Basit öğe kaydını göster

dc.contributor.authorSoltanbeigi, Behzad
dc.contributor.authorAltunbaş, Adlen
dc.contributor.authorGezgin, Ahmet Talha
dc.contributor.authorÇinicioğlu, Özer
dc.date.accessioned2020-12-16T07:20:00Z
dc.date.available2020-12-16T07:20:00Z
dc.date.issued2020en_US
dc.identifier.citationSoltanbeigi, B., Altunbaş, A., Gezgin, A. T. ve Çinicioğlu, Ö. (2020). Determination of passive failure surface geometry for cohesionless backfills. Periodica Polytechnica Civil Engineering, 64(4), 1100-1110. https://dx.doi.org/10.3311/PPci.14241en_US
dc.identifier.issn0553-6626
dc.identifier.urihttps://dx.doi.org/10.3311/PPci.14241
dc.identifier.urihttps://hdl.handle.net/20.500.12511/6088
dc.description.abstractCorrect determination of the passive failure surface geometry is necessary for the design of retaining structures. The conventional theories assume linear passive failure surfaces even though it is known that the actual failure surfaces are non-linear. Many researchers claimed the appropriateness of a hybrid curved-linear method. This approach estimates the curved section by a log-spiral function, which then connects to the backfill surface with the conventional linear assumption. The main drawback here is that the geometric properties of the hybrid mathematical function is not directly related to the mechanical properties of soils. Thus, this study attempts to provide a mechanical description for the assumed geometrical parameters. For this purpose, a series of 1 g small scale retaining wall model tests, simulating passive failure, are conducted on two different backfill soils. The relative density is varied in the model tests and the resultant peak friction angles of the backfills are calculated as functions of failure stress state and relative density using a well-known empirical equation. Transparent sidewalls allow for visualization of the failure surface evolution, which is obtained by capturing images and analysing then through Particle Image Velocimetry (PIV) technique. Subsequently, the quantified slip zones are fitted with the hybrid curved-linear approach. The relationships between the peak friction angle and the geometrical characteristics of the best-fit log-spiral and linear functions are investigated. Obtained results are used to propose a set of equations that allow the estimation of non-linear passive failure surfaces as function of peak friction angle.en_US
dc.language.isoengen_US
dc.publisherBudapest University of Technology and Economicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPassive Stateen_US
dc.subjectParticle Image Velocimetry (Piv)en_US
dc.subjectDilatancyen_US
dc.subjectRetaining Wallen_US
dc.subjectPhysical Modellingen_US
dc.titleDetermination of passive failure surface geometry for cohesionless backfillsen_US
dc.typearticleen_US
dc.relation.ispartofPeriodica Polytechnica Civil Engineeringen_US
dc.departmentİstanbul Medipol Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.authorid0000-0003-4235-8310en_US
dc.identifier.volume64en_US
dc.identifier.issue4en_US
dc.identifier.startpage1100en_US
dc.identifier.endpage1110en_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TUBITAK/SOBAG/114M329
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.3311/PPci.14241en_US
dc.identifier.wosqualityQ4en_US
dc.identifier.scopusqualityQ3en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster