• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Medipol
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Medipol
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compressed spectrum sensing using sparse recovery convergence patterns through machine learning classification

Thumbnail

View/Open

Tam Metin / Full Text (338.3Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2019

Author

Nazzal, Mahmoud
Hasekioǧlu, Orkun
Ekti, Ali Rıza
Görçin, Ali
Arslan, Hüseyin

Metadata

Show full item record

Citation

Nazzal, M., Hasekioǧlu, O., Ekti, A. R., Görçin, A. ve Arslan, H. (2019). Compressed spectrum sensing using sparse recovery convergence patterns through machine learning classification. 30th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Istanbul, Turkey, 8-11 September 2019. IEEE. http://doi.org/10.1109/PIMRC.2019.8904321

Abstract

Despite the well-known success of sub-Nyquist sampling in reducing the hardware and computational costs of spectrum sensing, it still has the shortcoming of requiring a pre-determined spectrum sparsity level. This paper proposes an algorithm for sub-Nyquist wide-band spectrum sensing addressing this shortcoming. The proposed algorithm divides the spectrum into narrow, contagious frequency subbands and learns a subband dictionary for each subband. A subband dictionary is well-suited for the representation of signals in its corresponding subband. A compressed version of the received signal is sparsely coded over each subband dictionary. We show that the convergence patterns over a specific dictionary can be used for identifying the occupancy of its underlying subband. Therefore, the convergence patterns obtained by the gradient operator are used as distinctive classifying features. Then, a machine learning-based classifier is trained over these features and used to make the decision about spectrum occupancy. As the interest is only to characterize sparse coding convergence patterns, we alleviate the need for a specific or an estimated sparsity level. Besides, using subband dictionaries at different frequencies omits the need for a frequency-splitting filterbank. The proposed algorithm achieves significant performance improvements in terms of the probability-of-detection and false-alarm-rate measures. This result is validated through simulations with various operating scenarios.

Source

30th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)

URI

http://doi.org/10.1109/PIMRC.2019.8904321
https://hdl.handle.net/20.500.12511/4849

Collections

  • Bildiri Koleksiyonu [192]
  • Scopus İndeksli Yayınlar Koleksiyonu [5815]
  • WoS İndeksli Yayınlar Koleksiyonu [5979]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Guide | Contact |

DSpace@Medipol

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide || Library || İstanbul Medipol University || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, İstabul, Turkey
If you find any errors in content, please contact: [email protected]

Creative Commons License
DSpace@Medipol by İstanbul Medipol University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Medipol:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.