• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Medipol
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Electrical and Electronics Engineering
  • Bildiri Koleksiyonu
  • View Item
  •   DSpace@Medipol
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • Electrical and Electronics Engineering
  • Bildiri Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse coding with enhanced atom selection for FDD massive MIMO channel estimation

Thumbnail

View/Open

Tam Metin / Full Text (526.6Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2021

Author

Nazzal, Mahmoud
Aygül, Mehmet Ali
Arslan, Hüseyin

Metadata

Show full item record

Citation

Nazzal, M., Aygül, M. A. ve Arslan, H. (2021). Sparse coding with enhanced atom selection for FDD massive MIMO channel estimation. 94th IEEE Vehicular Technology Conference (VTC-Fall). Virtual, 27-30 September 2021. https://dx.doi.org/10.1109/VTC2021-Fall52928.2021.9625408

Abstract

In sparse coding-based channel estimation, atom selection is based on jointly minimizing the sparsity and the error of the representation of the noisy measurement. However, this selection is not necessarily optimal in terms of minimizing the channel estimation error. This calls for better ways of atom selection. Accordingly, we propose an algorithm for improved atom selection in sparse coding for frequency division duplex (FDD) massive multiple-input-multiple-output (MIMO) downlink channel estimation. The proposed algorithm performs iterative atom selection based on two residuals. First is the received signal residual used to guide on a small selection pool of candidate atoms. Second is the residual of an initial channel estimate which is used to pick the best atom within the selection pool. Simulation results show the advantage of the proposed algorithm over standard sparse coding-based channel estimation. Moreover, the proposed algorithm eliminates the need for cell-specific trained dictionaries without sacrificing the performance. Furthermore, the proposed sparse coding can be applied in the process of dictionary learning to train for improved dictionaries achieving further performance enhancement.

Source

94th IEEE Vehicular Technology Conference (VTC-Fall)

Volume

2021

URI

https://dx.doi.org/10.1109/VTC2021-Fall52928.2021.9625408
https://hdl.handle.net/20.500.12511/8945

Collections

  • Bildiri Koleksiyonu [192]
  • Scopus İndeksli Yayınlar Koleksiyonu [5815]
  • WoS İndeksli Yayınlar Koleksiyonu [5982]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Guide | Contact |

DSpace@Medipol

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide || Library || İstanbul Medipol University || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, İstabul, Turkey
If you find any errors in content, please contact: [email protected]

Creative Commons License
DSpace@Medipol by İstanbul Medipol University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Medipol:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.