Deep learning-assisted detection of PUE and jamming attacks in cognitive radio systems
Citation
Aygül, M. A., Furqan, H. M., Nazzal, M. ve Arslan, H. (2020). Deep learning-assisted detection of PUE and jamming attacks in cognitive radio systems. 92nd IEEE Vehicular Technology Conference (IEEE VTC-Fall). Virtual, Victoria, Canada, 18-16 November 2020. https://dx.doi.org/10.1109/VTC2020-Fall49728.2020.9348579Abstract
Cognitive radio (CR)-based internet of things systems can be considered as an efficient solution for futuristic smart technologies. However, CRs are naturally vulnerable to two major security threats; primary user emulation (PUE) and jamming attacks. Machine learning has been recently applied to the detection of these attacks. Still, the need for feature extraction required by machine learning techniques restrains the full exploitation of raw data. To alleviate this need, this paper proposes one-dimensional deep learning as a framework for identifying such attacks. Simulations show the ability of the proposed algorithm to detect these attacks with high performance.
Source
92nd IEEE Vehicular Technology Conference (IEEE VTC-Fall)Volume
2020URI
https://dx.doi.org/10.1109/VTC2020-Fall49728.2020.9348579https://hdl.handle.net/20.500.12511/6603
Collections
- Bildiri Koleksiyonu [208]
- Scopus İndeksli Yayınlar Koleksiyonu [6626]
- WoS İndeksli Yayınlar Koleksiyonu [6702]