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ABSTRACT Accurate prediction of path loss is essential for the design and optimization of wireless
communication networks. Existing path loss prediction methods typically suffer from the trade-off between
accuracy and computational efficiency. In this paper, we present a deep learning based approach with clear
advantages over the existing ones. The proposed method is based on the Generative Adversarial Network
(GAN) technique to predict path loss map of a target area from the satellite image or the height map of the
area. The proposed method produces the path loss map of the entire target area in a single inference, with
accuracy close to the one produced by ray tracing simulations. The method is tested at 900MHz transmission
frequency; the trained model and source codes are publicly available on a Github page.

INDEX TERMS Deep learning, height maps, satellite images, GANS, channel parameter estimation,
wireless network, regression, excess path loss, air-to-ground communication system.

I. INTRODUCTION

Path loss, which refers to the signal power reduction between
transmitter and receiver antennas, is a critical component
in the design and optimization of wireless communication
networks. Path loss is affected by many factors, including
the reflection, refraction and absorption of electromagnetic
waves, terrain, vegetation, and weather conditions. Simple
analytical models, such as the free-space model and the
two-ray ground reflection model, are insufficient for urban
environments and irregular terrains. There are empirical mod-
els (e.g., Okumura-Hata [1], [2] and COST Hata [3]) that
are aimed for urban environments; these models require a
characterization of the environment as, for example, “‘sub-
urban”, “urban” and “metropolitan” [4]; however, such a
general classification may not reflect the actual character-
istics of a specific area or a specific transmitter-receiver
path. Various models have been developed to incorporate
the local features along the transmitter-receiver path. For
instance, Walfisch-Ikegami model [3] includes parameters,
such as average building heights, average road widths and
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road orientation between transmitter and receiver. There are
also alternative parametric models, such as the alpha-beta-
gamma and the close-in models [5], which do not define the
parameter values based on specific building characteristics
but require the optimization of parameters from measurement
data.

Compared to analytical and empirical models, ray tracing
simulations result in more accurate predictions in urban envi-
ronments when there is a 3D model of the region [6], [7],
[8]. The downside of ray tracing simulations is the high com-
putational cost, making it impractical for network planning
applications.

Machine learning based approaches have also been utilized
for path loss prediction. Traditional machine learning meth-
ods use hand-crafted features (e.g., building density, average
building height and average street width) to train a model [9],
[10]. The training data may be obtained from ray tracing
simulations or field measurements.

The need for choosing the right features is a major issue in
traditional machine learning methods; deep learning methods
overcome this issue by learning the features as well during
the training process. In recent years, deep learning based
path loss prediction methods have been proposed. In [11],
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the satellite image of a target area is input to a convolutional
neural network (CNN) to produce path loss model param-
eters. The path loss model is the log-distance path model;
the network predicts the path loss exponent and shadowing
factor of the model. In [12], the path loss distribution of an
area, instead of specific model parameters, is predicted again
from satellite images. The path loss distribution does not tell
the path loss value at a specific point, but it can be used to
determine critical regional values, such as the coverage area.
In [13], the building profile between transmitter and receiver
is input to a deep fully connected neural network to predict
the path loss value at the receiver. The main disadvantage of
such point-to-point path loss modeling is the need to run the
network for each receiver point. There are also methods that
combine features extracted from satellite images with some
additional features (e.g. transmitter height, receiver height,
transmitter-receiver distance and frequency), and then input
to a neural network for path loss regression [14], [15].

In this paper, we present a deep learning based approach to
predict path loss at every point in a target region (in a single
inference) directly from the satellite image or the height map
of the region. This is a clear advantage over the point-to-
point prediction models, which require a separate inference
for each point, and over the parametric prediction models,
which fit a global model for the entire region and do not
predict path loss at every receiver point.

Our approach is based on the Generator Adversarial Net-
work (GAN) technique. GANSs are typically used in computer
vision for style transfer applications [16]. We are able to adopt
the GAN technique by treating path loss values of the target
region as an image. The proposed network, which we call
PL-GAN, is trained with data obtained from extensive ray
tracing simulations. The trained network produces path loss
values almost instantly, with accuracy close to ray tracing
simulations. The trained model and source codes are publicly
available on a Github page'.

The paper is organized as follows. In Section II,
we describe how the training/testing dataset is generated.
We present the proposed network architecture in Section III.
We explain the training method in Section IV. We present the
results in Section V and conclude the paper in Section VI.2

Il. DATASET GENERATION

The dataset is generated following the process described in
[11] and [12] with some changes necessary for the proposed
architecture. We have the satellite images and corresponding
3D models of some urban/suburban regions, each with size
1.8kmx 1.8km [11]. The PlaceMaker> extension for Google
SketchUp* is used to obtain the 3D models along with the
satellite images. The 3D models are imported and merged
with a flat terrain in Wireless InSite’ ray tracing simulation

2https:// github.com/ahmarey/PLGAN

3 https://www.suplacemaker.com

4https://www.sketchup.com

5 https://www.remcom.com/wireless-insite-em-propagation-software
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environment. The terrain is set as dry earth and the building
material is set as concrete. In each model, the transmitter is
placed at the center of a region at a height of 40m above
ground. The receivers are placed at 1.5m above ground on
a 110 x 110 grid. The transmitter power is set to 60 dBm, the
transmission frequency is set to 900 MHz, and the antenna
type is set as an omni-directional antenna. Using the ray
tracing simulations, excess path loss values at the receivers
are calculated. (Receivers that are placed inside the buildings
are known since the 3D models are available. The path loss
values corresponding to these locations are not reliable, and
they are excluded from the final performance evaluation,
as we will explain later.)

The size of each satellite image is 256 x 256; to match this
size, the path loss values on the 110 x 110 grid is resized to
256 x 256 with bilinear interpolation.

As an alternative to satellite images, we want to investigate
the use of 3D models to predict path loss values. 3D models
are converted to height map images using orthographic pro-
jection; a pixel value in a height map represents the height of
that point in the 3D model. The height maps are also resized
to 256 x 256 to match the sizes of satellite images and path
loss images.

A block diagram of the dataset generation process is pre-
sented in Figure 1. The satellite image, height map image, and
path loss image of a sample region is given in Figure 2.
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<

Target Height Map a
Image
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—

Ray-tracing Path Loss
Simulation Image

3D Model

FIGURE 1. Block diagram of dataset generation. The satellite image,
height map image and path loss image of each target region is added to
the dataset.

Ill. NETWORK ARCHITECTURE

We treat path loss values on a grid of receivers as an image;
this allows us to utilize image synthesis methods in the path
loss prediction. Generative Adversarial Network (GAN) is
a recently developed deep learning based image synthesis
approach; it has been successfully used in style transfer,
inpainting, super resolution and image-to-image translation.
GAN training includes two networks: a generator network
to generate new examples, and a discriminator network to
classify examples as real or fake [16].

Our idea is to use GAN to produce path loss image (that
is, path loss values on a grid of receivers in the entire target
region) from a satellite or a height map image. The proposed
generator and discriminator architectures are presented in
Figures 3 and 4, respectively. The generator is essentially
a U-Net structure with skip connections, which is known to
allow deeper architectures. We use 15 convolutional blocks
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FIGURE 2. Satellite image, height map image and path loss image (in
order from top to bottom) of a sample region. For the height map image,
the color bar indicates height in meters. For the path loss image, the color
bar indicates the excess path loss in dB; pixels corresponding to receivers
inside buildings are marked with -25dB, which is a random choice that is
smaller than all actual excess path loss measurements, for visualization
purposes.

in a conventional encoder-decoder structure, first, decreas-
ing the size (height and width) while increasing the depth
(number of channels), followed by transpose convolutions to
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increase the size while reducing the depth until the original
image dimensions are reached. (The generator architecture is
given in Figure 3.)

For the discriminator, we use a patch discriminator [17]
that decides on each patch of the generator output as true or
fake. The advantage of patch discriminator is that it has fewer
parameters, can be applied to arbitrarily large images, and
has been shown to produce high quality results [18]. We use
stride of two at the initial layers to reduce the number of
parameters to be estimated while preferring stride of one later
in order not to lose the image details. The discriminator has
the concatenation of generated image and true image as its
input; and it consists of eight convolutional blocks, producing
an output of size 5 x 5 x 1 for each patch. (The discriminator
architecture is given in Figure 4.)

The loss functions and the training process are described
in the next section. Regarding the architectures, we tried
some other variations as well. Using a small sized output for
the discriminator and having enough depth turned out to be
crucial for the current success.

IV. TRAINING THE NETWORKS

We train two separate networks, one for satellite image as the
input and one for height map as the input. At the end, we will
compare their performances. The training process is very
similar for both cases, except for some minor changes. Train-
ing a GAN network is not straightforward; in this section,
we explain our training process in detail. The final goal of
GAN training is such that the generator is able to deceive a
well-trained discriminator.

The loss function for the generator training has two com-
ponents, as illustrated in Figure 5. One loss component mea-
sures how well the discriminator is deceived. An input image,
which is either a satellite image or a height map, is passed
to the generator. The generated path loss image is input to
the discriminator, which decides patch-by-patch whether the
generator output is true. The discriminator output is compared
against an array of ones, each corresponding to patch; and
binary cross entropy is used as the cost function. In the perfect
case, the discriminator is totally deceived and produces an
output of one for each patch. The other loss component is
the L1 loss between the true path loss image and the gener-
ated path loss image. Finally, a weighted sum of the binary
cross-entropy loss and L1 loss is taken, where the weight of
the L1 loss is 100 times the other weight, as suggested in [18].

The generator training is modified slightly for the height
map network. When the input image is satellite image, the
L1 loss between the generated and true images is calculated
for all pixels. When the input image height map, we know
whether a pixel corresponds to an indoor location or an
outdoor location. Therefore, the L1 loss is calculated for only
the outdoor pixels, forcing the network to minimize the error
on the outdoor path loss estimation and disregard the error for
the indoor locations.

For the discriminator, the goal is to train a network
that distinguishes between true and fake path loss images.
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FIGURE 3. The generator architecture. BLOCK1, which consists of 2D convolution with filter size 4 x 4 and stride 2, batch
normalization and Leaky RelU layers, is repeated eight times. These layers are followed by upsampling layers. The
upsampling layers include repeated application of BLOCK2, which consists of transpose convolution with filter size 4 x 4 and
stride 2, batch normalization and Leaky RelLU layers. The number of filters is indicated above each block.
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FIGURE 4. The discriminator architecture. BLOCK1, which consists of 2D convolution with filter size 4 x 4 and
stride 2, batch normalization and Leaky RelU layers, is repeated three times. These layers are followed by
repeated application of BLOCK2, which consists of 2D convolution with filter size 4 x 4 and with stride 1,
batch normalization and Leaky RelLU layers. The number of filters is indicated above each block.
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FIGURE 6. The loss function for the discriminator training when true and
generated images are input.

FIGURE 5. The loss function for the generator training. loss image or the true path loss image. When the inputs are

true path loss image and the generated path loss image, the
The discriminator takes two inputs, one is the true path loss discriminator should classify each patch as fake (i.e. return
image and the other is either the generated generated path “0’"); therefore, the loss function is binary cross-entropy loss
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FIGURE 7. Comparison between the predicted path loss images and true path loss images for the three sample regions.

between the discriminator output and a matrix of zeros,
as illustrated in Figure 6. When both input images are real
path loss images, binary cross-entropy between the discrimi-
nator outputs and a matrix of ones is calculated.
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The dataset, which consists of 997 image pairs, is split into
training (902) and testing (95) sets. The training images are
augmented, using rotations (90 and 180 degrees) and flipping
(horizontal and vertical), to increase the training set size eight
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FIGURE 8. Comparison between the true distributions and the distributions obtained from predicted path loss images for the regions given in Figure 7.

TABLE 1. Evaluation of the trained networks for different input types.

Satellite image | Height map image
Average RMSE 433 44.1
Average MSE between dist. 2.6 x 10~° 4.6 x 10~°
Average MSE between dist. [12] | 160 x 10~ ° -

folds to 7216. We used Adam optimizer for training both
the generator and discriminator with learning rate 0.0001 and
batch size of 32. We trained the network on Tensorflow 2.0 on
Nvidia RTX 2060 GPU where the training goes for about
12 hours for 500 epochs. (The trained model is available on
the Github link, as mentioned before.)

V. EVALUATION

To evaluate the performance of the proposed approach,
we use two quantitative measures. The first one is the root
mean squared error (RMSE) between true path loss values
and predicted path loss values, averaged over the entire test
set. The second one is the mean squared error (MSE) between
the true path loss distribution and the distribution obtained
from the predicted path loss image, averaged over the entire
test set.

The results are given in Table 1. The average RMSEs
for satellite image and height map as input are similar. The
average MSE between the distributions for satellite image
as input is lower than that for height map image as input.
In the table, we also included a result from [12] (the closest
experiment to our scenario with satellite image as input,
900Mhz frequency, 80m altitude, eight bin representation
of distribution), as a rough comparison. The average MSE
results in this paper are about two folds better than the ones
in [12]. The average RMSE results are about 44dB, which
is satisfactory considering the fact that the dynamic range
of excess path loss in the experiments is more than 270dB.
In addition, the visual results indicate that path loss values
including shadowing due to buildings are predicted well.

In Figure 7, we provide results for three sample regions.
In the figure, the first row shows the satellite images and the
second row shows the height map images. The colorbar next
to the height map images indicates heights in meters. The
third row shows the true excess path loss values. The color bar
next to the images are the path loss values in dB. The fourth
and fifth rows show the predicted excess path loss images
for the network that takes satellite images as input and the
network that takes height map images as input, respectively.
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In these images, we note that shadowing due to buildings are
captured well with both methods, while height map images
can result in sharper shadowing boundaries.

In Figure 8, we show the path loss distributions for the
regions given Figure 7. These results also indicate that the
overall shape of the distribution can be predicted well.

VI. CONCLUSION

In this work, we present a deep learning based approach to
predict the point-wise path loss values of an entire region
from either height map images or satellite images. Treating
path loss values of a region as an image, we use a GAN model
for the supervised estimation problem. The networks can
produce real-time inference and prove to be viable alternative
to ray tracing simulations, which have high computational
complexity.

Comparing height map images and satellite images as
input, we found that height images can lead to better results.
This is mainly due to the fact that definite height structure is
more informative about the shadowing effects compared to
satellite images.

By increasing the dataset size, it is possible to achieve
better results. We leave this as a future work because other
than the dataset that we have there are no public datasets
that have path loss images as well as corresponding satellite
images and height maps. We hope that this work will initiate
further research and innovations in this area.
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