Show simple item record

dc.contributor.authorAygül, Mehmet Ali
dc.contributor.authorFurqan, Haji Muhammad
dc.contributor.authorNazzal, Mahmoud
dc.contributor.authorArslan, Hüseyin
dc.date.accessioned2021-03-05T07:12:30Z
dc.date.available2021-03-05T07:12:30Z
dc.date.issued2020en_US
dc.identifier.citationAygül, M. A., Furqan, H. M., Nazzal, M. ve Arslan, H. (2020). Deep learning-assisted detection of PUE and jamming attacks in cognitive radio systems. 92nd IEEE Vehicular Technology Conference (IEEE VTC-Fall). Virtual, Victoria, Canada, 18-16 November 2020. https://dx.doi.org/10.1109/VTC2020-Fall49728.2020.9348579en_US
dc.identifier.isbn9781728194844
dc.identifier.issn1550-2252
dc.identifier.urihttps://dx.doi.org/10.1109/VTC2020-Fall49728.2020.9348579
dc.identifier.urihttps://hdl.handle.net/20.500.12511/6603
dc.description.abstractCognitive radio (CR)-based internet of things systems can be considered as an efficient solution for futuristic smart technologies. However, CRs are naturally vulnerable to two major security threats; primary user emulation (PUE) and jamming attacks. Machine learning has been recently applied to the detection of these attacks. Still, the need for feature extraction required by machine learning techniques restrains the full exploitation of raw data. To alleviate this need, this paper proposes one-dimensional deep learning as a framework for identifying such attacks. Simulations show the ability of the proposed algorithm to detect these attacks with high performance.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectCognitive Radioen_US
dc.subjectDeep Learningen_US
dc.subjectEmulation Detectionen_US
dc.subjectJamming Detectionen_US
dc.subjectPhysical Layer Securityen_US
dc.subjectPrimary Useren_US
dc.titleDeep learning-assisted detection of PUE and jamming attacks in cognitive radio systemsen_US
dc.typeconferenceObjecten_US
dc.relation.ispartof92nd IEEE Vehicular Technology Conference (IEEE VTC-Fall)en_US
dc.departmentİstanbul Medipol Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.authorid0000-0002-1797-8238en_US
dc.authorid0000-0003-3375-0310en_US
dc.authorid0000-0001-9474-7372en_US
dc.identifier.volume2020en_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TUBITAK/SOBAG/119E433
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/VTC2020-Fall49728.2020.9348579en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record