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Abstract. Due to the necessity for precise treatment planning, the use
of panoramic X-rays to identify different dental diseases has tremen-
dously increased. Although numerous ML models have been developed
for the interpretation of panoramic X-rays, there has not been an end-
to-end model developed that can identify problematic teeth with dental
enumeration and associated diagnoses at the same time. To develop such
a model, we structure the three distinct types of annotated data hierar-
chically following the FDI system, the first labeled with only quadrant,
the second labeled with quadrant-enumeration, and the third fully la-
beled with quadrant-enumeration-diagnosis. To learn from all three hi-
erarchies jointly, we introduce a novel diffusion-based hierarchical multi-
label object detection framework by adapting a diffusion-based method
that formulates object detection as a denoising diffusion process from
noisy boxes to object boxes. Specifically, to take advantage of the hi-
erarchically annotated data, our method utilizes a novel noisy box ma-
nipulation technique by adapting the denoising process in the diffusion
network with the inference from the previously trained model in hier-
archical order. We also utilize a multi-label object detection method to
learn efficiently from partial annotations and to give all the needed in-
formation about each abnormal tooth for treatment planning. Experi-
mental results show that our method significantly outperforms state-of-
the-art object detection methods, including RetinaNet, Faster R-CNN,
DETR, and DiffusionDet for the analysis of panoramic X-rays, demon-
strating the great potential of our method for hierarchically and par-
tially annotated datasets. The code and the datasets are available at
https://github.com/ibrahimethemhamamci/HierarchicalDet.

Keywords: Diffusion Network, Hierarchical Learning, Multi-Label Object De-
tection, Panoramic Dental X-ray, Transformers
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1 Introduction

The use of panoramic X-rays to diagnose numerous dental diseases has increased
exponentially due to the demand for precise treatment planning [11]. However,
visual interpretation of panoramic X-rays may consume a significant amount of
essential clinical time [2] and interpreters may not always have dedicated training
in reading scans as specialized radiologists have [13]. Thus, the diagnostic process
can be automatized and enhanced by getting the help of Machine Learning (ML)
models. For instance, an ML model that automatically detects abnormal teeth
with dental enumeration and associated diagnoses would provide a tremendous
advantage for dentists in making decisions quickly and saving their time.
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Fig. 1: The annotated datasets are organized hierarchically as (a) quadrant-only,
(b) quadrant-enumeration, and (c) quadrant-enumeration-diagnosis respectively.

Many ML models to interpret panoramic X-rays have been developed specif-
ically for individual tasks such as quadrant segmentation [19, 29], tooth detec-
tion [6], dental enumeration [14,23], diagnosis of some abnormalities [12, 30], as
well as treatment planning [27]. Although many of these studies have achieved
good results, three main issues still remain. (1) Multi-label detection: there has
not been an end-to-end model developed that gives all the necessary informa-
tion for treatment planning by detecting abnormal teeth with dental enumeration
and multiple diagnoses simultaneously [1]. (2) Data availability: to train a model
that performs this task with high accuracy, a large set of fully annotated data
is needed [13]. Because labeling every tooth with all required classes may re-
quire expertise and take a long time, such kind of fully labeled large datasets do
not always exist [24]. For instance, we structure three different available anno-
tated data hierarchically shown in Fig. 1, using the Fédération Dentaire Interna-
tionale (FDI) system. The first data is partially labeled because it only included
quadrant information. The second data is also partially labeled but contains
additional enumeration information along with the quadrant. The third data is
fully labeled because it includes all quadrant-enumeration-diagnosis information
for each abnormal tooth. Thus, conventional object detection algorithms would
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not be well applicable to this kind of hierarchically and partially annotated
data [21]. (3) Model performance: to the best of our knowledge, models designed
to detect multiple diagnoses on panoramic X-rays have not achieved the same
high level of accuracy as those specifically designed for individual tasks, such as
tooth detection, dental enumeration, or detecting single abnormalities [18].

To circumvent the limitations of the existing methods, we propose a novel
diffusion-based hierarchical multi-label object detection method to point out
each abnormal tooth with dental enumeration and associated diagnosis concur-
rently on panoramic X-rays, see Fig. 2. Due to the partial annotated and hier-
archical characteristics of our data, we adapt a diffusion-based method [5] that
formulates object detection as a denoising diffusion process from noisy boxes to
object boxes. Compared to the previous object detection methods that utilize
conventional weight transfer [3] or cropping strategies [22] for hierarchical learn-
ing, the denoising process enables us to propose a novel hierarchical diffusion
network by utilizing the inference from the previously trained model in hierarchi-
cal order to manipulate the noisy bounding boxes as in Fig. 2. Besides, instead
of pseudo labeling techniques [28] for partially annotated data, we develop a
multi-label object detection method to learn efficiently from partial annotations
and to give all the needed information about each abnormal tooth for treatment
planning. Finally, we demonstrate the effectiveness of our multi-label detection
method on partially annotated data and the efficacy of our proposed bounding
box manipulation technique in diffusion networks for hierarchical data.

The contributions of our work are three-fold. (1) We propose a multi-label
detector to learn efficiently from partial annotations and to detect the abnormal
tooth with all three necessary classes, as shown in Fig 3 for treatment planning.
(2) We rely on the denoising process of diffusion models [5] and frame the detec-
tion problem as a hierarchical learning task by proposing a novel bounding box
manipulation technique that outperforms conventional weight transfer as shown
in Fig. 4. (3) Experimental results show that our model with bounding box ma-
nipulation and multi-label detection significantly outperforms state-of-the-art
object detection methods on panoramic X-ray analysis, as shown in Tab. 1.

We have designed our approach to serve as a foundational baseline for the
Dental Enumeration and Diagnosis on Panoramic X-rays Challenge (DENTEX),
set to take place at MICCAI 2023. Remarkably, the data set and annotations
we utilized for our method mirror exactly those employed for DENTEX [9].

2 Methods

Figure 2 illustrates our proposed framework. We utilize the DiffusionDet [5]
model, which formulates object detection as a denoising diffusion process from
noisy boxes to object boxes. Unlike other state-of-the-art detection models, the
denoising property of the model enables us to propose a novel manipulation
technique to utilize a hierarchical learning architecture by using previously in-
ferred boxes. Besides, to learn efficiently from partial annotations, we design a
multi-label detector with adaptable classification layers based on available labels.
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Fig. 2: Our method relies on a hierarchical learning approach utilizing a combi-
nation of multi-label detection, bounding box manipulation, and weight transfer.
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2.1 Base Model

Our method employs the DiffusionDet [5] that comprises two essential compo-
nents, an image encoder that extracts high-level features from the raw image
and a detection decoder that refines the box predictions from the noisy boxes
using those features. The set of initial noisy bounding boxes is defined as:

q(zt|z0) = N (zt|
√
ᾱtz0, (1− ᾱt)I) (1)

where z0 represents the input bounding box b, and b ∈ RN×4 is a set of bounding
boxes, zt represents the latent noisy boxes, and ᾱt represents the noise variance
schedule. The DiffusionDet model [5] fθ(zt, t, x), is trained to predict the fi-
nal bounding boxes defined as bi = (cix, c

i
y, w

i, hi) where (cix, c
i
y) are the center

coordinates of the bounding box and (wi, hi) are the width and height of the
bounding boxes and category labels defined as yi for objects.

2.2 Proposed Framework

To improve computational efficiency during the denoising process, Diffusion-
Det [5] is divided into two parts: an image encoder and a detection decoder.
Iterative denoising is applied only for the detection decoder, using the outputs
of the image encoder as a condition. Our method employs this approach with
several adjustments, including multi-label detection and bounding box manipu-
lation. Finally, we utilize conventional transfer learning for comparison.
Image Encoder. Our method utilizes a Swin-transformer [17] backbone pre-
trained on the ImageNet-22k [7] with a Feature Pyramid Network (FPN) archi-
tecture [15] as it was shown to outperform convolutional neural network-based
models such as ResNet50 [10]. We also apply pre-training to the image encoder
using our unlabeled data, as it is not trained during the training process. We
utilize SimMIM [26] that uses masked image modeling to finetune the encoder.
Detection Decoder. Our method employs a detection decoder that inputs
noisy initial boxes to extract Region of Interest (RoI) features from the encoder-
generated feature map and predicts box coordinates and classifications using
a detection head. However, our detection decoder has several differences from
DiffusionDet [5]. Our proposed detection decoder (1) has three classification
heads instead of one, which allows us to train the same model with partially
annotated data by freezing the heads according to the unlabeled classes, (2)
employs manipulated bounding boxes to extract RoI features, and (3) leverages
transfer learning from previous training steps.
Multi-Label Detection. We utilize three classification heads as quadrant-
enumeration-diagnosis for each bounding box and freeze the heads for the unla-
beled classes, shown in Fig. 2. Our model denoted by fθ is trained to predict:

fθ(zt, t, x, hq, he, hd) =


(yiq, b

i), hq = 1, he = 0, hd = 0 (a)
(yiq, y

i
e, b

i), hq = 1, he = 1, hd = 0 (b)
(yiq, y

i
e, y

i
d, b

i), hq = 1, he = 1, hd = 1 (c)
(2)
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where yiq, yie, and yid represent the bounding box classifications for quadrant,
enumeration, and diagnosis, respectively, and hq, he, and hd represent binary
indicators of whether the labels are present in the training dataset. By adapting
this approach, we leverage the full range of available information and improve our
ability to handle partially labeled data. This stands in contrast to conventional
object detection methods, which rely on a single classification head for each
bounding box [25] and may not capture the full complexity of the underlying
data. Besides, this approach enables the model to detect abnormal teeth with
all three necessary classes for clinicians to plan the treatment, as seen in Fig. 3.

Fig. 3: Output from our final model showing well-defined boxes for diseased teeth
with corresponding quadrant (Q), enumeration (N), and diagnosis (D) labels.

Bounding Box Manipulation. Instead of completely noisy boxes, we use ma-
nipulated bounding boxes to extract RoI features from the encoder-generated
feature map and to learn efficiently from hierarchical annotations as shown in
Fig. 2. Specifically, to train the model (b) in Eq. (2), we concatenate the noisy
boxes described in Eq. (1) with the boxes inferred from the model (a) in Eq. (2)
with a score greater than 0.5. Similarly, we manipulate the denoising process
during the training of the model (c) in Eq. (2) by concatenating the noisy
boxes with boxes inferred from the model (b) in Eq. (2) with a score greater
than 0.5. The set of manipulated boxes bm, and bm ∈ RN×4, can be defined as
bm = [bn[: −k], bi], where bn, and bn ∈ RN×4, represents the set of noisy boxes
and, bi, and bi ∈ Rk×4, represents the set of inferred boxes from the previous
training. Our framework utilizes completely noisy boxes during the inference.
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3 Experiments and Results

We evaluate models’ performances using a combination of Average Recall (AR)
and Average Precision (AP) scores with various Intersection over Union (IoU)
thresholds. This included AP[0.5,0.95], AP50, AP75, and separate AP scores for
large objects (APl), and medium objects (APm).

Method ..... AR AP AP50 AP75 APm APl

Quadrant
RetinaNet [16] 0.604 25.1 41.7 28.8 32.9 25.1
Faster R-CNN [20] 0.588 29.5 48.6 33.0 39.9 29.5
DETR [4] 0.659 39.1 60.5 47.6 55.0 39.1
Base (DiffusionDet) [5] 0.677 38.8 60.7 46.1 39.1 39.0
Ours w/o Transfer 0.699 42.7 64.7 52.4 50.5 42.8
Ours w/o Manipulation 0.727 40.0 60.7 48.2 59.3 40.0
Ours w/o Manipulation and Transfer 0.658 38.1 60.1 45.3 45.1 38.1
Ours (Manipulation+Transfer+Multilabel) 0.717 43.2 65.1 51.0 68.3 43.1

Enumeration
RetinaNet [16] 0.560 25.4 41.5 28.5 55.1 25.2
Faster R-CNN [20] 0.496 25.6 43.7 27.0 53.3 25.2
DETR [4] 0.440 23.1 37.3 26.6 43.4 23.0
Base (DiffusionDet) [5] 0.617 29.9 47.4 34.2 48.6 29.7
Ours w/o Transfer 0.648 32.8 49.4 39.4 60.1 32.9
Ours w/o Manipulation 0.662 30.4 46.5 36.6 58.4 30.5
Ours w/o Manipulation and Transfer 0.557 26.8 42.4 29.5 51.4 26.5
Ours (Manipulation+Transfer+Multilabel) 0.668 30.5 47.6 37.1 51.8 30.4

Diagnosis
RetinaNet [16] 0.587 32.5 54.2 35.6 41.7 32.5
Faster R-CNN [20] 0.533 33.2 54.3 38.0 24.2 33.3
DETR [4] 0.514 33.4 52.8 41.7 48.3 33.4
Base (DiffusionDet) [5] 0.644 37.0 58.1 42.6 31.8 37.2
Ours w/o Transfer 0.669 39.4 61.3 47.9 49.7 39.5
Ours w/o Manipulation 0.688 36.3 55.5 43.1 45.6 37.4
Ours w/o Manipulation and Transfer 0.648 37.3 59.5 42.8 33.6 36.4
Ours (Manipulation+Transfer+Multilabel) 0.691 37.6 60.2 44.0 36.0 37.7

Table 1: Our method outperforms state-of-the-art methods, and our bounding
box manipulation approach outperforms the weight transfer. Results shown here
indicate the different tasks in the test set which is multi-labeled (quadrant-
enumeration-diagnosis) for abnormal tooth detection.

Data. All panoramic X-rays were acquired from patients above 12 years of age
using the VistaPano S X-ray unit (Durr Dental, Germany). To ensure patient
privacy and confidentiality, panoramic X-rays were randomly selected from the
hospital’s database without considering any personal information.

To effectively utilize FDI system [8], three distinct types of data are organized
hierarchically as in Fig. 1 (a) 693 X-rays labeled only for quadrant detection, (b)
634 X-rays labeled for tooth detection with both quadrant and tooth enumera-
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tion classifications, and (c) 1005 X-rays fully labeled for diseased tooth detection
with quadrant, tooth enumeration, and diagnosis classifications. In the diagnosis,
there are four specific classes corresponding to four different diagnoses: caries,
deep caries, periapical lesions, and impacted teeth. The remaining 1571 unla-
beled X-rays are used for pre-training. All necessary permissions were obtained
from the ethics committee.
Experimental Design. To evaluate our proposed method, we conduct two
experiments: (1) Comparison with state-of-the-art object detection models, in-
cluding DETR [4], Faster R-CNN [20], RetinaNet [16], and DiffusionDet [5] in
Tab. 1. (2) A comprehensive ablation study to assess the effect of our modifica-
tions to DiffusionDet in hierarchical detection performance in Fig. 4.
Evaluation. Figure 3 presents the output prediction of the final trained model.
As depicted in the figure, the model effectively assigns three distinct classes to
each well-defined bounding box. Our approach that utilizes novel box manipula-
tion and multi-label detection, significantly outperforms state-of-the-art meth-
ods. The box manipulation approach specifically leads to significantly higher AP
and AR scores compared to other state-of-the-art methods, including RetinaNet,
Faster-R-CNN, DETR, and DiffusionDet. Although the impact of conventional
transfer learning on these scores can vary depending on the data, our bounding
box manipulation outperforms it. Specifically, the bounding box manipulation
approach is the sole factor that improves the accuracy of the model, while weight
transfer does not improve the overall accuracy, as shown in Fig. 4.

Quadrant Metrics Enumeration Metrics Diagnosis Metrics

AP

AP50

AP75

APm

APl

AR

38.75

40.5

42.25

60.25
62.5

64.75

45.5
48.0

50.5
45.5

54.0

62.5

38.25
40.5

42.75

0.66
0.68

0.71

N/A

AP

AP50

AP75

APm

APl

AR

27.25

29.5

31.75

43.5
46.0

48.5

30.5
34.0

37.5
50.75

54.5

58.25

27.5
30.0

32.5

0.57
0.61

0.65

N/A

AP

AP50

AP75

APm

APl

AR

36.25

37.5

38.75

55.5
58.0

60.5

43.12
45.25

47.38
34.25

38.5

42.75

36.5
38.0

39.5

0.64
0.66

0.69

N/A
A

Ours (Manipulation+Transfer+Multilabel)
Ours w/o Manipulation and Transfer
Ours w/o Manipulation
Ours w/o Transfer
Base (DiffusionDet)

Fig. 4: The results of the ablation study reveals that our bounding box manipu-
lation method outperforms conventional weight transfer.

Ablation Study. Our ablation study results, shown in Fig. 4 and Tab. 1, in-
dicate that our approaches have a synergistic impact on the detection model’s
accuracy, with the highest increase seen through bounding box manipulation.
We systematically remove every combination of bounding box manipulation and
weight transfer, to demonstrate the efficacy of our methodology. Conventional
transfer learning does not positively affect the models’ performances compared
to the bounding box manipulation, especially for enumeration and diagnosis.
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4 Discussion and Conclusion

In this paper, we introduce a novel diffusion-based multi-label object detection
framework to overcome one of the significant obstacles to the clinical application
of ML models for medical and dental diagnosis, which is the difficulty in getting a
large volume of fully labeled data. Specifically, we propose a novel bounding box
manipulation technique during the denoising process of the diffusion networks
with the inference from the previously trained model to take advantage of hier-
archical data. Moreover, we utilize a multi-label detector to learn efficiently from
partial annotations and to assign all necessary classes to each box for treatment
planning. Our framework outperforms state-of-the-art object detection models
for training with hierarchical and partially annotated panoramic X-ray data.

From the clinical perspective, we develop a novel framework that simulta-
neously points out abnormal teeth with dental enumeration and associated di-
agnosis on panoramic dental X-rays with the help of our novel diffusion-based
hierarchical multi-label object detection method. With some limits due to par-
tially annotated and limited amount of data, our model that provides three
necessary classes for treatment planning has a wide range of applications in the
real world, from being a clinical decision support system to being a guide for
dentistry students.
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Supplementary Material of Diffusion-Based Hierarchical
Multi-Label Object Detection to Analyze Panoramic

Dental X-rays

+

(a
) G

ro
un

d 
Tr

ut
h 

La
be

ls
(b

) N
oi

sy
 B

ox
es

(c
) P

re
di

ct
ed

 B
ox

es
 fr

om
Pr

ev
io

us
 T

ra
in

in
g

(d
) M

an
ip

ul
at

ed
 B

ox
es

(e
) P

re
di

ct
ed

 B
ox

es

Fig. 5: Figure showing the bounding box manipulation for the multi-label
(quadrant-enumeration-diagnosis) abnormal tooth detection. Our bounding box
manipulation method combines the boxes from the previously trained model for
quadrant-enumeration with the noisy boxes. The process is very similar for the
quadrant-enumeration in which quadrant boxes are used for the manipulation.
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Detection Model Image Encoder Backbone Iterations Learning Rate

Ours FPN-Swin Transformer 40000 0.000025
DiffusionDet FPN-Swin Transformer 40000 0.000025
Faster R-CNN ResNet101 40000 0.02
RetinaNet ResNet101 40000 0.01
DETR ResNet50 300(epochs) 0.0001

Table 2: Different detection models are utilized for comparison with our method.
The best test metrics for each model are selected for the results. All models are
trained with randomly cropped and resized panoramic X-rays with a batch size
of 16. All training is done on a single NVIDIA RTX A6000 48 GB GPU.

Dataset Training Validation Testing

Quadrant 590 103 N/A
Quadrant-Enumeration 539 95 N/A
Quadrant-Enumeration-Diagnosis 705 50 250

Table 3: To ensure accurate testing of all models, we only use fully labeled data
with quadrant-enumeration-diagnosis for abnormal tooth detection. We do not
utilize quadrant or quadrant-enumeration data for testing. Our diagnosis labels
have four specific classes: caries, deep caries, periapical lesions, and impacted.

(a) Quadrant detection
with quadrant labels

(b) Tooth detection with
quadrant-enumeration

labels

(c) Abnormal tooth
detection with quadrant-
enumeration-diagnosis

Fig. 6: Example inferences during hierarchical training. (a) is used to manipulate
noisy boxes during the training for (b). (b) is used to manipulate noisy boxes
during the training for (c). (c) is the output of the final model.
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