• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Medipol
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Medipol
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effective PEGylation method to improve biocompatibility of graphene derivatives

Thumbnail

View/Open

Tam Metin / Full Text (12.78Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2020

Author

Demirel, Erhan
Karaca, Ezgi
Yüksel Durmaz, Yasemin

Metadata

Show full item record

Citation

Demirel, E., Karaca, E. ve Yüksel Durmaz, Y. (2020). Effective PEGylation method to improve biocompatibility of graphene derivatives. European Polymer Journal, 124. http://doi.org/10.1016/j.eurpolymj.2020.109504

Abstract

The research on the use of graphene (G) in the biological applications has increased exponentially with emerging concerns regarding its biosafety and potential cytotoxicity. The modification of the surface with biocompatible polymers is a promising approach where poly(ethylene glycol) (PEG) have been extensively used. However, increasing water solubility may not be enough to make G biocompatible since it has different cytotoxicity mechanisms like absorbing cell nutrition on its wide surface area and creating reactive oxygen species through its functional groups. A PEGylation method that uses surface area of graphene oxide (GO) by taking advantage of its solubility in aqueous medium and simultaneously producing reduced GO (rGO) to eliminate the cytotoxicity that comes from functional groups might be a solution to improve biocompatibility and solubility of rGO which is an optimum graphene derivative for biological applications. To have surface PEGylated rGO instead of having edge PEGylated GO; P(PEGMA-co-MMA-co-PMA) copolymers were synthesized and coated on GO via π-π interactions through multiple pyrene units in the copolymer. Healed conjugated surface of rGO was used as an advantage to increase the efficiency of PEGylation by in-situ reduction of GO to rGO in the presence of copolymer to obtain biocompatible, water dispersible, highly PEGylated rGO.

WoS Q Kategorisi

Q1

xmlui.dri2xhtml.METS-1.0.item-scopusquality

Q1

Source

European Polymer Journal

Volume

124

URI

https://doi.org/10.1016/j.eurpolymj.2020.109504
https://hdl.handle.net/20.500.12511/4900

Collections

  • Makale Koleksiyonu [274]
  • Makale Koleksiyonu [69]
  • Scopus İndeksli Yayınlar Koleksiyonu [5794]
  • WoS İndeksli Yayınlar Koleksiyonu [5972]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Guide | Contact |

DSpace@Medipol

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide || Library || İstanbul Medipol University || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, İstabul, Turkey
If you find any errors in content, please contact: [email protected]

Creative Commons License
DSpace@Medipol by İstanbul Medipol University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Medipol:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.