Basit öğe kaydını göster

dc.contributor.authorGülcan, Mehmet Feryat
dc.contributor.authorKarahan, Billur Deniz
dc.contributor.authorGürmen, Sebahattin
dc.date.accessioned2022-08-08T06:07:24Z
dc.date.available2022-08-08T06:07:24Z
dc.date.issued2022en_US
dc.identifier.citationGülcan, M. F., Karahan, B. D. ve Gürmen, S. (2022). Porous, columnar shaped iron rich oxide synthesis for lithium-ion batteries from metallurgical grade, domestic, high carbon ferro-chromium alloys. Journal of Alloys and Compounds, 922. https://doi.org/10.1016/j.jallcom.2022.166215en_US
dc.identifier.issn0925-8388
dc.identifier.issn1873-4669
dc.identifier.urihttps://doi.org/10.1016/j.jallcom.2022.166215
dc.identifier.urihttps://hdl.handle.net/20.500.12511/9634
dc.description.abstractWith this article, first time in the open literature, the synthesis, and the characterization of an anode material from a domestic, intermediate product (i.e. ferrochromium alloy) have been carried out. The presented approach sets an example for many researchers in the future, as it allows the fabrication of low carbon footprint electrodes cost-effectively without using materials that can cause serious harm to the environment during their production processes. The research consists of two steps. First, a dihydrate iron-rich oxalate in the columnar structure is attained by selectively precipitating manganese, nickel, and cobalt together with iron, from the leachate of the domestic ferrochromium alloy with sulphuric acid. Then, once the powder is calcinated in a vacuum at 180˚C for 3 h, the anhydrous iron-rich oxalate (S1) powder is obtained and tested as an anode material. Moreover, the dihydrate iron-rich oxalate powder is calcinated in an argon atmosphere at 550˚C for 2 h to successfully fabricate porous, columnar-shaped iron-rich oxide (S2) powder. Galvanostatic tests demonstrate that the calcination affects both the structure and the morphology, hence the electrochemical performance: After 250 cycles, S2 delivers 1034.75 mAh g-1, whilst S1 performs 725.39 mAh g-1. The characterizations reveal that the presence of Mn, Ni, Co, along with Fe, increases the cycleability by creating additional electron conductive pathways in the powder. Moreover, owing to the porosity formed as a result of the calcination in the argon atmosphere, both the mechanical tolerance of the anode against the volumetric expansion that occurs during the reaction with lithium and the electrolyte/electrode contact are improved which lead to a better cycle performance even at higher current loads.en_US
dc.description.sponsorshipBerk Demirel ; Istanbul Teknik Üniversitesien_US
dc.language.isoengen_US
dc.publisherElsevier Ltden_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectGreen Electrode Designen_US
dc.subjectHigh Carbon Ferrochromiumen_US
dc.subjectHydrometallurgyen_US
dc.subjectLithium-Ion Batteryen_US
dc.subjectLow Carbon Footprint Anodeen_US
dc.titlePorous, columnar shaped iron rich oxide synthesis for lithium-ion batteries from metallurgical grade, domestic, high carbon ferro-chromium alloysen_US
dc.typearticleen_US
dc.relation.ispartofJournal of Alloys and Compoundsen_US
dc.departmentİstanbul Medipol Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.departmentİstanbul Medipol Üniversitesi, Rektörlük, Sağlık Bilim ve Teknolojileri Araştırma Enstitüsüen_US
dc.identifier.volume922en_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TUBITAK/SOBAG/218M768
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.jallcom.2022.166215en_US
dc.institutionauthorKarahan, Billur Deniz
dc.identifier.wosqualityQ1en_US
dc.identifier.wos000852664300001en_US
dc.identifier.scopus2-s2.0-85134732289en_US
dc.identifier.scopusqualityQ1en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster