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Alzheimer’s disease (AD) is a progressive, neurodegenerative brain disorder that generally

affects the elderly. Today, after the limited benefit of the pharmacological treatment

strategies, numerous noninvasive brain stimulation techniques have been developed.

Transcranial magnetic stimulation (TMS), based on electromagnetic stimulation, is one of

the most widely used methods. The main problem in the use of TMS is the existence

of large individual variability in the results. This causes a waste of money, time, and

more importantly, a burden for delicate patients. Hence, it is a necessity to form an

efficient and personalized TMS application protocol. In this paper, we performed a

machine-learning analysis to see whether it is possible to predict the responses of

patients with AD to TMS by analyzing their electroencephalography (EEG) signals. For

that purpose, we analyzed both the EEG signals collected before and after the TMS

application (EEG1 and EEG2, respectively). Through correlating EEG1 and repetitive

transcranial magnetic stimulation (rTMS) outcomes, we tried to see whether it is possible

to predict patients’ responses before the treatment application. On the other hand,

by EEG2 analysis, we investigated TMS impacts on EEG, more importantly if this

impact is correlated with patients’ response to the treatment. We used the support

vector machine (SVM) classifier due to its multiple advantages for the current task with

feature selection processes by stepwise linear discriminant analysis (SWLDA) and SVM.

However, to justify our numerical analysis framework, we examined and compared the

performances of different feature selection and classification techniques. Since we have

a limited sample number, we used the leave-one-out method for the validation with the

Monte Carlo technique to eliminate bias by a small sample size. In the conclusion, we

observed that the correlation between rTMS outcomes and EEG2 is stronger than EEG1,

since we observed, respectively, 93 and 79% of accuracies during our data analysis.

Besides the informative features of EEG2 are focused on theta band, it indicates that

TMS is characterizing the theta band signals in patients with AD in direct relation to
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patients’ response to rTMS. This shows that it is more possible to determine patients’

benefit from the TMS at the early stages of the treatment, which would increase the

efficiency of rTMS applications in patients with Alzheimer’s disease.

Keywords: Alzheimer’s disease, machine learning, support vector machine, repetitive transcranial magnetic

stimulation (rTMS), personalized treatment, artificial neural network

INTRODUCTION

Alzheimer’s disease (AD) is the most common type of dementia,
characterized by a progressive loss of cognitive ability (Lane
et al., 2018). The most prevalent signs of Alzheimer’s disease
include memory and orientation problems, as well as executive
and motor dysfunctions (Guarino et al., 2019). At the molecular
level, AD has been linked to synaptic impairment, as well as
amyloid-beta and tau protein buildup (Bloom, 2014). As a result
of this disease’s progressive nature, loss of cognitive and motor
function eventually leads to death.

Because there is currently no cure for AD, healthcare
providers must rely on treatments aimed at delaying the illness’s
progression and lowering cognitive damage. The majority of
these therapeutic methods rely on pharmacological substances
(Cummings et al., 2019). Pharmacological medicines, on the
other hand, are unable to provide an effective treatment for
Alzheimer’s disease, and, as a result of their extensive side-
effect profile, they also cause other issues (Sharma, 2019). As
a result, scientists have begun to investigate options other than
pharmaceutical medications for treating this disease.

Transcranial magnetic stimulation (TMS), which has
long been used successfully in the treatment of depression
(Sonmez et al., 2019), is now being employed as a possible
alternative treatment for other neurodegenerative diseases such
as Alzheimer’s disease (Freitas et al., 2011; Mimura et al., 2021),
Parkinson’s disease, and other dementias (Begemann et al., 2020;
Hanoglu et al., 2021). TMS is a noninvasive approach that uses
a magnetic field created outside the body to stimulate or inhibit
specific areas of the brain by applying it to the scalp (Hamid
et al., 2019). In some ways, TMS treatment appears to be superior
than the pharmaceutical approach. TMS can be favored over
pharmaceutical medicines due to its ease of use, low side effect
profile, and excellent behavioral and cognitive benefits.

However, the effect of TMS on brain activity has not been fully
understood (Sale et al., 2015). It is observed that some patients
respond positively to treatment, while other gives no response
(Dunlop et al., 2016). Unfortunately, this heterogeneity of
treatment responses among patients has no obvious connection
with the clinical measurements such as personality, demographic,
sex, and age (Bailey et al., 2019). Hence, advanced computational
methods are needed to analyze the connection between patients’
certain properties and the TMS treatment to predict the patients’
possible response to the treatment. That is necessary to generate
efficient treatment strategies.

There are some studies with the purpose of predicting the

TMS response of patients with psychiatric diseases. Chekroud
et al. attempted to match depression patients with the treatment
according to the patients’ Quick Inventory of Depressive

Symptomatology (QIDS) test rates (Chekroud et al., 2016).
Another study analyzed structural magnetic resonance imaging
results to predict the treatment outcomes of patients with
schizophrenia (Koutsouleris et al., 2018). There are other studies
focus on predicting the outcomes of treatments other than TMS,
which are out of our focus on this study (Garnaat et al., 2019).

On the other hand, there are only a few studies on machine-
learning analysis of EEG in predicting the effectiveness of rTMS.
Corlier et al. (2019) generated a predictive model based on
the functional connectivity on EEG, and as our purpose, they
tried to obtain the most informative features for the rTMS
benefit prediction. For the classification task, they used Elastiknet
(Zou and Hastie, 2005), which randomly selects the subset of
features and tries to maximize the classification accuracy over all
random trials. Hasanzadeh et al. combined linear and non-linear
features from EEG to distinguish TMS responders from non-
responders, again on patients with depressive disorders. They
also used the multi-source nature of the EEG data and tried to see
the most significant electrode locations beside most significant
EEG features. They used kNN classifier which is a primitive
and low-capacity method that would fail on slightly complicated
tasks (Hasanzadeh et al., 2019). Bailey et al. analyzed the
electroencephalogram (EEG) signal of patients with depression
to see whether it is possible to predict patients’ response to rTMS
treatment. They used band power and connectivity features with
a linear SVM classifier to generate their prediction model (Bailey
et al., 2019).

Besides these studies focusing on depressive disorders, to the
best of knowledge, there is no significant attempt to generate
a computational model for EEG analysis with the purpose of
predicting the TMS response of patients with AD. Since AD
is a neurodegenerative disease, the TMS therapy for patients
with AD have more factors to be considered than depressive
disorders. Besides, TMS effect is more variable in patients with
AD than patients with depressive disorders (Iimori et al., 2019;
Weiler et al., 2020). Hence, our task is more complicated, and
the discussed methods above would not be applicable to the
current task.

The EEG forms a critically high-dimensional dataset whereas
it is highly challenging to collect a large number of samples
for neurological disorders. Hence, the EEG data analysis for
cognitive neuroscience studies is highly challenging. Due to the
limited number of samples, studies in the literaturemostly reduce
the EEG data to a very low dimension by ignoring the advantage
of the multi-source nature of EEG data.

In this study, we examined the possibilities to maximize
the efficiency of the TMS treatments by predicting patients’
responses before the TMS application by focusing on preserving
the advantage of themulti-source nature of the EEG data. For that

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 845832

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Kayasandik et al. Personalized TMS Treatments for AD Patients

FIGURE 1 | The framework of the data acquisition process. For each patient, EEG signal collection is applied once before the TMS treatment application, that EEG

signal is labeled as EEG1 in the manuscript. Another EEG signal is collected after the TMS treatment application which is labeled as EEG2. In this study, EEG1 and

EEG2 were separately analyzed. Through the EEG1, we gather the information if it is possible to predict the patients’ response to the treatment. On the other hand, by

the analysis of EEG2, we sought for the effects of TMS application on patients’ EEG signal if it is dependent on the patients’ benefit from the treatment.

purpose, we analyzed pre-TMS EEG signals, which will be named
as EEG1 throughout the paper for simplicity. Besides that, we
investigated whether a dose application of TMS would increase
the correlation between EEG2 and rTMS. For that purpose, we
analyzed the post-TMS EEG signals, which will be named as
EEG2 in the paper for simplicity (Figure 1). Throughout our
analysis besides generating a prediction model, we seek more
insight on EEG and TMS relation in patients with AD. For that
purpose, we analyzed EEG1 and EEG2 from various perspectives.
We measured the sensitivity and stability of the correlations
between EEG1/EE2 and rTMS outcomes with respect to the
small sample number. We applied multiple dimension reduction

and classification methods, compared their performances, and
interpreted the results.

The rest of the paper is organized as follows: section
Materials and Methods provides the details of the dataset
collection, data preprocessing, and the brief explanation of
applied feature selection and classification techniques. It explains
the process of generating the ground-truth labels and optimizing
the machine-learning algorithms. Section Results describes all
the applied data analysis steps. It explains our motive for
further data analysis for more insight on the effects of TMS
treatment on patients’ EEG signals, the sensitivity measure of
the data analysis process, comparative results of feature selection,
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and classification algorithms. Section Discussion discusses the
obtained machine-learning results. It explains the interpretation
of these results from a clinical view and lists the future motivation
for this study.

MATERIALS AND METHODS

Subjects
To determine theminimum sample size of patients with AD to be
applied TMS, G∗power (version 3.1.6.6) software was used. We
discovered that for 90% power with a significance level of= 0.05,
a sample size of at least n= 13 participants is required, and thus,
we decided to include at least n= 14 subjects in the investigation.
Our research included 14 patients with AD (10 women, ages
56–84). Based on their responses to a TMS safety-screening
questionnaire, all patients were eligible for TMS operations.
The Ethical Committee of Istanbul Medipol University accepted
our research with the number of Ethical Report: 10840098–
604.01.01–E.45425. In Istanbul Medipol University Hospital, all
patients and their relatives submitted written informed consent,
and all processes were followed. During the study period, patients
were assessed while on usual therapy with no changes to their
medical treatment.

The clinical diagnosis of AD was made by an experienced
neurologist according to the NINCDS-ADRDA (McKhann et al.,
2011) criteria. The Clinical Dementia Rating Scale (CDR) scores
of the patients participating in the study were between 1-2.
The patients were using acetylcholinesterase inhibitors and/or
memantine as a medicine. Exclusion criteria were defined as
having metallic implants, unable to walk independently, being
physically disabled, history of alcohol or substance abuse, mental
illness including schizophrenia and delirium, and epileptic
disease, seizure, brain tumor, or trauma.

Labeling the Patients as TMS+ and TMS–
In the direction of deciding whether a patient is positively
or negatively affected by the TMS treatment, we considered
only the Mini-Mental State Examination (MMSE) scores of
neuropsychometric tests (NPTs). For that purpose, if a certain
patient’s MMSE score increased after the TMS treatment, it
was labeled as TMS+; similarly, if a certain patient’s MMSE
score decreased after the TMS treatment, it was labeled as
TMS–. In our dataset, there were two patients with constant
MMSE scores before and after the TMS treatment. There was no
certain procedure for labeling these patients. However, during the
classification analysis, we observed that their EEG signals behave
like a TMS+ patient (by labeling them as TMS+ we increased
the classification results by 20%). Hence, if the MMSE score
was constant, we considered these patients as they benefit the
treatment, hence TMS+.

Experimental Design
Each patient underwent 10 sessions of rTMS therapy over the
course of 2 weeks. Patients provided the following information
1 week prior to TMS. The Turkish version of the Mini-Mental
State Examination (MMSE) scores was used to assess the overall
cognitive status.We also acquired a resting-state EEG1 and EEG2

recording to assess which patient would benefit from the TMS
application using machine learning. The MMSE and EEG data
were taken from patients again after 2 weeks of TMS therapy.

EEG Recording and Preprocessing
Electroencephalography recordings were applied in a dimly
illuminated and electrically shielded room (Faraday cage).
According to the international 10–20 system, EEG was enrolled
with the Brain Amp amplifier DC system. EEG band level
was between 0.01 and 250Hz and sampling rate was 500Hz.
Recording electrodes were used with 32 Ag–AgCl electrodes. All
electrodes were mounted by means of Easy-cap except reference,
ground, and EOG electrodes. According to the head size of
patients, we changed Easy-cap and chose a suitable one. One
reference electrode was bonded with a latch to the left earlobe,
and the other reference electrode was also bonded to the front of
the right earlobe. The ground electrode was also stuck together
behind the right earlobe. EOG electrodes were bonded to the
right side of the forehead and to below the left eye. All electrode
impedances were decreased to <15 k� (ground= 1 �).

Before and after TMS therapy, two spontaneous EEG data
were collected from patients. The spontaneous EEG protocol was
4-min eyes-open recording and 4-min eyes-closed recording. A
video recorder recorded all the EEG processes.

To prepare the EEG data for further analysis, we used
Brain Vision Analyser software. Preprocessing steps included
six different stages. First of all, using infinite impulse response
(IIR) section, we filtered raw data low (0.1Hz) and high cutoff
(60Hz) and enabled the notch filter (50Hz). To remove the blink-
reflex, we used independent component analysis (ICA) after then
we performed inverse ICA command. We segmented the data
manually as open eyes–closed eyes. Open and closed eyes data
were recorded for 4min. Using again segmentation, we created 1-
s size of segments and skipped bad intervals. Finally, we rejected
artifacts such as blink, andmuscle movementmanually and saved
data in MAT format.

Manual artifact rejection was performed by examining
each 1-s epoch one by one. Only one experienced
person (HAV) performed the preprocessing processes to
ensure standardization.

Identification of Stimulation Locations and
rTMS Parameters
We determined a stimulation coordinate for each patient using
a 10–20 EEG system. We aim to stimulate P3 in other words the
left posterior parietal cortex (Herwig et al., 2003).

For the TMS application, we used the MAG & More
company’s PowerMag Research tool. The coil type of the TMS
device was an “eight” coil with a winding diameter of 2 x
70mm. We assessed the motor threshold by stimulating the
TMS primary motor region, which needed at least 5 of 10
consecutive pulses to cause contraction in the abductor pollicis
brevis muscle, at the start of the first study week. TMS coils were
held over the left parietal cortex with the handle-oriented 45
degrees to the midsagittal line, generating a posterior to anterior
current (Brown et al., 2014). The coil was manually moved
to the coordinates displayed on the neuro-navigation device.
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FIGURE 2 | Analysis framework: Our analysis is based on frequency band features extracted from EEG1 and EEG2. To justify our numerical analysis framework, we

examined and compared the performances of different feature selection and classification techniques. We reported all numerical results.

During the 20-min stimulation period, rTMS was delivered at a
100% resting-motor threshold (Hermiller et al., 2019). The rTMS
procedure was 20Hz for 2 s of stimulation duration (totaling
1,640 pulses each session), followed by a 28-sinterstimulus period
(Wang et al., 2014).

Data Analysis
To justify our numerical analysis, we performed multiple feature
selection and classification methods and compare their results.
The complete analysis framework can be seen in Figure 2.

Feature Extraction

The raw form of the EEG signal is highly complicated and
difficult to interpret. If we focus only on the analysis task, EEG
is very large and possibly stores redundant information. Hence, a
dimension reduction or feature extraction step is required before
classification. In our study, first, we applied the fast Fourier
transform to extract the wavelengths. In the literature, the EEG
analysis focuses on fivemain frequency groups such as delta (0.5–
4), theta (4–7), alpha (7.5–13), beta (15–28), gamma (29–48), and
we followed the same procedure. For each of these wavelengths,
we calculated the power spectral density as the magnitude
squared of the filtered data. Then, we got the average power
spectral density for non-overlapping windows with a length of 2 s.
The feature extraction window size was numerically determined.
We observed that the classification accuracy makes a peak when
the feature extraction window size is set to 2min (Table 1;
Figure 3). Instead of obtaining the power of the frequency band,
which is only a scaler, we used this new signal to represent the
EEG data. By that, we formed a denser and more informative
representation of EEG while preserving more information about
the dataset.

After this basis feature extraction step, we examined the
performance of different dimension reduction techniques such
as wavelet transform, principal component analysis, and weight
hierarchy determined by stepwise linear discriminant analysis
and SVM classifier. Through these applications, we aimed to
validate our numerical analysis and investigate the data from
the different perspectives to get the core information from
EEG signal. The contribution of these dimension reduction
techniques to the performance of the data analysis is given in the
Results section.

TABLE 1 | The effect of different feature extraction window sizes on the data

classification performance.

Feature

extraction with

window size 1 s

Feature

extraction with

window size 2 s

Feature

extraction with

window size 4 s

Average accuracy 73% 78% 59%

The accuracies are recorded during the leave one out validation of EEG2. The maximum

accuracy is in bold.

Principal Component Analysis
Principal component analysis (PCA) is one of the most widely
applied dimension reduction techniques. The main idea of the
PCA is finding the most informative dimensions of the data
and projecting the data into the subspace by the determined
informative dimensions (Jolliffe, 2014). For that purpose,
mathematically, all eigenvalues of the DTD are determined,
where DTD is called the covariance matrix of the dataset D.
Covariance matrix basically shows how each feature is related
to all others. Therefore, by the eigenvalues, PCA examines the
features of the dataset and tries to find the most informative
and independent ones. For that purpose, the largest normed
eigenvalues are determined, and associated eigenvectors are used
to project the dataset into a lower-dimensional space. The ideal
dimension of the projected dataset is a crucial point. In this
work, we considered the decay of the eigenvalues to determine
the optimal dimension for the PCA. Besides that, by considering
the small sample number, projections into very low-dimensional
spaces were also examined.

Wavelet Transform
The theory of wavelets emerged in the 1990s to address some
limitations of classical Fourier analysis, namely, its limitations in
providing local features of signals. The advantage of the wavelet
transform is its ability to capture the local properties of the
signals, on the contrary to Fourier transform. Consequently, in
the last decade, wavelet transform is mostly preferred for analysis
when the local information matters. Besides, it is shown that
the wavelet transform is very successful in finding the most
informative representation of the data in the classification tasks
(al-Qerem et al., 2020). Consequently, in many studies, wavelet
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FIGURE 3 | Comparison of performances of leave-one-out validation for different window sizes for feature extraction process. (A) Results with window size length 1 s,

(B) Results with window size length 4 s. The results with window size length 2 s can be seen in Figure 5A. As it is seen in the Figure, 2-swindows give the best

classification performance.

coefficients are used both for dimension reduction and feature
selection purposes (Hazarika et al., 1997; Qu et al., 2003).

Several properties of the wavelet system, including regularity
and fast decay, can be controlled by the choice of mother
function (Wojtaszczyk, 1997; Heil, 2010). For the given study,
we preferred to use Daubechies as the mother function of order
four. These parameters are determined numerically to have
maximal efficiency during the computational analysis. After the
wavelet coefficients were calculated, the 10% largest coefficients
were collected to represent the samples. The optimal number of
coefficients to be used was again determined by optimizing the
efficiency of the numerical analysis.

Stepwise Linear Discriminant Analysis
Linear discriminant analysis (LDA) is one of the basic dimension
reduction and supervised data classification techniques. The
idea of LDA is finding a separating hyperplane by maximizing
the inter-class variance and minimizing the intra-class variance
(Bishop and Nasrabadi, 2006). Through that idea, LDA has the
capability to form a successful separating hyperplane even in
the cases, PCA fails. Hence, LDA has several applications in
data analysis fields both for dimension reduction and for data
classification. Stepwise linear discriminant analysis (SWLDA)
forms this separating LDA hyperplane step-by-step to find the
set of features to form the best separating hyperplane. Hence,
SWLDA is a linear classifier and determines the most informative
features at once.

In our analysis, we applied SWLDA both as a feature selection
technique and as a linear classifier. For that purpose, we used
the toolbox by brain–computer interface (BBCI) (Blankertz et al.,
2016). Due to the mathematical theory of LDA, we cannot select
more features than the number of samples. Hence, the maximum
number of features to be selected was set to the number of
training samples.

Support Vector Machine Classifier Weights
Support vector machine (SVM) is a model-based supervised data
classification technique. The main idea of SVM is to specify a

linear subspace that separates samples of two different classes
with a maximum margin. It generates a decision function and
clusters each subject to one side of the determined subspace. The
source of the high success of SVM lies in its ability to handle
high-dimensional datasets and the logic called kernel trick. If the
data cannot be linearly separated in its own space, it is transferred
to another space with a kernel function. This space is where the
data can be separated from each other in the most optimal way,
theoretically, this space does not need to be known by the user,
andmathematical operations can be done without any knowledge
of the space (Burges, 1998). SVM outputs the decision function
that has the form:

f (x) =

N
∑

m=1

amymK (x, xm) + b

Here, N is the number of support vectors, αm is the weighted
components, ym is the label of the sample xm, b is the tolerance
constant special for each class, and K is the kernel function. The
K kernel function is a form of similarity measurement that plays
a key role in representing and decomposing the data in space and
is defined as follows:

K
(

xi, xj
)

= < ϕ (xi) , ϕ
(

xj
)

>

In addition, considering the decision function equation, it is
seen that the αm-weighted components with the kernel function,
K(x,xm), directly affect the decision. Hence, the absolute value of
the feature weights assigned by the SVM model is an indicator
of the importance of features on the decision. In our study,
this idea played a critical role in investigating which features
were important in the decision mechanism. By maximizing the
classification accuracy, the features were arranged in the order
of importance.

Since we focused on the multi-source nature of the EEG
signal, we carefully applied all feature extraction transformations
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separately for each source of EEG data. By that strategy, we
avoided any miscalculation due to the discontinuity between
subsequent sources.

Data Classification

For the classification task, we focused on SVM classifier due to
its multiple advantages over other state-of-the-art classification
techniques. Widely used machine-learning techniques in EEG
analysis, which are random forest classifier, naïve Bayes classifier,
and decision tree, have limited capability to handle such a
complicated task (Wang et al., 2019; Anuragi and Sisodia,
2020; Roy et al., 2021). These methods have a low tolerance to
high variance and high-dimensional data. More sophisticated
techniques such as artificial neural networks (ANN) have more
capability to handle such challenging tasks (Roy et al., 2019).
However, these methods tend to overfit when the sample number
is limited. Once a large dataset is available, ANN would work
great, but it is so difficult to avoid overfitting ANN models
for such an asymmetric dataset as EEG. However, SVM has
the capability to handle difficult tasks such as high variance
and high dimensionality (Bishop and Nasrabadi, 2006). More
importantly, SVM allows us to extract the feature hierarchy from
the model. Hence, we have access to the information on how
significant each feature is for the decision-making process. With
all these advantages, we decided that the SVM classifier is the
best option for the aimed task. In SVM analysis, we used radial
basis function (RBF) kernel, and the sigma value was determined
numerically for each case. On the other hand, to validate our
strategy for data classification, we compared the performance
of SVM with two ANN architectures EEGNet (Lawhern et al.,
2018) and Shallow ConvNet (Schirrmeister et al., 2017), which
are specialized for EEG analysis, and a more traditional approach
SWLDA classifier. All parameters such as filter size, stride, and
pooling size were optimized according to the sampling rate by the
guide of references. Dropout value was optimized for each run to
the value of 25 or 50%. Learning rate was optimized for each run.
Each model is trained for 150 epochs.

The total number of 14 patients in our dataset was distributed
unevenly into two groups. The number of TMS+ patients was
8 whereas the number of TMS– patients was 6. Due to the
limited sample number and the risk of large biological variance,
observing the unbiased results was crucial. For that purpose, we
always used the Monte Carlo technique during the analysis. The
Monte Carlo technique basically estimates the numerical results
of non-deterministic events by relying on multiple randomly
selected sample spaces (Bauer, 1958). It bases on the randomness
to observe the actual routine of the events, which is a core
concept in probability theory. It is widely used for data analysis
especially for biological data science when the sample number
is limited (Manly, 2018). Here, the main goal is covering all
possible outcomes through the random trials. Hence, using the
combination theory, we calculated the optimum number of
random trials that needed to be performed to collect information
from all possible sampling. All reported results are the average of
the success rates of the optimum number of trials with random
data selections. All random sets are selected by the normal
distribution, so we can assume that all possible combinations

of the samples were considered. As a result, given numerical
values are the best estimation of the actual performance of
the classification model. Furthermore, this technique based on
randomness enables us to calculate the variation in the dataset.

For further analysis, we focused on the stability and the
sensitivity reasoning of this study with respect to sample size
and uneven distribution of samples to different groups. The
sensitivity and stability analyses were done on EEG2 with
SVM classifier. With the purpose of measuring the effect
of unevenly distributed sets, we compared the classification
results of balanced and unbalanced training sets. An unbalanced
validation data were causing results to fluctuate wildly, hence
harming the model optimization process. Similarly, with an
unbalanced test data, numerical results were misleading about
the quality of the model. Hence, the numerical analysis was
performed always with balanced test and validation datasets.

The size of training and validation sets are the important
aspects. By optimizing these values, the required sample size
would be determined, and the computational studies can be
optimized for the targeted tasks. To see the effect of the size
of validation and training datasets, we repeated classification
analysis with different dataset sizes and reported the results in
the Results section.

During the classification analysis, we applied for the leave-
one-out cross-validation since the dataset size was limited. For
that purpose, we chose one patient as a test sample, and the
remaining samples were used to form a balanced train and
validation sets (Hastie et al., 2009). From the remaining 13
patients, over 30 random selections, we selected a maximal
balanced set. The balanced dataset was divided into two sets such
as training and validation sets.

After observing satisfying results by the leave-one-out
validation, we continued our analysis with direct classification
despite the small dataset size. However, during the data
classification process, due to a small sample number, we could
not use a validation data. We split the dataset into training and
test sets. This model may not be generalizable due to the limited
sample size, but the results can be considered as an indication of
the feasibility of the task.

Optimization of SVM Parameters
The selection of the SVM parameters is very critical for the
performance of the method. SVM works on high-dimensional
spaces and may tend to overfit training data. In the literature,
the grid search is the most widely used technique for optimizing
SVM parameters. The grid search is based on generating a grid
by all possible combinations of parameters. In the generated
grid, all values are examined and the combination which yields

TABLE 2 | Baseline demographic characteristics of the patients.

N 14

Age 69.86 ± 8.23

Sex (male/female) 5/9

MMSE score (pretreatment) 18.09 ± 4.74
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FIGURE 4 | The change in MMSE scores of TMS+ and TMS- patients with the TMS application. As it is seen in the figure, these two groups can be separated from

each other with the red dashed decision line. The patients with the same MMSE score post- and pre-TMS which are labeled as TMS+ are represented as red dots

inside blue.

the maximum classification result is determined as the optimum
set of parameters. Since all possible parameters are checked,
theoretically, the most optimum results will be determined by the
grid search. However, for our case, since we applied Monte Carlo
technique, we had to perform parameter optimization several
times which is computationally expensive and time-consuming.
Hence, in our study, we used an evolutionary algorithm to
optimize the parameters (Syarif et al., 2016). Our parameter
optimization algorithm is an iterative method, starting with user-
determined step size and minimum and maximum values for
each parameter. In every iteration, it updates the search interval
accordingly and reduces the step size to find the optimum
parameters. Once the accuracy values start decreasing, it is
considered as a stopping criterion. In contrast to grid search,
this method does not check all possible combinations. However,
the computational complexity is significantly reduced. In the
literature, such genetic algorithms were shown to estimate the
optimum values by grid search with a minimal error (Syarif et al.,
2016). This process was repeated for each random trial, so for
each run in Monte Carlo, we used the optimal parameters for the
SVM classifier.

RESULTS

All patients had mild to moderate AD symptoms (CDR = 1–
2). The mean cognitive scores and demographic features of the

TABLE 3 | Comparison of performance of feature selection methods with SVM

leave-one-out validation of EEG2.

No feature

selection

method

PCA Wavelet

transform

SWLDA Theta band

features

EEG2 78% 62% 67% 58% 93%

As it is seen, whole theta band features give significantly higher accuracy than

other methods. The maximum accuracy is in bold.

patients are shown in Table 2. The change in MMSE scores
before and after the TMS application in TMS+ and TMS–
patients can be seen in Figure 4. Between two groups (MMSE
pre-TMS and MMSE post-TMS), one-way ANOVA was applied,
and statistically significant results were observed in MMSE pre-
TMS group (F = 5.153, p < 0.05). According to post hoc
analysis, statistical difference has been obtained between TMS+
and TMS– (t =−2.27, p < 0.05).

For the feature selection process, we applied PCA, wavelet
transform, and SWLDA, and by the lead of SVM and
SWLDA weights, we used only theta band features. We
compared the classification accuracies with these different feature
selection techniques (Table 3) where the classification accuracy is
calculated as the percentage of the number of correctly classified
samples to the total number of samples. For the classification
analysis, we applied SVM, EEGNet, Shallow ConvNet, and
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SWLDA and compared their performances (refer to Table 4;
Figure 5).

In the PCA, the decay of eigenvalues showed us that most
of the information was stored in 20 features only. Using the
most informative 20 features selected by PCA, we got an average
of 62% accuracy on leave-one-out validation of EEG2. In the
wavelet transform application for the feature selection purpose,
by optimizing the numerical analysis, we decided to keep the
largest 10% of the wavelet coefficients. Through that, we got
67% on the leave-one-out validation of EEG2. In the SVM
and SWLDA, we observed that the average weights of theta
wavelength were remarkably higher than the others (Figure 6).
We used this idea as a lead and measured the performance of the
data classification task using features collected only from theta
wavelength which yield the best classification performance. In
EEG1 analysis, we observed that none of the wavelengths nor the
locations were given significantly more information than others.

TABLE 4 | Comparison of performance of classification methods with power

spectra features of EEG2.

SVM ShallowNet EEGNet SWLDA

Leave-one-out validation 78% 71% 43% 36%

The maximum accuracies for each category are in bold.

To measure the effect of using the multi-source form of
EEG signals, we analyzed the dataset with the power of each
wavelength. As a result, we got 42% of accuracy overall for
leave-one-out validation of EEG2. Hence, keeping the signals
collected from each location gives significant information for
classification purposes.

We observed the highest classification performance as 93%
with SVM on theta band features. As it is seen in Table 5,
regardless of the classification or feature selection technique,
we always got better performance with EEG2 than EEG1. The
average performance of the leave-one-out validation of EEG2,
without any further feature selection or dimension reduction
method, was recorded as 78%. In this analysis, we have seen that
most of the patients always give a classification accuracy >50%.
Always, the same patients had poor classification accuracies.
For example, one of the patient’s average EEG2 classification
rate was about 10% (Figure 5A), which means that this patient
information does not fit on the general of the other patients.
However, we observed that the majority of the patients form a
coherent team and give more than 90% of accuracy each. On the
other hand, in the EEG1 analysis, we recorded 68% as the average
accuracy and the coherence between the samples was lower.
Furthermore, the gain by the feature selection and dimension
reduction methods was higher in EEG2 analysis. Through the
feature selection method application, the average performance of

FIGURE 5 | The comparison of different classification methods with leave-one-out validation of EEG2 signals of each patient in our dataset. (A) SVM classifier (78%),

(B) SWLDA classifier (36%), (C) EEGNet (43%), (D) Shallow ConvNet (71%). As it is seen, there is a large variance among patients for all classification methods.

However, most of the patients form a coherent team whereas two patients’ accuracies are around 60%, and one has an accuracy about 10%. The best two

performances can be seen by SVM and Shallow ConvNet.
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FIGURE 6 | The cumulated weights assigned by SWLDA to each wavelength features. SWLDA mostly selected theta band features as informative and assigned the

largest weights to the theta band features.

TABLE 5 | All given accuracies are the result of the Monte Carlo Technique.

Feature

vector

Power spectra features Theta band features

Validation

technique

Leave-one-

out

Direct

classification

Leave-one-

out

Direct

classification

EEG1 68% 64% 79% 63%

EEG2 78% 77% 93% 82. 5%

In the table, it is seen that EEG2 gives better results than EEG1 for all cases. Feature

selection technique also improves the results. The maximum accuracies for each category

are in bold.

the leave-one-out validation of EEG2 increased to 93%, while we
obtained 79% of accuracy on validation of EEG1.

After observing satisfactory results in the leave-one-
out validation, we continued with the classification model
generation. We obtained 82.5% of accuracy on the EEG2 test
data as an average by the Monte Carlo technique, and 64% of
accuracy on the classification of EEG1, by the same procedure.
During our classification model generation, we observed that the
optimum training sample ratio was about 65% (9 samples out of
14). As the mean of 50 random trials, we got 82.5% of accuracy
while the standard deviation was 12.5%. So, the minimum
accuracy was about 75%, which means that we got 3 correct
predictions out of 4 on average by EEG2 analysis.

DISCUSSION

As a conclusion of our analysis, we observed that it is possible to
predict the response of patients with AD to the TMS treatment
by both EEG1 and EEG2 analyses. However, EEG2 is more
informative than EEG1 with an average accuracy of 93 % while
we obtained 79% on EEG1. Besides, due to our limited sample
number, we focused on the data analysis and investigated the
challenges of the EEG data analysis on patients with AD. We
measured the feasibility of generating a personal TMS treatment
route for the patients with AD and showed the possibility is
higher if we use the lead of EEG signals after rTMS application. In
addition to that, this type of algorithm, which can predict which
patient will benefit from the TMS application by using the EEG
data, will not only prevent patients from losing time with TMS
treatment, but also will save on health expenditures. Thus, it will
be possible to use TMS more effectively in neurodegenerative
diseases such as Alzheimer’s disease.

Due to its non-invasive nature, relative ease of administration,
and low cost compared to other neuroimaging methods, EEG
represents a promising tool for developing a personalized
medicine approach for rTMS treatment (Garnaat et al., 2019).
However, there is still a very limited number of studies in
this area.

One of the previous studies that tried to distinguish
responders from non-responders to rTMS treatment in
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depression using resting-state EEG analysis differentiated these
groups and retrospectively identified several pretreatment
variables such as higher anterior individual alpha frequency
values, lower power in the frontocentral theta frequency band,
and increased prefrontal delta and beta values (Arns et al.,
2012). However, a repeat study to confirm these promising
results found no significant differences between responders and
non-responders in terms of individual alpha frequency, frontal
theta, even after controlling for sex or age (Krepel et al., 2018;
Garnaat et al., 2019).

There are only a few studies on machine-learning analysis of
EEG in predicting the effectiveness of rTMS. All these attempts
focus on depressive disorders. Although sophisticated methods
are introduced, since the TMS therapy for patients with AD have
more factors to be considered than depressive disorders, the given
methods are weak to handle the current task.

In prospective studies, there were only a few possible
predictors of the outcome for rTMS treatment for depression
patients, and further research will be required to translate
any of the findings described above into guidance for the
implementation of treatment (Garnaat et al., 2019).

Our findings are particularly parallel to the findings by Bailey
et al., He also reported that alpha and theta bands are useful
to predict benefiting from rTMS therapy for depression (Bailey
et al., 2019). However, in another study, they conducted with a
larger and different sample group, and they could not replicate

these findings for alpha and theta (Bailey et al., 2021). As it is
known, the main element of the changes in EEG in Alzheimer’s
disease is the changes in alpha and theta (Bhattacharya et al.,
2011; Güntekin et al., 2020). The results of our study are
compatible with this general framework. There are also some
findings showing that EEG event-related theta responses may
be sensitive to neuromodulation interventions (Cespon et al.,
2019; Güntekin et al., 2020). However, the impaired dynamics
associated with EEG in AD are not unique only to theta and
alpha. Again, it is clear that the localization of rTMS applications
can cause responses at different frequencies by many different
mechanisms. Indeed, Koch et al., showed that rTMS intervention
on the precuneus for 2 weeks modulated only beta responses
in AD (Koch et al., 2018). For this reason, there is a need
for larger sample groups and further research on patients with
other frequencies.

Justification of Sample Size for the Data
Analysis
For the aimed data analysis task, considering the small sample
number with the large feature vectors, getting a unique solution
was not possible. Instead, we got statistical confidence by
applying the Monte Carlo technique. For that purpose, we
repeated the analysis with multiple randomly selected datasets
with varying sizes and combinations of samples. Through that,

FIGURE 7 | The leave-one-out classification result for varying training and validation dataset sizes. The orange plot: for different training dataset sizes, the validation

dataset is always formed by two samples. The blue plot: for different training dataset sizes, the validation dataset is formed as the remaining samples after the test and

training sets are generated.
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FIGURE 8 | The leave-one-out classification result for increasing validation dataset sizes while training size is fixed. There is no visible increasing pattern in the graph.

So, increasing validation size does not have a significant effect on the classification process.

we obtained the best estimation of the actual performance of our
model despite the limited sample size. Still, to have theoretically
justified results, we repeated the analysis with the low number
of features. For that purpose, we applied different dimension
reduction techniques. However, we observed that a low feature
number does not satisfy a qualified data classification model for
the current dataset.

We observed that SVM works better than EEGNet, Shallow
ConvNet, and SWLDA for the classification of our dataset. Since
the task is challenging, the low feature number would not store
the required information. As a result, SWLDA failed in the
analysis. The ANN architectures such as Shallow ConvNet and
EEGNet tend to overfit for our dataset with a small sample
number. However, ShallowConvNet showed a close performance
to SVM classifier. This would lead that with a larger dataset,
a shallow convolutional neural network would give promising
classification results.

During the data analysis, we measured that the intra-class
variance is large. As a result, the selection of the training
samples was significantly changing the classification accuracy.
We have seen that in a class (TMS+ or TMS–), some patients’
information conflicts with each other. So, the inclusion of
one of these patients in the training dataset was leading to a
model which would mislabel the other patient. This information
supports the large variance in the dataset. Besides, as it is
seen in Figure 7, with increasing training dataset size, the
classification accuracy increases and has not stabilized with
the maximal training set size. This suggests that we have not

reached the required sample number yet. Hence, the data analysis
indicates that more patients are required to generate a more
generalizable model.

We observed that the increasing validation data size may have
a negative effect on the classification performance in some cases
(Figure 8). The reason for that may be the fact that some patients’
information totally conflicts with others, and hence, the inclusion
of certain patients in the validation data would cause a decrease
in classification accuracy. When we use smaller validation data,
the effect of these certain patients would decrease. Hence, smaller
validation data with a large training dataset gave the largest
accuracy during our analysis.

By considering the classification analysis results (Table 5), we
concluded that the EEG2 signals are more informative than the
EEG1 to recognize TMS+ and TMS- patients. Similarly, EEG2
has more capacity to be improved by feature selection processes.
Hence, EEG signal collected after a TMS therapy would lead
the more efficient prediction models for the personalized TMS
treatments for patients with AD.

For the future direction, this analysis must be repeated with a
larger dataset. This will increase the validity of the data analysis
results. We also observed that common data augmentation
techniques for signals did not supply any improvement in the
classification performance. In the literature, it is seen that for
different neurological tasks, different types of data augmentation
techniques must be applied (Lashgari et al., 2020). Hence,
for future studies, the best augmentation techniques for the
Alzheimer’s disease must be determined, and those techniques
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must be applied to the present data. Through that, a more reliable
and consistent classification model could be presented. Similarly,
using a multi-kernel technique such as MKSVM instead would
produce a better result due to the multi-source nature of our
dataset. Besides that, a shallow artificial neural network would
increase efficiency with its capability to handle challenging tasks.

In this study, due to the limited sample number and observed
biological variance, we mostly focused on the investigation of the
data from various perspectives. We measured the feasibility of
generating a personal treatment route for the TMS treatments
for patients with AD and showed that the possibility is high.
However, for getting a reliable and less risky decision model, we
need to have a better observation of the biological variance, which
requires more data.
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