Show simple item record

dc.contributor.authorAli, Sharoze
dc.contributor.authorSiddique, Arslan
dc.contributor.authorAteş, Hasan Fehmi
dc.contributor.authorGüntürk, Bahadır Kürşat
dc.date.accessioned2021-08-13T07:28:26Z
dc.date.available2021-08-13T07:28:26Z
dc.date.issued2021en_US
dc.identifier.citationAli, S., Siddique, A., Ateş, H. F. ve Güntürk, B. K. (2021). Improved YOLOv4 for aerial object detection. 29th IEEE Conference on Signal Processing and Communications Applications, SIU. Virtual, Istanbul, 9-11 June 2021. https://dx.doi.org/10.1109/SIU53274.2021.9478027en_US
dc.identifier.isbn9781665436496
dc.identifier.urihttps://dx.doi.org/10.1109/SIU53274.2021.9478027
dc.identifier.urihttps://hdl.handle.net/20.500.12511/7811
dc.description.abstractDrones equipped with cameras are being used for surveillance purposes. These surveillance systems need vision-based object detection of ground objects which look very small because of the altitude of drones. We propose an improved YOLOv4 model targeted for vision-based small object detection. We investigated the performance of state of the art YOLOv4 object detector on the VisDrone dataset. We enhanced the features of small objects by connecting Upsampling layers and concatenating the upsampled features with the original features to obtain more refined and grained features for small objects. Experiments showed that the modified YOLOv4 achieved 2 percent better mAP results as compared to the original YOLOv4 at different image resolutions on the VisDrone dataset while running at the same speed as the original YOLOv4.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectObject Detectionen_US
dc.subjectSmall Objecten_US
dc.titleImproved YOLOv4 for aerial object detectionen_US
dc.typeconferenceObjecten_US
dc.relation.ispartof29th IEEE Conference on Signal Processing and Communications Applications, SIUen_US
dc.departmentİstanbul Medipol Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.departmentİstanbul Medipol Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.authorid0000-0002-6842-1528en_US
dc.authorid0000-0003-0779-9620en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/SIU53274.2021.9478027en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record