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Abstract

In this paper, the existence and orbital stability of the periodic standing wave solutions for the nonlinear 
fractional Schrödinger (fNLS) equation with cubic nonlinearity is studied. The existence is determined by 
using a minimizing constrained problem in the complex setting and it is showed that the corresponding real 
solution is always positive. The orbital stability is proved by combining some tools regarding the oscillation 
theorem for fractional Hill operators and the Vakhitov-Kolokolov condition, well known for Schrödinger 
equations. We then perform a numerical approach to generate the periodic standing wave solutions of the 
fNLS equation by using the Petviashvili’s iteration method. We also investigate the Vakhitov-Kolokolov 
condition numerically which cannot be obtained analytically for some values of the order of the fractional 
derivative.
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1. Introduction

In this paper, we present results concerning the existence and orbital stability of periodic 
standing waves for the fractional nonlinear Schrödinger equation (fNLS) in the focusing case 
given as

iut − (−�)su + |u|2u = 0. (1.1)

Here, u : T × R −→ C is a complex-valued function and 2π -periodic with respect to the first 
variable with T := [−π, π]. The fractional Laplacian (−�)s is defined as a pseudo-differential 
operator

̂(−�)sg(ξ) = |ξ |2s ĝ(ξ), (1.2)

where ξ ∈ Z and s ∈ (0, 1] (see [54]). The fNLS equation was introduced by Laskin in [39] and 
[40] and it appears in several physical applications such as fluid dynamics, quantum mechanics, 
in the description of Boson stars and water wave dynamics ([35], [37] and [52]).

Equation (1.1) admits the conserved quantities E, F : Hs
per →R which are given as

E(u) = 1

2

π∫
−π

|(−�)
s
2 u|2 − 1

2
|u|4 dx, (1.3)

and

F(u) = 1

2

π∫
−π

|u|2 dx. (1.4)

When s = 1, we obtain that (−�)s = −� is the well known Laplacian operator and (1.1)
reduces to the cubic nonlinear Schrödinger equation (NLS) in the focusing case. As far as we 
know, there exist many applications for this specific equation such as optics, quantum mechanics, 
Bose-Einstein condensates, laser beam propagation and DNA modelling. In mathematical point 
of view, the NLS equation describes nonlinear waves and dispersive wave phenomena ([9], [12], 
[23] and [56]). In addition, there are many qualitative aspects concerning this equation and one 
of them is the orbital stability of standing/travelling solitary waves in one or higher dimensions. 
We refer the reader to [13], [28], [29], [43], [55], and [60] for more detailed discussions.
A standing periodic wave solution for the equation (1.1) has the form

u(x, t) = eiωtϕ(x), (1.5)

where ϕ : T −→ R is a smooth 2π -periodic function and ω ∈ R represents the wave frequency 
which is assumed to be positive. Substituting (1.5) into (1.1), we obtain the following differential 
equation with fractional derivative

(−�)sϕ + ωϕ − ϕ3 = 0. (1.6)
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For ω > 0, let us consider the standard Lyapunov functional defined as

G(u) := E(u) + ωF(u). (1.7)

By (1.6), we obtain G′(ϕ, 0) = 0, that is, (ϕ, 0) is a critical point of G. In addition, the linearized 
operator around the pair (ϕ, 0) is given by

L := G′′(ϕ,0) =
(
L1 0
0 L2

)
, (1.8)

where

L1 = (−�)s + ω − 3ϕ2 and L2 = (−�)s + ω − ϕ2. (1.9)

Both operators L1 and L2 are self-adjoint and they are defined in L2
per with dense domain H 2s

per . 
Operator L in (1.8) plays an important role in our study.

For the case s = 1, we have the pioneer work of Angulo [4] where the author established 
results of orbital stability for positive and periodic standing waves with dnoidal profile. For this 
aim, the author combined the classical Floquet theory for the Hill operators L1 and L2 in (1.9)
with the stability approaches in [28] and [60]. In the interesting work of Gustafson et al. in [30], 
the authors obtained cnoidal periodic wave solutions using a variational method to prove spectral 
stability results with respect to perturbations with the same period L and orbital stability results 
in the space constituted by anti-periodic functions with period L/2. Deconinck and Upsal in [19]
used the integrability of the NLS equation to determine orbital stability results for the dnoidal 
waves with respect to subharmonic perturbations in the space of continuous bounded functions. 
Additional references concerning orbital/spectral stability of periodic waves can be found in [8], 
[14], [18], [25], [26], [27], [42] and [46].

When s ∈ (0, 1), the orbital stability of real-valued, even and anti-periodic standing wave so-
lutions ψ of (1.1) has been studied by Claassen and Johnson in [16]. The authors determined 
the existence of real solutions via a minimization problem in the context of anti-periodic func-
tions (denoted by L2

a(0, L)) and they established that the associated linearized operator acting in 
L2

a(0, L) is non-degenerate. By assuming the additional assumption d
dω

∫ L

0 ψ2dx > 0 (the well-
known Vakhitov-Kolokolov condition), the authors were able to show that ψ is orbitally stable 
with respect to anti-periodic perturbations in a suitable subspace of Hs(0, L) ∩ L2

a(0, L).
Hakkaev and Stefanov in [31] have determined the existence and the orbital (spectral) stability 

of positive and periodic single-lobe solutions φ for the quadratic fractional Schrödinger equation

iut − (−�)su + |u|u = 0, (1.10)

where s ∈ ( 1
4 ,1

)
. For the existence of periodic minimizers and stability, the authors used a (real) 

minimization problem as

inf

⎧⎨⎩E (v) := 1

2

1∫
((−�)

s
2 v)2 dx − 1

3

1∫
v3 dx ; v ∈ Hs

per ([−1,1]),
1∫
v2 dx = λ

⎫⎬⎭ , (1.11)
−1 −1 −1

265



G.E. Bittencourt Moraes, H. Borluk, G. de Loreno et al. Journal of Differential Equations 341 (2022) 263–291
where λ > 0 is given. It is important to note that if a minimization problem as in (1.11) is solved, 
the spectral stability of periodic waves can be established. According to [28], [29], [47] and [60]
it is necessary to determine that:
i) n(L) = 1 and Ker(L) = [(φ′, 0), (0, φ)], where n(L) stands for the number of negative eigen-
values of L,
ii) d

dω

∫ 1
−1 φ2dx > 0,

for the orbital stability. The first condition has been proved by the authors using that the solution 
φ which solves the minimizing problem (1.10) is positive (since it satisfies the equation φ2 =
((−�)s + ω)φ, where ω > 0) and an oscillation theorem which is determined in [16].

Our aim in this work is to show that the standing wave solution in (1.5), where ϕ = ϕω is 
a positive and single-lobe periodic wave (see Definition 3.1), is orbitally stable/unstable. Ac-
cording to the sufficient conditions for the orbital stability in the energy space Hs

per in [28], we 
need to analyse the local and global well-posedness of the associated Cauchy problem for the 
fNLS equation (1.1). For this important topic, we first refer to the study [7] by Boling, Yongqian 
and Jie. They have used Galerkin’s method to give the global well-posedness results for the 
n-dimensional Cauchy problem{

iut + (−�)su + β|u|ρu = 0,

u(x,0) = u0(x).
(1.12)

For s > n
2 , global solutions in Hs

per(T
n) were established when β > 0 and ρ > 0. If 0 < s < n

2 , it 
is necessary to assume ρ ∈ (0, 4s

n−2s

)
to obtain the same result. For the case β < 0, the condition 

for the existence of global solutions is ρ ∈ (
0, 4s

n

)
. Demirbas, Erdoğan and Tzirakis in [20]

have studied the existence and uniqueness for the Cauchy problem (1.12) for the case n = 1, 
ρ = 2 and β = 1. Using Gagliardo-Nirenberg inequality, tools of Bourgain spaces and Strichartz 
estimates, the authors determined the existence of local solutions in Hα

per(T ) for α > 1−s
2 and 

global solutions for α > 10s+1
12 . Cho, Hwang, Kwon and Lee in [15] used Bourgain spaces to 

establish local solutions in Hα
per(T ) for α � 1−s

2 . A refined result concerning the local well-
posedness for the case β = −1 is given in [57].

A common misunderstanding made by some authors is to apply the Gagliardo-Nirenberg 
inequality in the periodic case by borrowing out the well-known result determined in the whole 
line. In fact, concerning the Cauchy problem associated with the equation (1.1), the authors in 
[7] have used the inequality

‖f ‖4
L4

per
� C‖(−�)

s
2 f ‖

1
s

L2
per

‖f ‖4− 1
s

L2
per

, (1.13)

where f ∈ Hs
per and C > 0 is a constant not depending on f . As far as we know, the inequality

(1.13) is not true because it fails when f ∈ Hs
per is a non-zero constant. In [20] the authors claim 

that global solutions of (1.1) are established by using the same inequality as in (1.13) in the 
periodic context. However, since they are considering the equation posed both on the torus and 
the real line, the authors disregard that (1.13) can not be used in this specific case.

To the best of our knowledge, an additional term containing the L2-norm needs to be added to
(1.13) since it is deduced from the well-known inequality posed in bounded domains (see [48]). 
It is important to note that the additional term containing the L2-norm does not intervene in the 
analysis of existence of global solutions for the Cauchy problem associated with equation (1.1)
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since the L2-norm is a conserved quantity. Besides the orbital stability/instability results, our 
intention is to present a precise statement concerning the Gagliardo-Nirenberg inequality in the 
periodic context given by

‖f ‖4
L4

per (T )
� C‖(−�)

s
2 f ‖

1
s

L2
per (T )

‖f ‖4− 1
s

L2
per (T )

+ C‖f ‖4
L2

per (T )
. (1.14)

We now give the main points of our paper: First, we show the existence of an even periodic 
single-lobe solution ϕ for the equation (1.6). Let τ > 0 be fixed. Following similar arguments as 
in [44] and [45], we need to solve the following constrained minimization problem

inf

⎧⎨⎩Bω(u) := 1

2

π∫
−π

|(−�)
s
2 u|2 + ω|u|2 dx ; u ∈ Hs

per,e,

π∫
−π

|u|4 dx = τ

⎫⎬⎭ , (1.15)

where ω > 0 and s ∈ ( 1
4 ,1

]
. Different from the approaches [31], [44] and [45], we see that u in

(1.15) is complex, so that the eventual solution � for the mentioned problem is a complex-valued 
function. For every θ ∈R, we see that e−iθ� is also a minimizer for (1.15), so that we can assume 
� = eiθ0ϕ, where θ0 ∈ R is a fixed real number and ϕ is a real-valued 2π -periodic function (see 
Remarks 3.3, 3.4 and 3.5 in Section 3 for additional details). This assumption enables to consider 
a real valued solution ϕ for the problem (1.15) which is even. In addition, we can consider that 
ϕ has a single-lobe profile for all ω > 1

2 (see Proposition 3.6).
Another way to construct periodic real valued solutions for the equation (1.6) can be deter-

mined by using the local and global bifurcation theory in [11]. First, we construct small amplitude 
periodic solutions in the same way as in [44] (see also [10]) for ω > 1

2 and close to the bifurca-
tion point 1

2 . After that, we give sufficient conditions to extend parameter ω to the whole interval 
( 1

2 , +∞) by constructing an even periodic continuous function ω ∈ ( 1
2 ,+∞) 	−→ ϕω ∈ H 2s

per,e

where ϕω solves equation (1.6). However, since the periodic wave obtained by the global bifur-
cation theory may not have a single-lobe profile, we choose the periodic waves which arise as 
a minimum of the problem (1.15). The existence of small amplitude waves associated with the 
Schrödinger equation were determined in [25] for the equation (1.12) with s = 1 and β = ±1. 
First they show that these waves are orbitally stable within the class of solutions which have the 
same period. For the case of general bounded perturbations, they prove that the small amplitude 
travelling waves are stable in the defocussing case and unstable in the focusing case.

The fact that the minimizer ϕ of (1.15) is a real even single-lobe solution for (1.6) gives us 
useful spectral properties which in turn play an important role regarding our stability approach. 
Using the fact that ϕ minimizes the constrained problem in (1.15), we see that n(L) = 1. Since L
in (1.8) is a diagonal operator, it is possible to obtain by the fact (L1ϕ,ϕ)L2

per
= −2

∫ π

−π
ϕ4dx < 0

that n(L1) = 1 and n(L2) = 0 (see Section 2 for the precise notations of n(Li ), i = 1, 2). This 
means by the fact L2ϕ = 0 that 0 is the first eigenvalue for L2. A simple application of the 
standard Krein-Ruttman Theorem gives us ϕ > 0, so that the solution is positive. Next, if the 
periodic minimizer ϕ obtained in the minimization problem in (1.15) depends smoothly on ω ∈( 1

2 ,+∞)
, we obtain by the fact ϕ is a positive even single-lobe that z(L1) = 1, that is, Ker(L1) =

[ϕ′]. Here, the positivity of the single-lobe profile plays an important role in our spectral analysis 
since it avoids the additional assumption 1 ∈ R(L1) as required in [33], [44] and [45] to obtain 
that z(L1) = 1. All facts concerning the spectral analysis for the operators L1 and L2 in (1.9)
enable us to conclude, since L in (1.8) is a diagonal operator, that n(L) = 1 and z(L) = 2.
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The strategy to prove the orbital stability is based on an adaptation of the arguments in [28]
and [47] to the periodic setting. Notice that n(L) = 1 and z(L) = 2 are useful to consider the 
standing wave solution in (1.5) containing only one symmetry (rotation), but the orbital stability 
can be considered with the orbit generated by the wave ϕ containing two symmetries (namely, 
rotation and translation). To do so, we need to employ the stability result in [47] and the existence 
of global solutions in time is a cornerstone in our analysis. Since we can obtain a global well-
posedness result for the case s ∈ ( 1

2 ,1
]

according to the inequality (1.14), the orbital stability of 
the wave can be established provided that q := d

dω

∫ π

−π
ϕ2dx > 0. The stability result in [28] can 

be also used for the orbital stability and yields q > 0. However, we need to consider only one 
basic symmetry for the orbit and since we consider standing waves of the form (1.5), it is natural 
to consider the orbit generated by the wave constituted only by rotations. In the latter case, the 
energy space is the periodic Sobolev space Hs

per,e restricted to the even functions instead of the 
usual energy space Hs

per . Restricted to this new space L2
per,e, we have n(L) = z(L) = 1 and this 

fact agrees well with the spectral (sufficient) conditions for the orbital stability in [28].
Concerning the orbital instability, we can apply the instability theorem in [28] and the fact that 

n(L) = z(L) = 1 over the space L2
per,e. Note that the orbital instability in the space Hs

per,e will 
be considered in the orbit generated again by a single symmetry. Even though we are considering 
a smaller subspace, the orbital instability can be considered in the whole energy space Hs

per and 
the orbit generated by the two symmetries. To do so, the only requirement is that q < 0. The 
above results yield the theorem:

Theorem 1.1. Let ϕ = ϕω be the positive and periodic single-lobe solution for the equation (1.6)
obtained in Proposition 3.6, for all ω ∈ ( 1

2 , +∞). If ϕ depends smoothly on ω ∈ ( 1
2 ,+∞)

, the 
periodic wave is orbitally stable if q > 0. If q < 0, the periodic wave is orbitally unstable.

To obtain the sign of the quantity q we use a numerical approach. For this aim, we first use 
the Petviashvili’s iteration method to generate the periodic standing wave solutions of the fNLS 
equation. Then we check whether 

∫ π

−π
ϕ2dx is increasing or decreasing with respect to ω to 

determine the sign of q. Our results are then established:

Theorem 1.2. Suppose that assumptions in Theorem 1.1 are satisfied.
i) If s ∈ ( 1

4 , 1
2

]
the periodic wave ϕ is orbitally unstable.

ii) There exists s∗ ≈ 0.6 such that if s ∈ [s∗,1
]

the periodic wave ϕ is orbitally stable.
iii) For s ∈ ( 1

2 , s∗), there exists a critical value ωc > 1
2 such that the periodic wave ϕ is orbitally 

unstable if ω ∈ ( 1
2 ,ωc

)
and orbitally stable if ω ∈ (ωc, +∞).

Remark 1.3. It is important to mention that the sense of orbital stability mentioned in Theo-
rem 1.2 (see Definition 5.1 for further details) prescribes the existence of global solutions in 
the energy space Hs

per . As far as we can see, if s ∈ ( 1
2 ,1

]
Proposition 2.5 in the next section 

establishes global well-posedness in Hs
per for initial data in the same space (consequently, the 

orbital stability/instability according to the Theorem 1.2) and for s ∈ ( 1
4 , 1

2

]
, we do not know a 

suitable result of local well-posedness. To overcome this difficulty, we need to consider a smooth 
initial data u0 in Hα

per for α > s large enough in order to obtain at least the existence of smooth 
solutions. Since the periodic standing wave ϕ is also smooth we obtain, in fact, a conditional 
(in)stability result for smooth solutions.
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Our paper is organized as follows: In Section 2, we show the Gagliardo-Nirenberg inequality 
for fractional operators in the periodic context. The existence of even periodic minimizers with 
a single-lobe profile as well as the existence of small amplitude periodic waves are determined 
in Section 3. In Section 4, we present spectral properties for the linearized operator related to 
the fNLS equation and some results concerning the uniqueness of minimizers. Finally, our result 
about orbital stability and instability associated with periodic waves is shown in Section 5.

Notation. For s � 0, the real/complex Sobolev space Hs
per := Hs

per (T ) consists of all periodic 
distributions f such that

‖f ‖2
Hs

per
:= 2π

∞∑
k=−∞

(1 + k2)s |f̂ (k)|2 < ∞, (1.16)

where f̂ is the periodic Fourier transform of f and T = [−π, π]. The space Hs
per is a Hilbert 

space with the natural inner product denoted by (·, ·)Hs
per

. When s = 0, the space Hs
per is iso-

metrically isomorphic to the space L2
per := H 0

per (see, e.g., [36]). The norm and inner product in 
L2

per will be denoted by ‖ · ‖L2
per

and (·, ·)L2
per

, respectively. We omit the interval [−π, π] of the 
space Hs

per(T ) and we denote it by Hs
per shortly. In addition, the norm in (1.16) can be written 

as (see [3])

‖f ‖2
Hs

per
= ‖(−�)

s
2 f ‖2

L2
per

+ ‖f ‖2
L2

per
. (1.17)

For s � 0, the space Hs
per,e := {f ∈ Hs

per ; f is an even function} is endowed with the same 
norm and inner product in Hs

per . If it is needed, the above notations can be extended in the 
complex/vectorial case in the following sense: f ∈ Hs

per ×Hs
per we have f = f1 +if2 ≡ (f1, f2), 

where fi ∈ Hs
per (i = 1, 2) since C is identified with R2.

We denote the number of negative eigenvalues and the dimension of the kernel of a certain 
linear operator A, by n(A) and z(A), respectively.

2. Gagliardo-Nirenberg inequality in the fractional periodic context

In this section, we show the Gagliardo-Nirenberg inequality for fractional operators in the 
periodic case. Our intention is to give a precise result of global well-posedness associated with 
the following Cauchy problem {

iut − (−�)su + u|u|2 = 0,

u(x,0) = u0(x).
(2.1)

For this aim, we need the Gagliardo-Nirenberg inequality for bounded domains of cone-type 
� ⊂ Rn, n ∈ N (for details of this kind of domains, see [58, Section 4.2.3, Equation 7]) stated 
in the next lemma. In the rest of this section, we consider the fractional Sobolev space Hr

q (�) =
Wr,q(�), well known as Slobodeckij space (for details, see [6, Section 1.2], [58, Section 2.3.3, 
Equation 1] and [58, Section 4.2.1, Definition 1]) for each r ∈ [0, 1) and q � 1. In what follows, 
we handle with real-valued functions. For complex-valued functions, the arguments are similar.
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Lemma 2.1 (Gagliardo-Nirenberg inequality for bounded domains of cone-type). Let � ⊂ Rn

be a bounded domain of cone-type. If k, s ∈ (0, 1), p, p0 > 1 and r > 0 satisfy

r = ks and
1

p
= 1 − k

p0
+ k

2
,

then there exists C1 > 0 such that,

‖f ‖Hr
p(�) � C1‖f ‖1−k

Lp0 (�)
‖f ‖k

Hs(�), (2.2)

for all f ∈ Lp0(�) ∩ Hs(�).

Proof. First of all, according to [58, Section 4.3.1, Theorem 2] the relation of interpolation

(Hs0
p0

(�),Hs
p1

(�))k = Hr
p(�),

is valid. Here, p, p1, p0 > 1, k ∈ (0, 1), s0, s � 0, and r > 0 satisfy

r = s0(1 − k) + ks and
1

p
= 1 − k

p0
+ k

p1
.

As a consequence of [58, Section 1.3.3, Equation 5] there exists a constant a C0 > 0 such that

‖f ‖Hr
p(�) � C0‖f ‖1−k

H
s0
p0 (�)

‖f ‖k
Hs

p1
(�), (2.3)

for all f ∈ H
s0
p0(�) ∩ Hs

p1
(�). In particular, by considering p1 = 2, s0 = 0 and s ∈ (0, 1), we see 

that

r = ks ∈ (0,1),
1

p
= 1 − k

p0
+ k

2
.

Thus, by (2.3) we obtain

‖f ‖Hr
p(�) � C1‖f ‖1−k

Lp0 (�)
‖f ‖k

Hs(�),

for some constant C1 > 0 and for all f ∈ Lp0(�) ∩ Hs(�). �
Corollary 2.2. Let � ⊂ Rn be a bounded domain of cone-type. If k, s ∈ (0, 1) and p, p0 > 1
satisfy

1

p
= 1 − k

p0
+ k

2
, (2.4)

there exists C2 > 0 such that,

‖f ‖Lp(�) � C2‖f ‖1−k
Lp0 (�)

‖f ‖k
Hs(�),

for all f ∈ Lp0(�) ∩ Hs(�).
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Proof. First, it is clear that r = ks ∈ (0, 1). The Sobolev embedding Hr
p(�) ↪→ Lp(�), condi-

tion (2.4), and Lemma 2.1 give us

‖f ‖Lp(�) � C2‖f ‖1−k
Lp0 (�)

‖f ‖k
Hs(�),

for some constant C2 > 0. �
As a particular case of the Lemma 2.1 in the periodic context, we establish the following 

theorem.

Proposition 2.3 (n-dimensional periodic Gagliardo-Nirenberg inequality). Let Tn ⊂ Rn be the 
n-dimensional torus. If k, s ∈ (0, 1) and r > 0 are so that r = ks, then there exists C3 > 0 such 
that

‖f ‖Hr
per (T

n) � C3‖f ‖1−k

L2
per (T

n)
‖f ‖k

Hs
per (T

n)
, (2.5)

for all f ∈ Hs
per (T

n).

Proof. Since the n-dimensional torus Tn ⊂ Rn is a bounded domain of cone-type ([58, Section 
4.2.3, Remark 5]), we obtain that the Lemma 2.1 is valid for � =Tn, p0 = 2 and r = ks ∈ (0, 1). 
Moreover, by [58, Section 4.6.1, Equation 2] and [59, Section 9.1.3, Remark 1] the norms in 
Hs

per (�) and Hs(�) are equivalent and since Lm(Tn) ≡ Lm
per(T

n), for all m � 1, it follows by 
(2.2) the following inequality

‖f ‖Hr
per (T

n) � C3‖f ‖1−k

L2
per (T

n)
‖f ‖k

Hs
per (T

n)
,

for all f ∈ Hs
per (T

n) and for some constant C3 > 0. �
Corollary 2.4 (1-dimensional Periodic Gagliardo-Nirenberg inequality). Let s ∈ ( 1

4 ,1
)

be fixed. 
There exists a constant C4 > 0 such that,

‖f ‖4
L4

per
� C4‖(−�)

s
2 f ‖

1
s

L2
per

‖f ‖4− 1
s

L2
per

+ C4‖f ‖4
L2

per
, (2.6)

for all f ∈ Hs
per .

Proof. In Proposition 2.3, let us consider n = 1. We have

‖f ‖Hr
per

� C3‖f ‖1−k

L2
per

‖f ‖k
Hs

per
,

for all f ∈ Hs
per . Here, we consider r = ks ∈ (0, 1), k ∈ (0, 1), and s ∈ (0, 1).

Several calculations and the definition of the norm of Hs
per given by (1.17) yield the existence 

of a constant C5 > 0 where

‖f ‖4
Hr � C5‖f ‖4(1−k)

2

(
‖(−�)

s
2 f ‖2

L2 + ‖f ‖2
L2

)2k

,

per Lper per per
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for all f ∈ Hs
per . By [36, Lemma 3.197], we obtain the existence of a constant C6 > 0 such that

(
‖(−�)

s
2 f ‖2

L2
per

+ ‖f ‖2
L2

per

)2k

� C6

(
‖(−�)

s
2 f ‖4k

L2
per

+ ‖f ‖4k
L2

per

)
.

Thus, there exists a constant C7 > 0 such that

‖f ‖4
Hr

per
� C7‖f ‖4(1−k)

L2
per

‖(−�)
s
2 f ‖4k

L2
per

+ C7‖f ‖4
L2

per
. (2.7)

Choosing r = 1
4 and using the embedding Hr

per ↪→ L4
per (see [3, Theorem 4.2]), we obtain 

from (2.7) for s = 1
4k

∈ ( 1
4 ,1

)
that

‖f ‖4
L4

per
� C4‖(−�)

s
2 f ‖

1
s

L2
per

‖f ‖4− 1
s

L2
per

+ C4‖f ‖4
L2

per
,

for some constant C4 > 0. �
The existence of global solutions in time for the Cauchy problem associated with the equation

(1.1) is obtained by the combination of Corollary 2.4 and the conserved quantities E and F
given by (1.3) and (1.4), respectively. In fact, as mentioned in the Introduction, we see that 
for s ∈ ( 1

2 ,1
)
, there exists a local solution u ∈ C([0, T ], Hs

per ) of the Cauchy problem (2.1)
associated with the equation (1.1) with initial data u0 ∈ Hs

per (see [20] and [15]). For all t � 0, 
we have

‖(−�)
s
2 u(t)‖2

L2
per

= 2E(u0) + 1

2
‖u(t)‖4

L4
per

.

By Corollary 2.4 we obtain the existence of a constant C > 0 such that

‖(−�)
s
2 u(t)‖2

L2
per

� 2E(u0) + C‖u0‖4− 1
s

L2
per

‖(−�)
s
2 u(t)‖

1
s

L2
per

+ C‖u0‖4
L2

per
, (2.8)

where we are using the fact that the L2
per -norm is a conserved quantity (see (1.4)).

Therefore, by (2.8), we obtain the following scenario for global solutions Hs
per :

• When s ∈ ( 1
2 ,1

]
, we can proceed similarly to the authors in [7] to conclude the existence of 

global solutions in time.
• When s = 1

2 , we use again [7] to conclude the existence of global solutions in time for 
||u0||L2

per
small enough. It is also expected blow-up in finite time for large ||u0||L2

per
.

Summarizing our analysis performed above, we obtain the following global well-posedness 
result for the Cauchy problem associated with the fNLS equation (1.1).

Proposition 2.5. Let s ∈ ( 1
2 ,1

]
. The Cauchy problem associated with the equation (1.1) is glob-

ally well-posed in Hs
per . More precisely, for any u0 ∈ Hs

per there exists a unique global solution 
u ∈ C([0, +∞), Hs

per ) such that u(0) = u0 and it satisfies (1.1). Moreover, for each T > 0 the 
mapping
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u0 ∈ Hs
per 	−→ u ∈ C([0, T ],H s

per )

is continuous.

3. Existence of periodic waves

In this section, we prove the existence of the even periodic wave solutions of (1.6) using 
two approaches. First, we use a variational characterization by minimizing a suitable constrained 
functional to obtain positive and even periodic waves with single-lobe profile. Second, we present 
some tools concerning the existence of small amplitude periodic waves using bifurcation theory. 
In addition, it is possible to show that such waves are also solutions for the minimization problem 
presented in the next subsection.

3.1. Existence of periodic waves via minimizers

In this subsection, we prove the existence of even periodic solutions for (1.6) by considering 
the variational problem given by (1.15). First, we define of the solution with single-lobe profile.

Definition 3.1. We say that a periodic wave satisfying the equation (1.6) has single-lobe profile if 
there exist only one maximum and minimum on [−π, π]. Without loss of generality, we assume 
that the maximum point occurs at x = 0.

For τ > 0, let us consider the set

Yτ :=
{
u ∈ Hs

per,e ; ‖u‖4
L4

per
= τ

}
. (3.1)

For ω > 0, we define the functional Bω : Hs
per,e −→R given by

Bω(u) := 1

2

π∫
−π

|(−�)
s
2 u|2 + ω |u|2 dx, (3.2)

for all u ∈ Hs
per,e.

We see that

Bω(u) � 0 and G(u) � Bω(u). (3.3)

We have the following result of existence:

Proposition 3.2. Let s ∈ ( 1
4 ,1

]
and τ, ω > 0 be fixed. The minimization problem

�ω := inf
u∈Yτ

Bω(u) (3.4)

has at least one solution, that is, there exists a complex-valued function � ∈ Yτ such that 
Bω(�) = �ω. Moreover, � satisfies

(−�)s� + ω� − |�|2� = 0.
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Proof. First we claim that the functional Bω induces an equivalent norm in Hs
per,e which is the 

induced norm of Hs
per . Indeed, the norm in Hs

per is given as in (1.17) and the functional Bω

can be written as 2Bω(u) = ‖(−�)
s
2 u‖2

L2
per

+ ω‖u‖2
L2

per
. Thus, it is easy to see that there exist 

constants c0, c1 > 0 so that

0 � c0‖u‖Hs
per

�
√

2Bω(u) � c1‖u‖Hs
per

. (3.5)

Moreover, by (3.3), one has �ω � 0.
Using the smoothness of the functional Bω, we may consider a sequence of minimizers 

(un)n∈N ⊂ Yτ such that

Bω(un) −→ �ω, n → ∞. (3.6)

By (3.6), we have that the sequence (Bω(un))n∈N ⊂ R is bounded, so that it is bounded in 
Hs

per,e. Since s ∈ ( 1
4 ,1

]
and the Sobolev space Hs

per,e is reflexive, there exists � ∈ Hs
per,e such 

that (modulus a subsequence),

un −−⇀ �weakly in Hs
per,e. (3.7)

Again, since s ∈ ( 1
4 ,1

]
, we obtain that the embedding

Hs
per,e ↪−→ L4

per (3.8)

is compact (see [5, Theorem 2.8] or [1, Theorem 5.1]). Thus, modulus a subsequence we also 
have

un −→ � in L4
per . (3.9)

Moreover, using the estimate

∣∣∣∣
π∫

−π

(|un|4 − |�|4) dx

∣∣∣∣
�

π∫
−π

∣∣|un|4 − |�4|∣∣ dx

�
(‖�‖3

L4
per

+ ‖�‖2
L4

per
‖un‖L4

per
+ ‖�‖L4

per
‖un‖2

L4
per

+ ‖un‖3
L4

per

)‖un − �‖L4
per

and (3.9), it follows that ‖�‖4
L4

per
= τ . Furthermore, since Bω is lower semi-continuous, we have

Bω(�) � lim inf
n→∞ Bω(un)

that is,
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Bω(�) � �ω. (3.10)

On the other hand, once � satisfies ‖�‖4
L4

per
= τ , we obtain

Bω(�) � �ω. (3.11)

By (3.10) and (3.11) we conclude

Bω(�) = �ω = inf
u∈Yτ

Bω(u).

In other words, the function � ∈ Yτ is a minimizer of the problem (3.4). Note that since τ > 0, 
we see that � is a complex-valued function such that � 
≡ 0. In addition, as a consequence of the 
Lagrange multiplier theorem, there exists a constant c2 = 2Bω(�)

τ
> 0, so that

(−�)s� + ω� = c2|�|2�. (3.12)

A scaling argument as � ≡ √
c2� allows us to choose c2 = 1 in (3.12) (see similar arguments 

in [17, page 629]). Thus, we have that � is a periodic minimizer of the problem (1.15) and it 
satisfies the equation

(−�)s� + ω� − |�|2� = 0. � (3.13)

Remark 3.3. Let � ∈ Hs
per be the minimizer obtained by Proposition 3.2. It is easy to check that 

for all θ ∈ R, function e−iθ� satisfies Bω(e−iθ�) = �ω and consequently (3.13). To guarantee 
the existence of real-valued solutions for the equation (3.13), we assume that the minimizer �
can be expressed as � = eiθ0ϕ, where ϕ is a real 2π -periodic function and θ0 is a suitable real 
number. Function ϕ ∈ Hs

per satisfies (1.6) and the minimization problem

Bω(ϕ) = Bω(e−iθ0�) = �ω. (3.14)

Remark 3.4. In the particular case s = 1, the existence of θ0 and ϕ in Remark 3.3 can be estab-
lished. In fact, if � = φ1 + iφ2 solves (3.13), we see that φ1 and φ2 solve the equations

−φ′′
1 + ωφ1 − (φ2

1 + φ2
2)φ1 = 0, (3.15)

and

−φ′′
2 + ωφ2 − (φ2

1 + φ2
2)φ2 = 0. (3.16)

Multiplying (3.15) by φ2, (3.16) by φ1 and subtracting both results we obtain the equation 
−φ′′

1φ2 + φ′′
2 φ1 = 0, so that −φ′

1φ2 + φ′
2φ1 = C, where C is a constant of integration. Since 

φ1 and φ2 are even, we obtain C = 0 because φ′
1 and φ′

2 are odd. Equation −φ′
1φ2 + φ′

2φ1 = 0
thus implies φ1 = rφ2 for some r ∈ R, so that � = (r + i)φ2 = eiθ0

√
1 + r2φ2, where θ0 is the 

principal argument of the complex number r + i. Therefore for ϕ = √
1 + r2φ2, one has the 

desired result.
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Remark 3.5. Let s ∈ (0, 1) and ω > 0 be fixed. It is worth to be mentioning that if the problem
(3.4) is posed in the infinite wavelength scenario, that is, if � ∈ Hs(R) is a minimizer, then |�|
is also a minimizer for the functional B̃ω(u) = 1

2

∫
R |(−�)

s
2 u|2 + ω|u|2dx = 1

2 ||(−�)
s
2 u||2

L2 +
ω
2 ||u||2

L2 , with u ∈ Hs(R) and satisfying 
∫
R |u|4dx = τ . This fact can be determined since the 

semi-norm ||(−�)
s
2 u||2

L2 can be characterized in terms of the well-known Gagliardo semi-norm

||(−�)
s
2 u||L2 = Cs

⎛⎝∫
R

∫
R

|u(x) − u(y)|2
|x − y|1+2s

dxdy

⎞⎠
1
2

, (3.17)

where Cs is a positive constant depending only on s ∈ (0, 1). By (3.17), it is possible to deduce 
that |�| is a minimizer if � is, and thus a real-valued solution ϕ := |�| for the equation (1.6) can 
be considered without further problems (for more details, see inequality (25) in [32, page 3454]). 
As far as we know, we do not have a characterization as in (3.17) for the periodic case. Indeed, it 
is possible to define the Gagliardo semi-norm in the periodic context as

[u]s =
⎛⎝ π∫

−π

π∫
−π

|u(x) − u(y)|2
|x − y|1+2s

dxdy

⎞⎠
1
2

. (3.18)

However, using Parseval’s identity and some additional calculations (see [3, page 8]) we obtain 
the existence of c3 > c2 > 0 such that

c2||(−�)
s
2 u||L2

per
� [u]s � c3||(−�)

s
2 u||L2

per
. (3.19)

Inequality in (3.19) can not be used to assure that |�| solves (3.4) if � is a periodic minimizer 
obtained by Proposition 3.2. In our context, assumption � = eiθ0ϕ in Remark 3.3 seems suitable 
necessary in order to obtain a real-valued periodic solution ϕ = ϕ + i0 for the problem (3.4).

As a consequence of the assumption in Remark 3.3, we have the following result.

Proposition 3.6 (Existence of Even Single-Lobe Solutions). Let s ∈ ( 1
4 ,1

]
and ω > 0 be fixed. 

Let ϕ ∈ Hs
per be the real-valued periodic minimizer given by (3.14). If ω ∈ (

0, 1
2

]
then ϕ is the 

constant solution and if ω ∈ ( 1
2 ,+∞)

then ϕ is an even periodic single-lobe solution for the 
equation (1.6).

Proof. First, by a bootstrapping argument we infer that ϕ ∈ H∞
per,e (see [17, Proposition 3.1] and 

[44, Proposition 2.4]).
Since the solution can be constant, we need to avoid this case in order to guarantee that 

the minimizer has a single-lobe profile. First, we see that the positive constant solution of the 
equation (1.6) is ϕ ≡ √

ω and the operator L1 in (1.9) is then given by L1 = (−�)s − 2ω. By 
[34, Example 4.4] we obtain that n(L1) = 1 if and only if ω ∈ (

0, 1
2

]
. In addition, we have to 

notice that ϕ = √
ω is not a minimizer of (3.4) for ω > 1

2 since in this case we have n(L1) > 1
(for ω > 1

2 we see that ϕ is a periodic minimizer of G restricted only to one constraint and it 
is expected that n(L1) � 1 since n(L) � 1). In addition, we will see in Section 4 that if ϕ is 
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a nonconstant minimizer then L1ϕ
′ = 0 which implies, by Sturm’s oscillation theorem, in fact 

that n(L1) = 1. Thus, we conclude that the constant solution ϕ = √
ω is a minimizer of (3.4)

for ω ∈ (0, 1
2

]
and for ω ∈ ( 1

2 ,+∞)
, solution ϕ is a nonconstant minimizer. Furthermore, in the 

latter case, we can consider the symmetric rearrangements ϕ� associated with ϕ and it is well 
known that such rearrangements are invariant under the constraint of Yτ by using [16, Appendix 
A]. Moreover, due to the fractional Polya-Szegö inequality, in [16, Lemma A.1], we have

π∫
−π

(
(−�)

s
2 ϕ�

)2
dx �

π∫
−π

(
(−�)

s
2 ϕ
)2

dx.

Thus, by (3.14), we obtain Bω(ϕ�) = �ω with ϕ� being symmetrically decreasing away from 
the maximum point x = 0. To simplify the notation, we assume that ϕ = ϕ�, so that ϕ has an 
even single-lobe profile according to the Definition 3.1. �
3.2. Small-amplitude periodic waves

The existence and convenient formulas for the small amplitude periodic waves associated with 
the equation (1.6) will be shown in this subsection. After that, we show that the local bifurcation 
theory used to determine the existence of small amplitude waves can be extended and the local 
solutions can be considered as global for a fixed ω > 1

2 . This fact is a very important feature in 
our context since it can be used as an alternative form to prove the existence of periodic even 
solutions (not necessarily having a single-lobe profile) for the equation (1.6). To do so, we use 
the theory contained in [11, Chapters 8 and 9].

First, we shall give some steps to prove the existence of small amplitude periodic waves. In 
fact, for s ∈ ( 1

4 , 1], let F : H 2s
per,e × ( 1

2 , +∞) → L2
per,e be the smooth map defined by

F(g,ω) = (−�)sg + ωg − g3. (3.20)

We see that F(g, ω) = 0 if and only if g ∈ H 2s
per,e satisfies (1.6) with corresponding wave fre-

quency ω ∈ ( 1
2 , +∞). The Fréchet derivative of the function F with respect to the first variable 

is then given by

DgF(g,ω)f =
(
(−�)s + ω − 3g2

)
f. (3.21)

Let ω0 > 1
2 be fixed. At the point (

√
ω0, ω0), we have that

DgF(
√

ω0,ω0) = (−�)s + ω0 − 3(
√

ω0)
2 = (−�)s − 2ω0. (3.22)

The nontrivial kernel of DgF(
√

ω0, ω0) is determined by functions h ∈ H 2s
per,e such that

ĥ(k)(−2ω0 + |k|2s) = 0. (3.23)

We see that DgF(
√

ω0, ω0) has the one-dimensional kernel if and only if ω0 = |k|2s

2 for some 
k ∈Z. In this case, we have
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KerDgF(
√

ω0,ω0) = [ϕ̃k], (3.24)

where ϕ̃k(x) = cos(kx).
The local bifurcation theory contained in [11, Chapter 8] enables us to guarantee the existence 

of an open interval I containing ω0 > 1
2 , an open ball B(0, r) ⊂ H 2s

per,e for some r > 0 and a 
unique smooth mapping

ω ∈ I 	−→ ϕ := ϕω ∈ B(0, r) ⊂ H 2s
per,e

such that F(ϕ, ω) = 0 for all ω ∈ I and ϕ ∈ B(0, r).
For each k ∈N , the point (

√
ω̃k, ω̃k) where ω̃k := |k|2s

2 is a bifurcation point. Moreover, there 
exists a0 > 0 and a local bifurcation curve

a ∈ (0, a0) 	−→ (ϕk,a,ωk,a) ∈ H 2s
per,e × (0,+∞) (3.25)

which emanates from the point (
√

ω̃k, ω̃k) to obtain small amplitude even 2π
k

-periodic solutions 
for the equation (1.6). In addition, we have ωk,0 = ω̃k , Daϕk,0 = ϕ̃k and all solutions of F(g, ω) =
0 in a neighbourhood of (

√
ω̃k, ω̃k) belong to the curve in (3.25) depending on a ∈ (0, a0).

Proposition 3.7. Let s ∈ (0, 1] be fixed. There exists a0 > 0 such that for all a ∈ (0, a0) there is a 
unique even local periodic solution ϕ for the problem (1.6). The small amplitude periodic waves 
are given by the following expansion:

ϕ(x) = √
ω + √

2φ(x), (3.26)

where

φ(x) = aφ1(x) + a2φ2(x) + a3φ3(x) +O(a4). (3.27)

Here φ1(x) = cos(x),

φ2(x) = −3

2
+ 3

2(22s − 1)
cos(2x),

φ3(x) = 1

2(32s − 1)

[
1 + 9

22s − 1

]
cos(3x),

and

γ = 15

2
− 9

2(22s − 1)
.

The frequency ω in this case is expressed as

ω = 1

2
+ a2γ +O(a4). (3.28)

For s ∈ ( 1
4 , 1], the pair (ϕ, ω) ∈ Hs

per,e × ( 1
2 , +∞) is global in terms of the parameter ω > 1

2 and 
it satisfies (1.6).
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Proof. The first part of the proposition has been already determined in (3.25) by considering 
k = 1. To get the expression in (3.26), we use arguments similar to the ones in [44, Section 5]. 
To obtain that the local curve (3.25) extends to a global one for the case s ∈ ( 1

4 , 1], we first need 
to prove that DgF(g, ω) given by (3.21) is a Fredholm operator of index zero. Indeed, we define 
the set S = {(g, ω) ∈ D(F) : F(g, ω) = 0}. Let (g, ω) ∈ H 2s

per,e × ( 1
2 , +∞) be a real solution of 

F(g, ω) = 0. For Z := L2
per,e, the linear operator

L1|Zψ ≡ DgF(g,ω)ψ =
(
(−�)s − 3g2

)
ψ + ωψ = 0, (3.29)

has two linearly independent solutions and at most one belongs to H 2s
per,e (see [16, Theorem 

3.12]). If there are no solutions in H 2s
per,e\{0}, then the problem 

(
(−�)s + ω − 3g2

)
ψ = f has 

a unique non-trivial solution ψ ∈ H 2s
per,e for all f ∈ Z since Ker(L1|Z )⊥ = R(L1|Z ) = Z .

On the other hand, if there is a solution e ∈ H 2s
per,e we obtain by standard Fredholm Alternative 

that (3.29) has a solution if and only if

π∫
−π

e(x)f (x)dx = 0,

for all f ∈ Y . We can conclude in both cases that the Fréchet derivative of F in terms of g given 
by (3.21) is a Fredholm operator of index zero.

Let us prove that every bounded and closed S is a compact set on H 2s
per,e × ( 1

2 , +∞). For 
g ∈ H 2s

per,e and ω > 1
2 , we define ̃F(g, ω) = ((−�)s + ω)−1g3. Since s ∈ ( 1

4 , 1], we see that ̃F is 
well defined since H 2s

per,e is a Banach algebra, (g, ω) ∈ S if and only if ̃F(g, ω) = g and ̃F maps 
H 2s

per,e × ( 1
2 , +∞) into H 4s

per,e. The compact embedding H 4s
per,e ↪→ H 2s

per,e shows that F̃ maps 
bounded and closed sets in H 2s

per,e × ( 1
2 , +∞) into H 2s

per,e. Thus, if R ⊂ S ⊂ H 2s
per,e × ( 1

2 , +∞)

is a bounded and closed set, we obtain that F̃(R) is relatively compact in H 2s
per,e. Since R is 

closed, any sequence {(ϕn, ωn)}n∈N has a convergent subsequence in R, so R is compact in 
H 2s

per,e × ( 1
2 , +∞).

Since the frequency of the wave given by (3.28) is not constant, we can apply [11, Theorem 
9.1.1] to extend globally the local bifurcation curve given in (3.25). More precisely, there is a 
continuous mapping

ω ∈ ( 1
2 ,+∞) 	−→ ϕω ∈ H 2s

per,e (3.30)

where ϕω solves equation (1.6). �
Remark 3.8. It is important to note that ϕ ∈ H 2s

per,e given by (3.26) is a solution of the minimiza-
tion problem (3.4) by using similar arguments as in [45, Lemma 2.3].
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4. Spectral analysis and uniqueness of minimizers

4.1. Spectral analysis

We use the variational characterization determined in the last section to obtain useful spec-
tral properties for the linearized operator L in (1.8) around the periodic wave ϕ obtained by 
Proposition 3.6.

Let s ∈ ( 1
4 ,1

]
and ω > 0 be fixed. Consider the periodic minimizer ϕ = ϕω ∈ H∞

per,e obtained 
by Proposition 3.6. We study the spectral properties of the matrix operator

L =
(
L1 0
0 L2

)
: H 2s

per × H 2s
per ⊂ L2

per × L2
per → L2

per × L2
per ,

where L1 and L2 are the real and imaginary parts of the operator L and they are defined by

L1 = (−�)s + ω − 3ϕ2 and L2 = (−�)s + ω − ϕ2. (4.1)

Thanks to the variational formulation (3.4), Proposition 3.2 and Remark 3.3, we obtain ϕ as a 
minimizer of G(u) in (1.7) for every ω > 1

2 subject to one constraint. In the even sector of L2
per , 

since L in (1.8) is the Hessian operator for G(u) in (1.7), it follows by the min-max principle 
[53, Theorem XIII.2] that n(L) � 1. Since L1ϕ = −2ϕ3 and (L1ϕ, ϕ)L2

per
= −2 

∫ π

−π
ϕ4dx < 0, 

we have n(L1) � 1. The operator L in (1.8) is diagonal and thus n(L1) = n(L) = 1, so that 
n(L2) = 0. Next, we see that L2ϕ = 0 with n(L2) = 0. It follows by oscillation theorem in [34]
that ϕ > 0 and the zero eigenvalue for L2 results to be simple in the even sector of L2

per . By [33, 
Lemma 3.3], we obtain that zero is the first eigenvalue of L1 whose associated eigenfunction is 
ϕ′ in the odd sector of L2

per . Therefore, in the whole space L2
per we obtain n(L1) = 1, so that 

n(L) = 1 in L2
per × L2

per . In fact, we have proved the following result.

Lemma 4.1. Let s ∈ ( 1
4 ,1

]
and ω > 1

2 be fixed. If ϕ ∈ H∞
per,e is the periodic minimizer given by 

Proposition 3.6, then n(L2) = 0 and z(L2) = 1.

Concerning the operator L1 in (4.1), we have the following lemma.

Lemma 4.2. Let s ∈ ( 1
4 ,1

]
and ω > 1

2 be fixed. If ϕ ∈ H∞
per,e is the periodic minimizer given by 

Proposition 3.6 and ω ∈ ( 1
2 ,+∞) 	→ ϕ is smooth, then Ker(L1) = [ϕ′].

Proof. First, we see that ϕ′ ∈ Ker(L1) = R(L1)
⊥. In addition, since L1 ϕ = −2ϕ3, we ob-

tain ϕ3 ∈ R(L1). On the other hand, differentiating equation (1.6) with respect to ω we obtain 
L1

(− d
dω

ϕ
)= ϕ, so that ϕ ∈ R(L1).

Arguments above establish in fact that ϕ, ϕ3 ∈ R(L1) = Ker(L1)
⊥ with ϕ being an even, 

smooth, positive, and single-lobe solution for (1.6). Let us assume that z(L1) = 2. Since ϕ′ ∈
Ker(L1) is odd, there exists an even periodic function h ∈ Ker(L1) such that h has exactly two 
symmetric zeros in the interval [−π,π) (see oscillation theorem in [34]). Hence, there exists 
x0 ∈ (−π,π) such that h(±x0) = 0. Without loss of generality, we can still suppose that

h(x) > 0, x ∈ (−x0, x0) and h(x) < 0, x ∈ [−π,x0) ∪ (x0,π) . (4.2)
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Furthermore, since h ∈ Ker(L1) and ϕ, ϕ3 ∈ Ker(L1)
⊥ we have

(h,ϕ3)L2
per

= 0 and (h,ϕ)L2
per

= 0. (4.3)

Since ϕ > 0, we obtain by the fact that ϕ is a single-lobe that ϕ(x)(ϕ(x)2 −ϕ2(x0)) is positive 
over (−x0, x0) and negative over [−π,x0) ∪ (x0,π), so that it has the same behaviour as h in 
(4.2). Thus, (ϕ(ϕ2 − ϕ2(x0)), h)L2

per

= 0 which leads a contradiction with (4.3). Consequently, 

we have Ker(L1) = [ϕ′]. �
Remark 4.3. Arguments established in the end of the proof of Lemma 4.2 are valid only if ϕ > 0. 
If ϕ changes its sign over T , an alternative form to prove that Ker(L1) = [ϕ′] can be determined 
by proving that 1 ∈ R(L1). In the affirmative case and since L11 = ω − 3ϕ2, we obtain that the 
property {1, ϕ, ϕ2} ⊂ R(L1) occurs. Employing the arguments in [45, Proposition 2.5], we obtain 
that Ker(L1) = [ϕ′] as requested.

A converse of Lemma 4.2 can be determined.

Proposition 4.4. Let s ∈ ( 1
4 ,1

]
and ϕ0 ∈ H∞

per be the solution obtained in the Proposition 3.6

which is associated with the fixed value ω0 > 1
2 . If Ker(L1) = [ϕ′

0], then there exists a C1 map-
ping

ω ∈ Iω0 	−→ ϕω ∈ Hs
per,e

defined in an open neighbourhood Iω0 ⊂ (0, +∞) of ω0 > 1
2 such that ϕω0 = ϕ0.

Proof. The proof follows from the implicit function theorem and it is similar to [17, Theorem 
3.2]. �
Remark 4.5. We cannot guarantee that for each ω ∈ Iω0 given by Proposition 4.4 that ϕω solves 
the minimization problem (3.4) except at ω = ω0.

The results determined in this subsection can be summarized in the following proposition:

Proposition 4.6. Let ϕ be the single-lobe profile obtained in Proposition 3.6. If ω ∈ ( 1
2 ,+∞) 	→

ϕ is smooth, we have that n(L) = 1 and Ker(L) = [(ϕ′, 0), (0, ϕ)]. �

Remark 4.7. Let s ∈ ( 1
4 ,1

]
be fixed. The existence of small amplitude periodic waves established 

in Proposition 3.7 is smooth with respect to ω in a neighbourhood on the left side of the bifurca-
tion point ω = 1

2 . Therefore, at least inside this neighbourhood, we have that Ker(L1) = [ϕ′] as 
requested in Lemma 4.2.

Remark 4.8. Let s ∈ ( 1
4 ,1

]
be fixed. Consider the change of variables ϕ = m + ψ , where m =

1
2π

∫ π

−π
ϕ(x)dx. We have 

∫ π

−π
ψ(x)dx = 0 and since ϕ solves (1.6), we obtain that ψ solves the 

Gardner type-equation

(−�)sψ + cψ − 3mψ2 − ψ3 + b = 0, (4.4)
281



G.E. Bittencourt Moraes, H. Borluk, G. de Loreno et al. Journal of Differential Equations 341 (2022) 263–291
where c = ω − 3m2 and b = ωm − m3. Using the arguments determined in [45] (see Sections 4
and 5), we see that it is possible to construct, since n(L1) = 1 for all ω ∈ ( 1

2 ,+∞)
, a smooth 

surface (c, m) ∈ O 	→ ψ(c,m) ∈ H∞
per of even periodic waves satisfying 

∫ π

−π
ψ(c,m)(x)dx = 0 for 

all (c, m) ∈O. Here O is a convenient open subset of R2. The smooth surface of periodic waves 
ψ allows us to deduce L1(1 + ∂mψ − 6m∂cψ) = c − ∂mb + 6m∂cb := d and Lemma 4.7 in [44]
gives us Ker(L1) = [ϕ′] if and only if d 
= 0. Important to mention that numerical experiments 
contained in [44, Section 5] give us d 
= 0 for all ω ∈ ( 1

2 ,+∞)
and this fact seems reasonable 

since n(L1) = 1 for all ω ∈ ( 1
2 ,+∞)

. Indeed, if ω∗ is the minimum value in 
(1

2 ,+∞)
such that 

the kernel of L1 is double (ω∗ is then called a fold point), it is expected to obtain the existence 
of ω1 > ω∗ such that n(L1) = 2 at ω = ω1, which is a contradiction.

4.2. Uniqueness of real minimizers

In this subsection we show the uniqueness for the real periodic minimizers ϕ obtained in 
Proposition 3.2. To this end, we proceed as in [2, Section 3.2]. The main difference in our ap-
proach is that we do not need to assume that the kernel of the linearized operator restricted to the 
space of zero mean periodic waves are simple. First, the space of zero mean periodic waves is not 
suitable for our purposes since we are working with real positive periodic waves ϕ. The equiv-
alent condition in our case would be assuming that Ker(L1) = [ϕ′] for every ω ∈ ( 1

2 ,+∞)
and 

s ∈ ( 1
4 ,1

]
. In the remainder of this section, we assume only that s ∈ ( 1

4 ,1
)
. The case s = 1 is not 

relevant in our analysis since the periodic (dnoidal) waves are unique for a fixed ω ∈ ( 1
2 ,+∞)

.
In what follows, let us define the complex Banach space

V := {f = f1 + if2 ≡ (f1, f2) ∈ L4
per × L4

per ; f1, f2 ∈ L4
per,e},

endowed with the norm of L4
per . We have the following result:

Proposition 4.9. Let s0 ∈ ( 1
2 , 1). Suppose that (ϕ0 + 0i, ω0) ∈ V × ( 1

2 ,+∞)
where ϕ0 is a non-

zero real solution of (1.6) with s = s0 and ω = ω0. If Ker(L1) = [ϕ′
0], then for some δ > 0, there 

exists a C1-map s ∈ I → (ϕs + 0i, ωs) ∈ V × ( 1
2 ,+∞)

, defined in the interval I = [s0, s0 + δ), 
such that the following holds:

(i) (ϕs + 0i, ωs) solves the equation (1.6) with ω = ωs , for all s ∈ I ;
(ii) There exists ε > 0 such that (ϕs + 0i, ωs) is the unique solution of (1.6) for s ∈ I in the 

neighbourhood {(ϕ + 0i, ω) ∈ V × ( 1
2 ,+∞) ; ||ϕ − ϕ0||V + |ω − ω0| < ε};

(iii) For all s ∈ I , we have 
∫ π

−π
ϕ4

s dx = ∫ π

−π
ϕ4

0dx.

Proof. The proof is similar to the one given in [2, Proposition 5] therefore we only give the main 
steps. Indeed, let s0 ∈ ( 1

2 ,1
)

be fixed and consider (�0, ω0) := (ϕ0 + i0, ω0) ∈ V × ( 1
2 ,+∞)

, 
where ϕ0 ∈ V satisfies (1.6).

We define the mapping G : V × ( 1
2 ,+∞)× Iδ −→ V ×R by

G(�,ω, s) =
[

� − ((−�)s + ω)−1|�|2�
‖�‖4

L4 − ‖�0‖4
L4

]
, (4.5)
per per
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where Iδ := [s0, s0 + δ) with δ > 0 will be chosen later. We note that G is a well-defined C1-
mapping ([24, Lemma E.1]) and G(�0, ω0, s0) = (0, 0).

In particular, we see that the Fréchet derivative of G with respect (�, ω) at (�0, ω0, s0) is 
given by

D�,ωG(�0,ω0, s0) =
[

1 − ((−�)s0 + ω0)
−1 3�2

0 ((−�)s0 + ω0)
−2�2

0
4(�3

0, ·)L2
per

0

]
.

Since ϕ′
0 is odd and Ker(L1) = [ϕ′

0], we can show that D�,ωG(�0, ω0, s0) is invertible. By 
implicit function theorem, we guarantee the existence of a C1-map

s ∈ Iδ 	−→ (�s,ωs) ∈ V × ( 1
2 ,+∞)

, (4.6)

defined over Iδ , where δ > 0 is small enough. Here �s is defined in a neighbourhood of the 
point �0 = ϕ0 + 0i ∈ V and this fact enables us to define, without loss of generality, that �s :=
ϕs + 0i ∈ V . Thus, we can consider a local branch of solutions (ϕs + 0i, ωs) ∈ V × ( 1

2 ,+∞)
for 

the equation (1.6) and parametrized by s ∈ Iδ . �
The next step is to consider the corresponding maximal extension of the branch (ϕs, ωs) :=

(ϕs + 0i, ωs) given by s ∈ [s0, s∗), where

s∗ := sup{q; s0 < q < 1, (ϕs,ωs) ∈ C1([s0, q);V × ( 1
2 ,+∞)

) given by Proposition 4.9

and (ϕs,ωs) satisfies (1.6) for s ∈ [s0, q)}.

It is clear that s∗ � 1 and it makes necessary to prove s∗ = 1. To do so, we establish the following 
result:

Proposition 4.10. Let {sn}n=+∞
n=1 ⊂ ( 1

2 , s∗
)

be a sequence such that sn → s∗. Furthermore, we 
assume that ϕsn ∈ V are the corresponding solutions obtained in Proposition 4.9 with frequency 
of the wave given by ωsn . Up to a subsequence, it follows that

ϕsn → ϕ∗ in L
p
per (T ) and ωsn → ω∗,

for all p � 1. Here, ϕ∗ satisfies equation the (1.6) where ω∗ ∈ ( 1
2 ,+∞)

is the corresponding 
frequency of the wave. Moreover, the corresponding maximal branch (ϕs, ωs) ∈ C1

([s0, s∗); V ×( 1
2 , +∞))

extends to s∗ = 1.

Proof. The proof of this result is similar to [2, Proposition 6] and we omit the details. �
Proposition 4.11 (Uniqueness of real minimizers). Let s ∈ ( 1

2 ,1
)

be fixed. If Ker(L1) = [ϕ′] for 
all ω ∈ ( 1

2 ,+∞)
, the real and even periodic minimizer obtained in Proposition 3.2 is unique.

Proof. It follows by similar arguments as in [2, Proposition 7]. �
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5. Orbital stability

In this section, we present the orbital stability results. It is well known that (1.1) has two basic 
symmetries, namely, translation and rotation. If u = u(x, t) is a solution of (1.1), so are e−iζ u

and u(x − r, t) for any ζ, r ∈ R. Considering u = P + iQ ≡ (P, Q), we obtain that (1.1) is 
invariant under the transformations

S1(ζ )u :=
(

cos ζ sin ζ

− sin ζ cos ζ

)(
P

Q

)
(5.1)

and

S2(r)u :=
(

P(· − r, ·)
Q(· − r, ·)

)
. (5.2)

The actions S1 and S2 define unitary groups in Hs
per with infinitesimal generators given by 

S′
1(0)u :=

(
0 1

−1 0

)(
P

Q

)
= J

(
P

Q

)
and S′

2(0)u := ∂x

(
P

Q

)
.

A standing wave solution as in (1.5) is given by u(x, t) = eiωtϕ(x) =
(

ϕ(x) cos(ωt)

ϕ(x) sin(ωt)

)
. Since 

the equation (1.1) is invariant under the actions of S1 and S2, we define the orbit generated by 
� = (ϕ, 0) as

O� = {
S1(ζ )S2(r)�; ζ, r ∈R

}=
{(

cos ζ sin ζ

− sin ζ cos ζ

)(
ϕ(· − r)

0

)
; ζ, r ∈R

}
.

The pseudometric d in Hs
per is given by d(f, g) := inf{‖f − S1(ζ )S2(r)g‖Hs

per
; ζ, r ∈ R}. 

The distance between f and g is the distance between f and the orbit generated by g under the 
action of rotation and translation, so that d(f, �) = d(f, O�).

We now present our notion of orbital stability.

Definition 5.1. Let �(x, t) = (ϕ(x) cos(ωt), ϕ(x) sin(ωt)) be a standing wave for (1.1). We say 
that � is orbitally stable in Hs

per provided that, given ε > 0, there exists δ > 0 with the following 
property: if u0 ∈ Hs

per satisfies ‖u0 −�‖Hs
per

< δ, then the local solution u(t) defined in the semi-
interval [0, +∞) satisfies d(u(t), O�) < ε, for all t � 0. Otherwise, we say that � is orbitally 
unstable in Hs

per .

Proof of Theorem 1.1. By Proposition 4.6, we see that n(L) = 1 and Ker(L) = [(ϕ′, 0), (0, ϕ)]
and these two basic facts are crucial to determine results of orbital stability/instability for periodic 
waves. Since both spectral properties are valid, the proof of orbital stability follows similarly as 
in [47, Theorem 4.17] but we need to take into account the result of global well-posedness as in 
Proposition 2.5 to prove the stability in terms of the two symmetries defined for the orbit O�. 
For the orbital stability, we need to consider the Vakhitov–Kolokolov condition q > 0 which is 
equivalent to consider (L1�, �)L2

per
< 0, where � = − d

dω
ϕ, L1� = ϕ and (L1�, ϕ′)L2

per
= 0. 

For the orbital instability in Hs
per,e, we first use the approach in [28] and the condition q < 0 by 

considering the orbit O� having only one basic symmetry (namely, the orbit generated by the 
rotations only). As far as we know, the theory in [28] only requires that n(L) = 1 and z(L) = 1, 
284



G.E. Bittencourt Moraes, H. Borluk, G. de Loreno et al. Journal of Differential Equations 341 (2022) 263–291
so that we need to remove out one of the symmetries in Definition 5.1. Since the space Hs
per,e

is not invariant under translation and ϕ′ is odd, the pair (ϕ′, 0) can not be considered as an 
element of the subspace Ker(L) and thus, under this restriction, we have Ker(L|L2

per,e
) = [(0, ϕ)]. 

Here L|L2
per,e

denotes the restriction of L over the subspace of even functions L2
per,e. It is clear 

that if the standing wave is orbitally unstable in a subspace Hs
per,e of Hs

per , then it will also be 
unstable in the whole energy space Hs

per . The numerical approach determined below will be 
useful to decide the values of s ∈ ( 1

4 , 1] for which q > 0 or q < 0 in order to prove the orbital 
stability/instability. �
5.1. Numerical experiments - proof of Theorem 1.2

In this section we generate the periodic standing wave solutions of the fNLS equation by using 
the Petviashvili’s iteration method. The method is widely used for the generation of travelling 
wave solutions ([21,22,41,49–51]). We refer to [38] for the numerical study on the fNLS equation 
where an iterative Newton method is used to construct the travelling wave solutions. Besides 
providing a numerical method in order to present the periodic single-lobe profile ϕ, our intention 
is to determine the sign of the quantity:

q = d

dω

π∫
−π

ϕ2dx. (5.3)

Applying the Fourier transform to the equation (1.6) gives(
|ξ |2s + ω

)
ϕ̂(ξ) − ϕ̂3(ξ) = 0, ξ ∈ Z. (5.4)

An iterative algorithm for numerical calculation of ψ̂(ξ) for the equation (5.4) can be proposed 
in the form

ϕ̂n+1(ξ) = ϕ̂3
n(ξ)

|ξ |2s + ω
, n ∈ N (5.5)

where ϕ̂n(ξ) is the Fourier transform of ϕn which is the nth iteration of the numerical solution. 
Here the solutions are constructed under the assumption

|ξ |2s + ω 
= 0. (5.6)

Since the above algorithm is usually divergent, we finally present the Petviashvilli’s method as

ϕ̂n+1(ξ) = (Mn)
ν

|ξ |2s + ω
ϕ̂3

n(ξ) (5.7)

by introducing the stabilizing factor

Mn =
(
((−�)s + ω)ϕn,ϕn

)
L2

per

(ϕ3, ϕn) 2
, ϕn ∈ H 2s

per (T ). (5.8)

n Lper
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Fig. 5.1. The exact and the numerical solutions of the fNLS equation with the wave frequency ω = 1 and the variation of 
Error(n), |1 − Mn| and RES with the number of iterations in semi-log scale.

Here, the free parameter ν is chosen as 3/2 for the fastest convergence. The iterative process is 
controlled by the error between two consecutive iterations given by

Error(n) = ‖ϕn − ϕn−1‖L∞
per

and the stabilization factor error given by |1 − Mn|. The residual error is determined by 
RES(n) = ‖Sϕn‖L∞

per
, where Sϕ = (−�)sϕ + ωϕ − ϕ3.

The periodic standing wave solution of the fNLS equation with s = 1 is given in [4] as

ϕ(x) = η1dn

(
η1√

2
x;κ

)
, (5.9)

where κ2 = η2
1−η2

2
η2

1
, η2

1 − η2
2 = 2ω, 0 < η2 < η1. Here the fundamental period is 

Tϕ = 2
√

2

η1
K(κ) where K(κ) is the complete elliptic integral of first kind.

In order to test the accuracy of our scheme, we compare the exact solution (5.9) with the 
numerical solution obtained by using (3.26) as the initial guess. The space interval is [−π, π]
and number of grid points is chosen as N = 210. In the left panel of Fig. 5.1, we present the exact 
and numerical solutions for the frequency ω = 1. As it is seen from the figure, the exact and 
the numerical solutions coincide. In the right panel of Fig. 5.1, the variations of three different 
errors with the number of iteration are presented. These results show that our numerical scheme 
captures the solution remarkably well.

The exact solutions of the fNLS equation are not known for s ∈ (0, 1). In Fig. 5.2 we illustrate 
the periodic wave profiles for several values of s ∈ (0, 1) with ω = 1. The nonlinear term becomes 
dominant with decreasing values of s ∈ (0, 1). Therefore, the wave steepens as expected.

In the rest of the numerical experiments, the sign of q in (5.3) is determined by investigating 
the value of ‖ϕ‖2

L2
per

is increasing or decreasing with respect to ω. The interval ω ∈ (1/2, 50] is 

discretized into 1000 subintervals. For each value of ω, we generate the periodic wave profile 
by using the Petviashvili’s iteration method on the interval [−π, π] with N = 214. Then, we 
evaluate the value of ‖ϕ‖2

2 .

Lper
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Fig. 5.2. Numerical wave profiles for various values of s ∈ (0,1) where ω = 1.

Fig. 5.3. The variation of ‖ϕ‖2
L2

per
with ω for s = 0.35 (top left), s = 0.4 (top right), s = 0.45 (bottom left), s = 0.5

(bottom right).

In Fig. 5.3 we illustrate the variation of ‖ϕ‖2
L2

per
with ω > 1

2 for s = 0.35, s = 0.4, s = 0.45

and s = 0.5. As it is seen from the figure, ‖ϕ‖2
L2

per
is decreasing so that q is negative. Numerical 

results indicate that the periodic wave is orbitally unstable for s ∈ ( 1
4 , 12 ].

The variation of ‖ϕ‖2
L2

per
with ω > 1

2 for s = 0.6 and s = 0.8 is depicted in Fig. 5.4. Since 

‖ϕ‖2
L2

per
is increasing, q is positive. Therefore, the numerical results show the orbital stability of 

the periodic wave for s ∈ [0.6, 1).
We have performed numerical experiments for several values of s ∈ (0.5, 0.6). The numerical 

results indicate that there is a critical wave frequency ωc such that q is negative for ω < ωc
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Fig. 5.4. The variation of ‖ϕ‖2
L2

per
with ω for s = 0.6 (left panel) and s = 0.8 (right panel).

Fig. 5.5. The variation of ‖ϕ‖2
L2

per
with ω for s = 0.52 (top left), s = 0.55 (top right), s = 0.57 (bottom left), s = 0.59

(bottom right).

and positive for ω > ωc for the values s ∈ (0.5, 0.6). In Fig. 5.5, the variation of ‖ϕ‖2
L2

per
with 

ω > 1
2 for s = 0.52, 0.55, 0.57 and s = 0.59 is presented. As it is seen from the figure ‖ϕ‖2

L2
per

is 

decreasing up to the critical wave frequency ωc and then it is increasing.
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[26] T. Gallay, M. Hărăguş, Orbital stability of periodic waves for the nonlinear Schrödinger equation, J. Dyn. Differ. 

Equ. 19 (2007) 825–865.
289

http://refhub.elsevier.com/S0022-0396(22)00540-X/bib62A7557F30C6208E6FE8042B4230ADB1s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD09319EE44C86BE2108A3934A3274D3Bs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD09319EE44C86BE2108A3934A3274D3Bs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib49546ABAD7F2050B4B26444A38864E1Ds1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib401B4B1FA050DF8E00EE9A9F365A38B6s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib401B4B1FA050DF8E00EE9A9F365A38B6s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD660E032617A6C3E52C723D858018CB5s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD660E032617A6C3E52C723D858018CB5s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib44FE93D515FCB3DDBF552F6AC8553B03s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib44FE93D515FCB3DDBF552F6AC8553B03s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibA75183FE1FBD33937BAC644B0B5552B0s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibA75183FE1FBD33937BAC644B0B5552B0s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibE87245B0E86DCBC2CA4F41E4EC05FC0As1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibE87245B0E86DCBC2CA4F41E4EC05FC0As1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibF0AE03444EE2340F20CEE6A53CEBC0ABs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib3FA35A19E0A8DDEFB0ACF366F15DCDBEs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib3FA35A19E0A8DDEFB0ACF366F15DCDBEs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibB94F0E2E5E50387135C5C2F73953DFBEs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib08F6C53FCE7889665B9495A9AAB7C8B0s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib66809F59D127E8A1FC8A33D4D6433DC7s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib66809F59D127E8A1FC8A33D4D6433DC7s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD42F83F3141D051FC1A78FCE560084E5s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD42F83F3141D051FC1A78FCE560084E5s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibFF244B9C5D8A75AEB024601EEA9DD540s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibFF244B9C5D8A75AEB024601EEA9DD540s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibB7EBBC4C3183D0E66CB23F62D81E41B4s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibB7EBBC4C3183D0E66CB23F62D81E41B4s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibA2A25685A77230D6392CB33E8BAC7707s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibA2A25685A77230D6392CB33E8BAC7707s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib0105B34C422A8DEE5C973056794604A1s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib0105B34C422A8DEE5C973056794604A1s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibDE125F7385F76B21449A365E71BBED05s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibDE125F7385F76B21449A365E71BBED05s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibA9A6B0309C06EBF6A47FCB2A5F3797AAs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibA9A6B0309C06EBF6A47FCB2A5F3797AAs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD1F9EAC9E0F7AD4167B004F086390470s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD1F9EAC9E0F7AD4167B004F086390470s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibE182EBBC166D73366E7986813A7FC5F1s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibE182EBBC166D73366E7986813A7FC5F1s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib4BACDD0AA69F8246DE18A81E4DF0CE68s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib8B972A0B9792AD7326550ECB96E10195s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib8B972A0B9792AD7326550ECB96E10195s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD6DDD9B32A4C1F88D99BC4EE69AEEAF7s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD6DDD9B32A4C1F88D99BC4EE69AEEAF7s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib5D84E1A1D6A7B706CA09A3523910E49Ds1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib5D84E1A1D6A7B706CA09A3523910E49Ds1


G.E. Bittencourt Moraes, H. Borluk, G. de Loreno et al. Journal of Differential Equations 341 (2022) 263–291
[27] T. Gallay, D. Pelinovsky, Orbital stability in the cubic defocusing NLS equation: I. Cnoidal periodic waves, J. Differ. 
Equ. 258 (2015) 3607–3638.

[28] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 
74 (1987) 160–197.

[29] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 
94 (1990) 308–348.

[30] S. Gustafson, S. Le Coz, T-P. Tsai, Stability of periodic waves of 1D cubic nonlinear Schrödinger equations, Appl. 
Math. Res. Express (2017) 431–487.

[31] S. Hakkaev, A. Stefanov, Stability of periodic waves for the fractional KdV and NLS equations, Proc. R. Soc. Edinb., 
Sect. A 151 (2021) 1171–1203.

[32] H. Hajaiej, Z. Ding, On a fractional Schrödinger equation in the presence of harmonic potential, Electron. Res. 
Arch. 29 (2021) 3449–3469.

[33] V. Hur, M. Johnson, Stability of periodic traveling waves for nonlinear dispersive equations, SIAM J. Math. Anal. 
47 (2015) 3528–3554.

[34] V. Hur, M. Johnson, J. Martin, Oscillation estimates of eigenfunctions via the combinatorics of noncrossing parti-
tions, Discrete Anal. 13 (2017), 20 pp.

[35] A. Ionescu, F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal. 266 (2014) 
139–176.

[36] R.J. Iorio Jr., V.M.V. Iorio, Fourier Analysis and Partial Differential Equations, Cambridge University Press, Cam-
bridge, 2001.

[37] K. Kirkpatrick, E. Lenzmann, G. Staffilani, On the continuum limit for discrete NLS with long-range lattice inter-
actions, Commun. Math. Phys. 317 (2013) 563–591.

[38] C. Klein, C. Sparber, P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. Math. 
Phys. Eng. 470 (2172) (2014) 20140364.

[39] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000) 298–305.
[40] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E 66 (2002) 056108.
[41] U. Le, D. Pelinovsky, Convergence of Petviashvili’s method near periodic waves in the fractional Korteweg-de Vries 

equation, SIAM J. Math. Anal. 51 (2019) 2850–2883.
[42] K. Leisman, J. Bronski, M. Johnson, R. Marangell, Stability of traveling wave solutions of nonlinear dispersive 

equations of NLS type, Arch. Ration. Mech. Anal. 240 (2021) 927–969.
[43] Y. Ma, M. Ablowitz, The periodic cubic Schrödinger equation, Stud. Appl. Math. 65 (1981) 113–158.
[44] F. Natali, U. Le, D. Pelinovsky, New variational characterization of periodic waves in the fractional Korteweg-de 

Vries equation, Nonlinearity 33 (2020) 1956–1986.
[45] F. Natali, U. Le, D. Pelinovsky, Periodic waves in the fractional modified Korteweg-de Vries equation, J. Dyn. 

Differ. Equ. 34 (2022) 1601–1640.
[46] F. Natali, G. Moraes, G. de Loreno, A. Pastor, Cnoidal Waves for the Klein-Gordon and Nonlinear Schrödinger 

Equation, preprint, 2022.
[47] F. Natali, A. Pastor, The fourth-order dispersive nonlinear Schrödinger equation: orbital stability of a standing wave, 

SIAM J. Appl. Dyn. Syst. 14 (2015) 1326–1347.
[48] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 13 (1959) 115–162.
[49] G. Oruc, H. Borluk, G.M. Muslu, The generalized fractional Benjamin-Bona-Mahony equation: analytical and 

numerical results, Physica D 409 (2020) 132499.
[50] G. Oruc, F. Natali, H. Borluk, G. Muslu, On the stability of solitary wave solutions for a generalized fractional 

Benjamin–Bona–Mahony equation, Nonlinearity 35 (2022) 1152–1169.
[51] D. Pelinovsky, Y. Stepanyants, Convergence of Petviashvili’s iteration method for numerical approximation of sta-

tionary solution of nonlinear wave equations, SIAM J. Numer. Anal. 42 (2004) 1110–1127.
[52] P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270–291.
[53] M. Reed, B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New 

York-London, 1978.
[54] L. Roncal, P. Stinga, Fractional Laplacian on the torus, Commun. Contemp. Math. 18 (2016) 1550033.
[55] G. Rowlands, On the stability of solutions of the non-linear Schrödinger equation, J. Appl. Math. 13 (1974) 367–377.
[56] C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Springer-Verlag, 

New York, 1999.
[57] J. Thirouin, On the growth of Sobolev norms of solutions of the fractional defocusing NLS equation on the circle, 

Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34 (2017) 509–531.
[58] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg, 

1995.
290

http://refhub.elsevier.com/S0022-0396(22)00540-X/bibC8D0BEDCA98C7CFB86C6BFA688653E0Ds1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibC8D0BEDCA98C7CFB86C6BFA688653E0Ds1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib801D96130BEE50246F93383D69E250FBs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib801D96130BEE50246F93383D69E250FBs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib3AF0470E59FEE08D3D2BBD896C612154s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib3AF0470E59FEE08D3D2BBD896C612154s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib371CBDB2BE0DDE820FF37726490F0650s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib371CBDB2BE0DDE820FF37726490F0650s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib59E8CC0A7BEA36361B54B187AA62FB91s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib59E8CC0A7BEA36361B54B187AA62FB91s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibB0A43E60F21FEB841A34958E147AF087s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibB0A43E60F21FEB841A34958E147AF087s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib796BEB0B6C49EE049101E07F10655157s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib796BEB0B6C49EE049101E07F10655157s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD6D49752DFB040BF5A873064FD49A4DCs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD6D49752DFB040BF5A873064FD49A4DCs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib0AC0FD413650958044CF533E2BBAA698s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib0AC0FD413650958044CF533E2BBAA698s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib4DDDAE9485A797BE91390613C31ADD91s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib4DDDAE9485A797BE91390613C31ADD91s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib2EDC2E899A26EABB9F50CF0C6D6EDDD8s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib2EDC2E899A26EABB9F50CF0C6D6EDDD8s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib89A114BEF2A7DDB400826F3683CA2BF8s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib89A114BEF2A7DDB400826F3683CA2BF8s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib7604701116663A4B09E5993046DBF2D4s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibBCE83AC0BE07643F91D60FD366C8362As1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib233724C5ADF28DA47784390134DB3C66s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib233724C5ADF28DA47784390134DB3C66s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibDEAE1681CC688DB8B68A4A70FF32DA81s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibDEAE1681CC688DB8B68A4A70FF32DA81s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib8F68C14CF2DDFE994CEC2DCC404DF633s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib3EDF1F8B1D760EC7CBDDED63812E055Fs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib3EDF1F8B1D760EC7CBDDED63812E055Fs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibE505645808F38A1260740979DCFEAF14s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibE505645808F38A1260740979DCFEAF14s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibFC1E62C3A85109CD856CF8B8666EBD05s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibFC1E62C3A85109CD856CF8B8666EBD05s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib2B2FECEB894D20DA33733A2E079DDEAAs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD897E0980472466DD2425374940AFEC0s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD897E0980472466DD2425374940AFEC0s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibA207901A91183A3461DA470F6BDD1B11s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibA207901A91183A3461DA470F6BDD1B11s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD3D4C5DEB455AC79DD5FF47C88BD65D9s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibD3D4C5DEB455AC79DD5FF47C88BD65D9s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib49E3BC52859F904F202C4D27CF2D83E8s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib203194B98D53B311A2A258211932A2CCs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib203194B98D53B311A2A258211932A2CCs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib74AE2CFE6B92EA33651070EA8320ECD6s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib16A0A06EF5505637F22940A4FE4F9EAFs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibCC846A92CF48A63A3F171778A3C5D208s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bibCC846A92CF48A63A3F171778A3C5D208s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib99E28BCF8484131DFB88A359CEFCB6F6s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib99E28BCF8484131DFB88A359CEFCB6F6s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib9BA3D9F8C580323247165F95AAD69489s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib9BA3D9F8C580323247165F95AAD69489s1


G.E. Bittencourt Moraes, H. Borluk, G. de Loreno et al. Journal of Differential Equations 341 (2022) 263–291
[59] H. Triebel, Theory of Function Spaces, reprint of the 1983 edition, Birkhäuser/Springer, Basel AG, Basel, 2010.
[60] M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 

(1985) 472–491.
291

http://refhub.elsevier.com/S0022-0396(22)00540-X/bibCE50FBEB4EB117435E6138FC950EF67Fs1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib2C8D2DAEC2B4138427E4A4A903967E58s1
http://refhub.elsevier.com/S0022-0396(22)00540-X/bib2C8D2DAEC2B4138427E4A4A903967E58s1

	Orbital stability of periodic standing waves for the cubic fractional nonlinear Schrödinger equation
	1 Introduction
	2 Gagliardo-Nirenberg inequality in the fractional periodic context
	3 Existence of periodic waves
	3.1 Existence of periodic waves via minimizers
	3.2 Small-amplitude periodic waves

	4 Spectral analysis and uniqueness of minimizers
	4.1 Spectral analysis
	4.2 Uniqueness of real minimizers

	5 Orbital stability
	5.1 Numerical experiments - proof of Theorem 1.2

	Data availability
	Acknowledgments
	References


