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Abstract—Radio-frequency (RF) front-end forms a critical part
of any radio system, defining its cost as well as communication
performance. However, these components frequently exhibit non-
ideal behavior, referred to as impairments, due to the im-
perfections in the manufacturing/design process. Most of the
designers rely on simplified closed-form models to estimate these
impairments. On the other hand, these models do not holistically
or accurately capture the effects of real-world RF front-end
components. Recently, machine learning-based algorithms have
been proposed to estimate these impairments. However, these al-
gorithms are not capable of estimating multiple RF impairments
jointly, which leads to limited estimation accuracy. In this paper,
the joint estimation of multiple RF impairments by exploiting the
relationship between them is proposed. To do this, a deep multi-
task learning-based algorithm is designed. Extensive simulation
results reveal that the performance of the proposed joint RF
impairments estimation algorithm is superior to the conventional
individual estimations in terms of mean-square error. Moreover,
the proposed algorithm removes the need of training multiple
models for estimating the different impairments.

Index Terms—Deep learning, joint estimation, multi-task learn-
ing, multiple RF impairments.

I. INTRODUCTION

The sixth-generation (6G) of mobile communication en-
visages even more diversity of applications compared to the
previous generations. This will result in its application in
various domains such as education, entertainment, banking,
retails, healthcare, etc. [1]. This necessitates new enablers
including higher carrier frequencies, the accompanying larger
bandwidths, higher modulation orders, massive multiple-input
multiple-output (MIMO) technology, etc. However, these new
enablers make the wireless communication systems more
sensitive to radio-frequency (RF) impairments [2]. Commu-
nication system engineers and researchers should take into
consideration the effect of these impairments while designing
the next generation wireless systems.

The RF impairments can be studied from various perspec-
tives in wireless systems. For instance, [3]–[5] look at the
impairments from a decoding aspect, while [6]–[8] try to
utilize the impairments for predistortion, hardware problem
identification, and authentication aspect, respectively. In the
case of [3]–[5], since the target is to remove the effect of
these impairments at the receiver, there is no need to estimate

the individual impairments. This is because the transmitted
symbols can be decoded successfully as long as the sum of
multiplicative and additive impairments (joint effect of mul-
tiple impairments) are estimated and compensated. However,
in the latter case where the objective is to use these impair-
ments for predistortion, hardware problem identification, or
authentication perspectives, impairments should be estimated
individually to have better granularity.

In the literature, many algorithms use the statistical proper-
ties of the signals to estimate the RF impairments individually.
Some of these model-based algorithms are explained in [9].
Recent literature shows that some of these impairments have
non-stationary characteristics. Hence, the aforementioned al-
gorithms may not always be capable of addressing this issue.
This effect becomes more pronounced with the aforementioned
enablers, such as higher modulation orders and frequencies,
envisaged in 6G and beyond communication systems [10]. In
view of these challenges, machine learning (ML) and deep
learning (DL)-based algorithms have been proposed for more
sophisticated RF impairment estimation.

Several algorithms are developed to estimate RF impair-
ments with ML-based algorithms [11]–[16]. Bayesian filtering
is used to estimate phase noise [11]. Convolutional neural
networks are used to estimate the transmitter in-phase (I) and
quadrature (Q) path gain imbalance using raw I/Q data as
an input [12], [13]. A reinforcement learning-based algorithm
is proposed to estimate the same in [14]. Frequency offset
estimation is addressed in [15], [16] where the former provides
a neural-network-based solution for MIMO systems, while the
latter proposes a DL algorithm for estimating the same in
millimeter-wave and terahertz frequencies systems. However,
these algorithms estimate the impairments individually and do
not utilize the existing relationship between the impairments,
which may limit the estimation accuracy if impairments have
similar effects on the received signals.

The joint estimation of multiple RF impairments is espe-
cially suitable for cases where the different impairments have a
joint (additive and/or multiplicative) effect on the signal. How-
ever, joint estimation is a complex problem, and it is difficult to
have an accurate estimation performance. It is intuitively sound
to think of using a DL algorithm to solve complex problems
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Fig. 1. A block diagram of data transmission in a wireless communication system.

[17]. Especially, DL-based multi-task learning algorithms [18]
are capable of addressing complex joint estimation problems
since they can utilize the relationship between related tasks
through their hidden layers. Along with this line, different
from the existing literature, this paper proposes to estimate
multiple RF impairments jointly for improving their estimation
accuracy by using relationships between different impairments.
For this purpose, a DL-based multi-task learning algorithm
is designed. Extensive simulation results show a performance
improvement achieved by the proposed algorithm compared to
DL-based single RF impairment estimation in terms of mean
square error (MSE). Furthermore, instead of training a DL
model for each impairment, a single DL model is used in the
proposed algorithm.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

In this paper, single-carrier modulation is considered as in
[19]. The system model can be divided into three blocks;
transmitter, channel, and receiver. These blocks are illustrated
in Fig. 1. In the transmitter, transmitted data Tx and the
preambles with M -sequence length are generated. Then, the
modulated symbols are designed as the frame structure in
Fig. 2. Here note that the cyclic prefix (CP) is used to avoid
inter-symbol interference and provide circular convolution.
Afterward, the signal is upsampled and filtered, and send
through the channel. In the channel, the frequency selective
channel with additive white Gaussian noise (AWGN) distorts
the transmitted signal. In the receiver, the matched filter is
used to maximize the signal-to-noise ratio (SNR) and the
coarse synchronization is performed to find the starting point
of the frame. Then, fine synchronization is performed and RF
impairments are estimated.

DataA A CP

Guard
interval

Guard
intervalM-sequence

Fig. 2. Illustration of the designed frame.

B. The RF Impairments

Communication systems suffer from a wide variety of im-
pairments. Some of these impairments (their parameters); I/Q
gain imbalance (Ig/Qg), quadrature offset (ψ), phase noise (φ),
and I/Q offset (Io/Qo); are estimated in this paper. These
impairments are briefly explained below, and their effects

are illustrated in Fig. 3 with their components [20], [21]. In
this figure, parameters of the RF impairments are selected as
follows; Ig = 1.3, Qg = 0.8, ψ = 0.9, φ = π/3, Io = 0.21,
and Qo = −0.15.

1) I/Q gain imbalance: It causes the in-phase component
of the signal (I) to be smaller than the quadrature component
of the signal (Q), or vice versa. This results in an imbalanced
change in the original constellation. The imbalance of I/Q
gain can be measured as (Ig/Qg − 1)× 100 in percent.

2) Quadrature offset: It causes due to the phase offset in
the sine and cosine signal generation. This distorts the or-
thogonality between I/Q branches so that the degree between
the branches is not 90◦. The signal with quadrature offset is
modeled as

xqo(t) = cos (2πfct)Ig<{x(n)}+sin (2πfct+ ψ)Qg={x(n)},
(1)

where fc and x(t) denote the carrier frequency and modulated
time-domain signal after DAC and band-bass filter processes,
respectively. < and = represent real and imaginary part of the
data, respectively. Also, t and n represent the time and sample,
respectively.

3) Phase noise: It is caused by the spectrum spread at the
desired spectrum of a practical local oscillator. It is assumed
that the phase noise is constant over the data so that the effect
of the phase noise is only the phase rotation of the symbols.
This can be described as

xpn(t) = xqo(t)e
jφ, (2)

where φ denotes the phase rotation.
4) I/Q offset: It is essentially caused by the mixers and

direct current signals. The effect is a shift in the constellation.
The signal with I/Q offset is modeled as

xiqo(t) = xpn(t) + Io + jQo, (3)

where Io and Qo denote the offsets for the I and Q compo-
nents.

When all of the aforementioned impairments are added to
the transmitted signal, the modulated symbols are seen as the
constellation plot in Fig. 3. As seen from this figure, when
the effect of impairments is mixed, the constellation diagram
becomes more distorted, which makes the estimation problem
complex and difficult.

After the signal with all these impairments passes through-
out the wireless channel, the baseband received time-domain
signal can be defined as

r(n) = κ(n)x(n) + ζ(n) + w(n), (4)
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where κ(n), ζ(n), and w(n) denote the multiplicative impair-
ments, the additive impairments, respectively and the complex
Gaussian sample with the distribution of CN (0, σ2

N ). Here, the
channel is considered as frequency selective, and the maximum
excess delay is smaller than the CP duration.
C. Deep Learning

There is a wide variety of successful ML algorithms ap-
plications in diverse areas ranging from image and speech
processing to pattern recognition. This success motivated their
applicability to the area of wireless communication [22]. These
algorithms are expected to become an indispensable part of 6G
and beyond wireless communication systems.

Amongst ML algorithms, DL-based algorithms have be-
come popular since the usage of multiple hidden layers of
DL algorithms enables to magnify the intrinsic distinctive data
features while suppressing the irrelevant information at each
layer [23]. This is especially the case for complex problems
where multiple problems are tried to estimate jointly and the
system becomes a black box [24]. Therefore, these algorithms
are suitable candidates for complex problems. Also, in these
algorithms, raw data can be used without specific feature en-
gineering/crafting thanks to the aforementioned added benefits
of the deep architectures.

III. JOINT RF IMPAIRMENTS ESTIMATION

A. The Proposed Algorithm

The RF front-end components cause multiplicative and ad-
ditive impairments in the communication systems, as described
in (4). In this model, if only one RF impairment is considered
in the system, the estimation with the classical algorithms can
be performed optimally. However, multiple RF impairments
are considered as a practical scenario in the system model,
as shown in Fig. 3. Therefore, the accurate estimation of the
impairments caused by the individual components becomes a
challenging problem with classical estimation algorithms. For

instance, let’s assume that the phase noise and I/Q offset exist
in (4), then the received signal considering the AWGN channel
can be written as

r(n) = x(n)ejφ + Io + jQo + w(n). (5)

This equation shows that when the estimation of the phase
offset is made from r(n), the accuracy of the estimation
does not only depend on the noise but both noise and I/Q
impairment. Moreover, when the number of RF components
causing an impairment increases, the problem becomes kind of
a black box, and accurate estimation of individual impairment
becomes unfeasible with the classical algorithms.

DL-based algorithms are highly preferred in black box
problems. Still, in DL, optimization is made based on a certain
metric, whether this is a score on a particular benchmark or
a business key performance indicator. For this optimization, a
single model or an ensemble of models are generally trained
to perform the desired task. While an acceptable performance
is generally achieved in this way, by being laser-focused on
a single task, trying to find optimum solutions simultaneously
for different tasks may increase the performance of the original
task. In other words, our model can estimate the original
problem better, by sharing representations between related
tasks.

Multi-task learning is well-suited to estimate multiple im-
pairments since it can leverage useful information contained in
multiple related tasks to improve the individual estimates [25].
This is especially the case where it is used with several hidden
layers (DL-based multi-task learning algorithm). In view of
these discussions, the usage of a DL-based multi-task learning
algorithm is proposed in this paper to estimate multiple RF
impairments jointly.

The proposed algorithm based on DL-based multi-task
learning operates in two stages. First, the proposed algorithm is
performed in the training stage, where the dataset is generated,
and a DL algorithm is configured and trained. Afterward, it is
performed in the testing stage where multiple RF impairments
are estimated simultaneously.

In the training stage, Tx signals are transmitted via a
wireless communication channel. Then, Rx is captured at the
receiver based on the system model explained in Section II.
Afterward, various impairments, such as I/Q gain imbal-
ance, quadrature offset, phase noise, and I/Q offset or their
parameters are estimated by conventional algorithms (model
or ML-based algorithms). Then, these estimated values are
stored as output in vector format. Note that the training output
dataset can be also obtained by a computer or test equipment.
Correspondingly, the received signals, where these values are
obtained, are stored as the input. These processes are repeated
until enough amount of dataset is generated. The size of the
dataset is determined according to the system requirements as
it is optimum in terms of system performance, complexity, and
memory. Then, the DL algorithm is trained with the created
dataset. Note that all hyperparameters of the DL algorithm
are tuned empirically by considering the performance and
generalization capability of the proposed algorithm. These
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Fig. 4. The proposed algorithm for RF impairments estimation; (a) training
and (b) testing stages.

processes are illustrated in Fig. 4 (a). Also, an example of the
DL-based multi task learning algorithm is illustrated in Fig. 5.
Once the training and validation loss convergence is done in
the training stage, the testing stage starts, which characterizes
the run-time operation of the algorithm.

In the testing stage, a signal, which is distorted by the
wireless channel and RF impairments, is captured in the
receiver. Then, this distorted signal is fed to the trained DL
algorithm. Afterward, the trained DL algorithm estimates the
multiple RF impairments. These processes are illustrated in
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Fig. 5. A DL-based multi-task learning algorithm for joint RF impairments
estimation.

Algorithm 1 Estimating multiple impairments with a single
model.
Input: S number of training received signals (Rxtrain),

N number of validating received signals (Rxvalidation),
initial hyperparameters, conventional algorithms to esti-
mate single-RF impairments, and testing received signals
(Rxtest).

Output: Estimated RF impairments (Etest).
Training Stage:

1: for s = 1 to S do
2: Receive Rxtrain.
3: Conventional algorithms estimate each RF impairments

(Etrain).
4: A new data point Rxtrain and Etrain is added to the

training dataset (D).
5: end for
6: Train the DL algorithm using D.
7: while the training and validation loss graphs are converged

do
8: Change the hyperparameters of the DL algorithm.
9: Train the DL algorithm using D.

10: end while
Testing Stage:

11: Receive Rxtest.
12: Estimate multiple RF impairments Etest using Rxtest and

trained DL algorithm.

Fig. 4 (b). Overall processes of the proposed algorithm can be
found in Algorithm 1.

B. A Note on Computational Complexity

Training and testing stages determine the computational
complexity of the proposed algorithm. The complexity of the
training stage is based on both the model-based estimations
and the DL algorithm, while the testing stage complexity
solely depends on the DL algorithm.

A DL-based multi-task learning algorithm is used in this
work with an input layer, four hidden layers, and an output
layer. This algorithm has a units in the input layer, where a
represents the size of the input vector. Also, it has b hidden
units for joint learning. Besides that it has c, d, and e hidden
units and f output units for each impairment. Therefore, the
overall training computational complexity of this algorithm is
O(ml× (ab+6(bc) + 6(cd) + 6(de) + 6(ef))), where m and
l represents number of epochs and training examples, respec-
tively. Also, the computational complexity of the validation
and the number of trials to select optimum hyperparameters
of the DL algorithm can be added to the training complexity.
Note that, number of trials and validation data depends on the
complexity and reliability requirements of the application. The
per-sample computational complexity of testing is around half
that of the training stage since the testing stage does not need
back-propagation [26].
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IV. SIMULATION RESULTS

A. Parameter Settings

Dataset is generated by MATLAB simulation environment
depending on the setup explained in Section II. In this setup,
all transmitter parameters such as modulation type, roll of
factor of root-raised-cosine (RRC) filter, data length, etc., are
assumed to be known by the receiver. Detailed specifications
of the simulation parameters are listed in Table I. In these
simulations, only I/Q gain imbalance, quadrature offset, phase
noise, and I/Q offset impairments are estimated. The values of
these parameters and other imperfections added to the system
are given in Table II. These parameters are randomly selected
between the given values for each sample. Here note that it is
possible to estimate any kind of impairment in the system,
without changing the architecture, by training the network
according to newly added impairment.

The dataset is split into three sets; training, validation, and
testing. In the training stage, 30000 samples are used. Here
note that, in the training stage, SNR is varied from 0 to 20
with a step size of 5. In other words, 6000 samples are used
for each SNR value. Also, it is assumed that the true values
of the impairments are known by the receiver in the training
stage for the sake of simplicity. In the validation and testing
stages, 10000 samples are used for each SNR value.

The conventional and the proposed DL algorithms for RF
impairments estimation are implemented by Keras [27], an
open-source ML library under the Python environment. All of
the algorithms were trained and tested on an MSI computer
with an Intel® Core™ i7-7700HQ central processing unit
(CPU) @ 2.80 GHz CPU, GeForce GTX 1050 Ti graphics
processing unit (GPU), 16 GB RAM, and Windows 10 oper-
ating system.

B. Hyperparameters of the Deep Learning Algorithms

An input layer, four hidden layers (fully connected layers),
and an output layer are used in the proposed algorithm.
Particularly, 8176 units are used in the input layer. Then,
joint learning of the impairments is made in the first hidden
layer with 128 units to learn the relationship between the
impairments. Afterward, three hidden layers are used to learn
characteristics of each impairments. In these layers, 64, 32, and
16 units are used, respectively. Lastly, all of the impairments
are estimated in the output layer with a unit per impairment.
In all of these layers, the rectified linear unit is used as an
activation function. In total, 1090214 parameters are used in
the proposed DL algorithm and the DL algorithm is trained
with a batch size of 16 and 40 epochs. ADAM [28] is used for
adaptive learning rate optimization and the optimum learning
rate in this algorithm was found at 0.00001.

For the conventional algorithm, six different DL algorithms
are implemented. In these algorithms, an input layer, four
hidden layers, and an output layer are used. In the input layer
8176 units, in the hidden layers, 128, 64, 32, and 16 hidden
units are used, while a unit is used in the output layer. In total,
1057537 parameters are used for each impairment estimation

TABLE I
SIMULATION PARAMETERS.

Parameter Value
Number of symbol blocks 10

Number of symbols in each block 64
Cyclic prefix ratio compared to block size 1/4

Oversampling rate 4
Sampling frequency (sample/second) 4× 106

M -sequence length 29 − 1
Modulation order QPSK

Guard interval 245
Filter type RRC

Roll of Factor 0.3

TABLE II
RF IMPAIRMENTS PARAMETERS.

Impairment Range
Channel model Rayleigh channel

Noise AWGN
I/Q gain imbalance 0 to 1.5

Quadrature offset -1 to 1
Phase noise 0 to π/2
I/Q offset -0.5 to 0.5

(each DL algorithm). Other all hyperparameters are the same
as the proposed algorithm.

C. Performance Evaluation

The performance of the conventional algorithm
(Single Estimation), where each DL algorithm estimates
one impairment at a time, and the proposed algorithm
(Joint Estimation), where the DL algorithm estimates all
impairments jointly, is compared in Fig. 6. These analyses are
made by comparing the MSE of the estimations. Here note
that for the sake of simplicity, estimation of the corresponding
parameters of each impairment is compared to evaluate the
performance of the algorithms. Fig. 6 demonstrates that
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Fig. 6. MSE results for (a) I/Q gain imbalance estimation, (b) quadrature
offset estimation, (c) phase noise estimation, and (d) I/Q offset estimation.
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the performance of the proposed algorithm is superior to
the conventional algorithm. This is consistently true for all
impairments (I/Q gain imbalance, I/Q offset, quadrature
offset, and phase noise) and SNR values.

As the proposed algorithm is based on DL, it is crucial to
ensure that the developed algorithm is generalized well [29],
i.e., the inputs are not memorized during the training stage.
In order to observe this, the training and validation losses
versus epochs for joint RF impairments estimation problem is
presented in Fig. 7. This figure demonstrates that the training
sets converges to the validation set. This means there is no
overfitting during the training which demonstrates the ability
to work with unforeseen data for the proposed algorithm.

V. CONCLUSIONS

This paper proposed the joint estimation of multiple RF
impairments to exploit the relationship between them. For
this purpose, a DL-based multi-task learning algorithm was
designed. This algorithm estimated the RF impairments of
I/Q gain imbalance, I/Q offset, quadrature offset, and phase
noise with a single model. Thus, there was no need to train
multiple models to estimate different impairments. Simulation
results were shown that estimating multiple-RF impairments
jointly improves the estimation accuracy, as tested over a
realistic scenario. As future work, the DL-based joint RF im-
pairments estimation will be investigated from the perspectives
of predistortion, hardware problem identification, and physical
layer authentication. Also, the performance of the proposed
algorithm will be evaluated in the real-world environment.
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