Show simple item record

dc.contributor.authorAtasoy, Deniz
dc.contributor.authorBetley, Jan Nicholas
dc.contributor.authorLi, Wei-Ping
dc.contributor.authorHong Su, Helen
dc.contributor.authorSertel, Sinem M.
dc.contributor.authorScheffer, Louis K.
dc.contributor.authorSimpson, Julie H.
dc.contributor.authorFetter, Richard D.
dc.contributor.authorSternson, Scott M.
dc.date.accessioned10.07.201910:49:13
dc.date.accessioned2019-07-10T20:01:53Z
dc.date.available10.07.201910:49:13
dc.date.available2019-07-10T20:01:53Z
dc.date.issued2014en_US
dc.identifier.citationAtasoy, D., Betley, J. N., Li, W. P., Hong Su, H., Sertel, S. M., Scheffer, L. K. ... Sternson, S. M. (2014). A genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nature Neuroscience, 17(12), 1830-1839. https://dx.doi.org/10.1038/nn.3854en_US
dc.identifier.issn1097-6256
dc.identifier.issn1546-1726
dc.identifier.urihttps://dx.doi.org/10.1038/nn.3854
dc.identifier.urihttps://hdl.handle.net/20.500.12511/3480
dc.descriptionWOS: 000345484000033en_US
dc.descriptionPubMed ID: 25362474en_US
dc.description.abstractSynaptic connectivity and molecular composition provide a blueprint for information processing in neural circuits. Detailed structural analysis of neural circuits requires nanometer resolution, which can be obtained with serial-section electron microscopy. However, this technique remains challenging for reconstructing molecularly defined synapses. We used a genetically encoded synaptic marker for electron microscopy (GESEM) based on intra-vesicular generation of electron-dense labeling in axonal boutons. This approach allowed the identification of synapses from Cre recombinase expressing or GAL4-expressing neurons in the mouse and fly with excellent preservation of ultrastructure. We applied this tool to visualize long-range connectivity of AGRP and POMC neurons in the mouse, two molecularly defined hypothalamic populations that are important for feeding behavior. Combining selective ultrastructural reconstruction of neuropil with functional and viral circuit mapping, we characterized some basic features of circuit organization for axon projections of these cell types. Our findings demonstrate that GESEM labeling enables long-range connectomics with molecularly defined cell types.en_US
dc.description.sponsorshipHoward Hughes Medical Instituteen_US
dc.description.sponsorshipWe thank A. Wardlaw for mouse breeding and genotyping, K. Morris for HSV stereotaxic injections, A. Hu and M. Copeland for histology, and L. Lo, D. Anderson and R. Gong with advice on HSV129 anterograde tracing. This research was funded by the Howard Hughes Medical Institute. The HSV129 Delta TK-TT anterograde trans-synaptic tracer virus was provided by the Center for Neuroanatomy with Neurotropic Viruses (P40RR018604).en_US
dc.language.isoengen_US
dc.publisherNature Publishing Groupen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGenetically Specifieden_US
dc.subjectRegulatory Circuitsen_US
dc.titleA genetically specified connectomics approach applied to long-range feeding regulatory circuitsen_US
dc.typearticleen_US
dc.relation.ispartofNature Neuroscienceen_US
dc.departmentİstanbul Medipol Üniversitesi, Tıp Fakültesi, Temel Tıp Bilimleri Bölümü, Fizyoloji Ana Bilim Dalıen_US
dc.departmentİstanbul Medipol Üniversitesi, Rektörlük, Rejeneratif ve Restoratif Tıp Araştırmaları Merkezi (REMER)en_US
dc.authorid0000-0002-3325-8820en_US
dc.identifier.volume17en_US
dc.identifier.issue12en_US
dc.identifier.startpage1830en_US
dc.identifier.endpage1839en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1038/nn.3854en_US
dc.identifier.wosqualityQ1en_US
dc.identifier.scopusqualityQ1en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record