of the immediate 26-neighbor voxels.

In the feature images, myelin images are classified as
positive, while non-myelin images are classified as negative.
The number of feature images obtained is 5364 negative,
5404 positive. Negative and positive samples are grouped into
training and test data sets. Details of the data for training and
testing are shown in Table I.

Next, the 9×9 feature images are magnified digitally to
27×27 in order to increase the performance and to be more
effective. The portion of the image to be magnified is selected
and then each digital sample comprising the portion to be
magnified is repeated in both the horizontal and the vertical
direction to expand the selected portion of the image [19].
Each pixel of the original feature image patch is repeated two
more times in both the horizontal and the vertical direction
(digital magnification). This way the feature image of size 9×9
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pixels is expanded to 27×27 pixels. These feature images are
shown in (cf. Fig.6).

(a) 9x9 image (b) 27x27 image

Fig. 6. Feature images. a) 9×9 feature image is created from 3 channels
(R,G,B). Each channel has 3×3×3 images, which is reduced to 2 dimensions.
b) 27×27 feature image is obtained from 9×9 image by digital magnification
method.

IV. CLASSIFICATION METHODS

There are a plenty of efficient classification methods that
one may benefit from in the machine learning literature. Due
to their relatively better performances in various fields of
research, Support Vector Machines (SVMs), Decision Tree
(DT) and Deep Learning (LeNet) are utilised for myelin
classification.

One of the most successful machine learning algorithms
developed for solving classification problems in recent years
is Support Vector Machines. SVMs have been successfully
applied to solve many classification problems and have taken
place in the literature as one of the efficient machine learning
algorithms with high generalization performance [21]. The
main advantage of SVMs is to convert the classification
problem into a square optimization problem and solve it. Thus,
the number of transactions decreases during the learning phase
related to the solution of the problem and SVM achieves
faster solution than other techniques / algorithms. In addition,
optimization-based point classification performance, computa-
tional flexibility and adaptability are successful [21].

DTs are also supervised learning method used for classifica-
tion and regression. The goal is to create a model that predicts
the value of a target variable by learning simple decision
rules inferred from the data features [22]. Decision trees are
a form of tree structure that can be built on both regression
and classification models. Classification is used on categorical
data such as yes/no while regression is used on numeric target
data.

Convolutional Neural Networks (CNNs) are special kind of
multi-layer neural networks. They are trained with a version
of the back-propagation algorithm where they differ is in
the architecture. To recognize the visual patterns from the
pixels with minimum pre-processing, CNNs are designed.
They can recognize patterns, and with robustness distortions
and simple geometric transformations [20]. In this paper, we
used the LeNet network, which is known to work well on digit
classification tasks. LeNet-5 is a CNN, which was designed for
handwritten and machine-printed character recognition. LeNet

TABLE II
CLASSIFICATION RESULTS FOR 9×9 FEATURE IMAGES

SVM Decision Tree
Type Medium Gauss. Simple Tree

Train Dur. 3.84 sec 0.39 sec
Train Acc. 92.2% 93.5%
Test Dur. 0.25 sec 0.03 sec
Test Acc. 86.08% 90.76%

TABLE III
COMPARISON RESULTS FOR DEEP LEARNING - LENET

9x9 feature image 27×27 feature image
Train Dur. 23 sec 23 sec
Train Acc. 96.56% 97.31%
Test Dur. 6.4 sec 6.4 sec
Test Acc. 92.9% 93.38%

was described in Gradient-based learning applied to document
recognition. LeNet-5 is a CNN, which works on 28×28×1
input data [20]. Also, Caffe is the open framework, which is
used in LeNet. Expressive architecture encourages application
and innovation. Models and optimization are defined by con-
figuration without hard-coding. Switch between CPU and GPU
by setting a single flag to train on a GPU machine then deploy
to commodity clusters or mobile devices. Speed makes Caffe
perfect for research experiments and industry deployment.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The network structures used for classification are SVM and
DT. In addition, Deep Learning (LeNet) was used. The results
are shown in Table II. Here, ’Medium Gaussian SVM’ is that
type of a Gaussian-Kernel-SVM, for which, the kernel scale
is set to the

√
P , where P is the number of predictors.

LeNet deep learning model accepts 28x28 pixels image
patches. In order to comply with the LeNet specification, the
last row and the column of the 27×27 pixels feature image
is zero-padded by one pixel. For each feature images (9×9
pixels and 27×27 pixels) Stochastic Gradient Descent (SGD)
optimization is used in network. In this study, training and
testing experiments are processed on a computer with Intel
i7 6700 processor, 32 GB RAM, Asus Geforce GTX1080TI
graphics card, and 1 TB HDD. The results are shown in Table
III.

The size of the parameter space of the CNN structure is on
the order of 105. However, due to the labelling burden, the
current number of training samples are orders of magnitude
less than the size of the parameter space. Currently, we
are increasing the number of training samples. Despite the
possibility of underfitting, the current standard LeNet structure
yields acceptable classification results. Apart from increasing
the number of training samples, our goal is to customize the
network and have it comply with the myelin quantification
application.
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VI. CONCLUSION

MS is a neurodegenerative disease without a cure. In
order to develop a therapy for MS and other myelin related
neurodegenerative diseases, evaluating effects of hundreds
of thousands of chemicals on myelin is essential. Such an
undertaking requires a rapid and efficient method to quantify
myelin. Therefore, the aim of this work is to develop an
automated myelin detection and quantification method.

Previously, myelin was segmented by identification of the
overlapping regions of the neurons and oligodendrocytes [3].
These methods neither consider nor provide information on the
shape of myelin. More, they may suffer from false positives
as not all the overlaps are filtered out by the initial criteria set.

In this study, we compared three different machine learning
strategies to evaluate their effectiveness in segmenting myelin.
The ground truths were extracted manually from images
already classified by CEM. One hour of manual segmentation
yields approximately 25 ground truths. Thus, extraction of a
training set may take several day depending on the number of
myelin contained in the image, reflecting the tremendous time
and manpower required for manual quantification.

Next, both the ground truth and test images are converted
into feature images as described above. In order to reflect the
3D nature of myelin, the 2D feature images were composed
of three different z-sections. The multi-parameter of myelin
recognition is considered by merging oligodendrocyte, neuron,
and nucleus images. Finally, the images were classified using
SVM, DT and CNN methods. The LeNet method yielded the
most accurate results. Moreover, myelin classification using
deep learning, the DeepMQ, took seconds compared to days
of manual classification. In conclusion deep learning offers a
novel avenue to explore for segmentation of biological struc-
tures that are composed of subcellular structures protruding
from more than one cell type and whose defining criteria is
the peculiar arrangement of these cellular protrusions relative
to each other.
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