• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Medipol
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Medipol
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Motion analysis study on sensitivity of finite element model of the cervical spine to geometry

Access

info:eu-repo/semantics/closedAccess

Date

2016

Author

Zafarparandeh, Iman
Erbulut, Deniz Ufuk
Özer, Ali Fahir

Metadata

Show full item record

Citation

Zafarparandeh, I., Erbulut, D. U. ve Özer, A. F. (2016). Motion analysis study on sensitivity of finite element model of the cervical spine to geometry. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(7), 700-706. https://dx.doi.org/10.1177/0954411916644634

Abstract

Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both modelsmain and coupled motionswas compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5 degrees axial rotation and 3.6 degrees lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6 degrees axial rotation and 4 degrees lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted.

WoS Q Kategorisi

Q4

xmlui.dri2xhtml.METS-1.0.item-scopusquality

Q2

Source

Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine

Volume

230

Issue

7

URI

https://dx.doi.org/10.1177/0954411916644634
https://hdl.handle.net/20.500.12511/3704

Collections

  • Makale Koleksiyonu [69]
  • PubMed İndeksli Yayınlar Koleksiyonu [3748]
  • Scopus İndeksli Yayınlar Koleksiyonu [5788]
  • WoS İndeksli Yayınlar Koleksiyonu [5966]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Guide | Contact |

DSpace@Medipol

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess TypeThis CollectionBy Issue DateAuthorsInstitution AuthorORCIDTitlesSubjectsTypeLanguageDepartmentCategoryWoS Q ValueScopus Q ValuePublisherAccess Type

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide || Library || İstanbul Medipol University || OAI-PMH ||

Kütüphane ve Dokümantasyon Daire Başkanlığı, İstabul, Turkey
If you find any errors in content, please contact: [email protected]

Creative Commons License
DSpace@Medipol by İstanbul Medipol University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Medipol:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.