• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   [email protected]
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Makale Koleksiyonu
  • View Item
  •   [email protected]
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting a water infrastructure leakage index via machine learning

Thumbnail

View/Open

Tam Metin / Full Text (5.227Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2022

Author

Kızılöz, Burak
Şişman, Eyüp
Oruç, Halil Nurullah

Metadata

Show full item record

Citation

Kızılöz, B., Şişman, E. ve Oruç, H. N. (2022). Predicting a water infrastructure leakage index via machine learning. Utilities Policy, 75. https://doi.org/10.1016/j.jup.2022.101357

Abstract

In this study, the infrastructure leakage index (ILI) indicator that is preferred frequently by the water utilities with sufficient data to determine the performances of water distribution systems is modeled for the first time through the three different methodologies using different input data. In addition to the variables in the literature used for the classical ILI calculations, the age parameter is also included in the models. In the first step, the ILI values have been estimated via multiple linear regression (MLR) using water supply quantity, water accrual quantity, network length, service connection length, number of service connections, and pressure variables. Secondly, the Artificial Neural Network (ANN) approach has been applied with raw data to improve the ILI prediction performance. Finally, the data set has been standardized with the Z-Score method for increasing the learning power of the ANN models, and then the ANN predictions have been made by converting the data through the principal component analysis (PCA) method to minimize complexity by reducing the data set size. The model predictions have been evaluated via mean square error, G-value, mean absolute error, mean bias error, and adjusted-R2 model performance scale. When the model outputs obtained at the end of the study are evaluated together with the classical ILI calculations, it is seen that the successful ILI predictions with three and four variables, including the age parameter, rather than six variables, have been made through the PC-ANN method. Water utilities with insufficient physical and operational data for ILI indicator calculation can make network performance evaluations by predicting the ILI through the models suggested in this study with high accuracy in a reliable way.

WoS Q Kategorisi

Q3

Source

Utilities Policy

Volume

75

URI

https://doi.org/10.1016/j.jup.2022.101357
https://hdl.handle.net/20.500.12511/9146

Collections

  • Makale Koleksiyonu [26]
  • Makale Koleksiyonu [78]
  • Scopus İndeksli Yayınlar Koleksiyonu [4469]
  • WoS İndeksli Yayınlar Koleksiyonu [4801]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Guide | Contact |

[email protected]

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValuePublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValuePublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || İstanbul Medipol University || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, İstabul, Turkey
If you find any errors in content, please contact: [email protected]

Creative Commons License
[email protected] by İstanbul Medipol University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

[email protected]:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.