• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   [email protected]
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Diğer Yayınlar Koleksiyonu
  • View Item
  •   [email protected]
  • Fakülteler
  • Mühendislik ve Doğa Bilimleri Fakültesi
  • İnşaat Mühendisliği
  • Diğer Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trend analyses methodologies in hydro-meteorological records

Thumbnail

View/Open

Tam Metin / Full Text (1.763Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2020

Author

Almazroui, Mansour
Şen, Zekai

Metadata

Show full item record

Citation

Almazroui, M. ve Şen, Z. (2020). Trend analyses methodologies in hydro-meteorological records. Earth Systems and Environment, 4(4), 713-738. https://dx.doi.org/10.1007/s41748-020-00190-6

Abstract

In recent years, global warming and climate change impacts on hydro-meteorological variables and water resources triggered extensive focus on trend analyses. Especially, in historical records and climate change model scenario projections, trend feature searches help for better predictions prior to mitigation and adaptation activities. Each trend identification technique has a set of restrictive assumptions and limitations, but they are not cared for by many researchers. The major problem with trend research is that the researchers do not care for the basic assumptions of any methodology but use ready software to solve their problems. Among these assumptions, the most significant ones are the normal (Gaussian) probability distribution function (PDF) and serially independent structure of a given time series. It is the main objective of this review paper to present each trend identification methodology including classical ones with the new alternatives so that any researcher in need of trend analysis can have concise and clear interpretations for the choice of the most convenient trend method. In general, parametric, non-parametric, classical and innovative trend methods are explained comparatively including the linear regression, Mann-Kendall (MK) trend test with Sen slope estimation, Spearman's rho, innovative trend analysis (ITA), partial trend analysis (PTA) and crossing trend analysis (CTA). Pros and cons are given for each methodology. In addition, for improvement of serial independence requirement of the classical trend analyses, methods are introduced briefly by pre- and over-whitening processes. Finally, a set of recommendations is suggested for future research possibilities.

Source

Earth Systems and Environment

Volume

4

Issue

4

URI

https://dx.doi.org/10.1007/s41748-020-00190-6
https://hdl.handle.net/20.500.12511/6591

Collections

  • Diğer Yayınlar Koleksiyonu [9]
  • Scopus İndeksli Yayınlar Koleksiyonu [4391]
  • WoS İndeksli Yayınlar Koleksiyonu [4733]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Guide | Contact |

[email protected]

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValuePublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValuePublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || İstanbul Medipol University || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, İstabul, Turkey
If you find any errors in content, please contact: [email protected]

Creative Commons License
[email protected] by İstanbul Medipol University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

[email protected]:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.