Importance of Diagnosis in Breast Cancer with Non-BRCA Pathogenic Germline Variants of Cancer Susceptibility Genes using High-Throughput Sequencing Analysis

(1) Akif Ayaz, ${ }^{1}$ (D) Sinem Yalcintepe, ${ }^{2}$ (D) Serhat Seyhan, ${ }^{3}$ (D) Fazli Cem Gezen ${ }^{4}$
'Department of Medical Genetics, Istanbul Medipol University, Faculty of Medicine, Istanbul, Turkey
${ }^{2}$ Department of Medical Genetics, Trakya University, Faculty of Medicine, Edirne, Turkey
${ }^{3}$ Department of Medical Genetics, Biruni University, Faculty of Medicine, Istanbul, Turkey
${ }^{4}$ Department of General Surgery, Istanbul Medipol University, Faculty of Medicine, Istanbul, Turkey

Abstract

Objectives: The aim was to point out the importance of the diagnosis rate of breast cancer (BC) by analyzing the cancer predisposition genes except $B R C A 1 / 2$ with multigene testing. Methods: In this study, 232 non-BRCA cases with BC and/or BC family history (FH) were analyzed using the next-generation sequencing method. Results: Twenty-two different pathogenic/likely pathogenic variants were determined in 24 (10.34\%) of cases, and these variants were detected in the CHEK2 (7/24, 29.1\%), ATM (5/24, 20.8\%), MUTYH (3/24, 12.5\%), BLM ($2 / 24,8.3 \%$), WRN (2/24, 8.3\%), TP53 (1/24, 4.1\%), BRIP1 (1/24, 4.1\%), MSH2 (1/24, 4.1\%), NBN (1/24, 4.1\%), and PTEN (1/24, 4.1\%) genes including three novel variants which were identified in the BLM, ATM, and MSH2 (3/22, 13.6\%) genes. Fourteen of 24 (58.3\%) cases had BC diagnosis, and 10 of 24 (41.6\%) cases had a FH of BC. Conclusion: Among non-BRCA BC and/or BC FH cases, cancer susceptibility gene frequency was 10.34% in this study. CHEK2 and ATM genes had relatively high mutation rates.

Keywords: Breast cancer, Cancer susceptibility, Non-BRCA1/2, Targeted gene analysis

Cite This Article: Ayaz A, Yalcintepe S, Seyhan S, Gezen FC. Importance of Diagnosis in Breast Cancer with Non-BRCA Pathogenic Germline Variants of Cancer Susceptibility Genes using High-Throughput Sequencing Analysis. EJMO 2022;6(1):30-42.

Epidemiological studies have shown that family history (FH) is the most important risk factor in breast cancers (BCs). ${ }^{[1]}$ Although the majority of $B C$ is sporadic cases, familial $B C$ occurs at a rate of $5 \%-10 \%$ with hereditary causes. ${ }^{[2]}$ Hereditary BCs occur 5-15 years earlier than sporadic cases. Many genes are involved in the development of $B C$, but mutations of some genes that are responsible for hereditary $B C s$, especially those that function in the maintenance of genome stability, have been shown. ${ }^{[3]}$ BRCA1 and BRCA2 genes have been found as susceptibility genes for $B C$ with
high penetration, which are observed in hereditary BC. ${ }^{[4]}$ Women who include germ cell mutations in these genes have a high risk of developing $B C$ at some time in their lives. Germ cell mutations in the BRCA1 and BRCA2 genes have been shown in many studies as high-risk factors for $B C .{ }^{[5]}$ These two genes, which still carry the most severe mutations for familial $B C$, are at the forefront of mutation analysis in BC risk determination. Apart from these two genes, it is known that there are other genes that cause breast and ovarian cancer. ${ }^{[6]}$ The new genes detected in

[^0]these studies have also been associated with BC and have been added to clinical $B C$ research as new mutations. First of all, CDH1, PTEN, STK11, and TP53 gene mutations were among these genes, and later genes such as ATM, BARD1, CHEK2, and PALB2 with functions similar to BRCA1 and $B R C A 2$ were started to be analyzed. In addition to all these, candidate genes thought to play a role in BC (e.g., CDKN2A, MEN1, MLH1, MSH2, MSH6, and MUTYH) were added to increase the number of mutations examined. ${ }^{[7]}$
With rapidly developing technology in recent years, new generation devices have been produced, and many pan-el-based genes have begun to be analyzed simultaneously with the next-generation sequencing (NGS) method. The ultimate goal of panel-based genetic tests is to provide the highest level of care and treatment approaches that can be given to cancer patients and their relatives. ${ }^{[8]}$ This situation aims to prevent cancer formation among unaffected family members, especially in the evaluation of contralateral $B C$ risk and evaluation of other cancers with a high probability of occurrence (e.g., ovarian, colorectal, pancreatic cancers). To date, however, the prevalence of germline pathogenic/ likely pathogenic variants in non-BRCA genes is partially investigated in breast/ovarian cancer, and available data about these genetic risk factors in cancer are still poor. The aim of the current study was to present the prevalence of non-BRCA1/2 genes in breast/ovarian cancer cases from Istanbul, Turkey, and evaluate the clinical utility of multigene panels.

Methods

Study Population

The patient files of 254 cases with breast/over cancer and/ or hereditary breast/over cancer history (from October 15, 2018, to December 31, 2020) were reviewed in the medical genetics department. Twenty-two cases had a BRCA1/ BRCA2 pathogenic variant and were excluded. The remaining 232 patients were included in our study. Clinical information was obtained through the patient's clinical chart. For the FH, data were obtained from pedigrees. The genetic testing was applied according to the American National Comprehensive Cancer Network (NCCN) guidelines.
The cases were evaluated in two different clinical definitions: (1) $B C$ history and (2) BC FH. If the case had not any diagnosis of breast/over cancer, but has one or more first- or second-degree relatives with breast/over cancer, then this case was called "positive FH "). These cases were tested in a medical genetics clinic and had the analysis of germline cancer predisposition genes. After examining file records, FH was reviewed for each case. NCCN guidelines were used
to predict the prognosis of a case carrying a germline mutation of cancer predisposition genes.
This study is approved by the Ethical Committee of our university with decision number 168/2021 and performed in consonance with the principles of the Declaration of Helsinki. The written informed consent forms were obtained from the cases and/or families.

Targeted NGS Panel and NGS Data Analysis

Two 2 mL of peripheral blood samples of patients were collected to EDTA-containing tubes. Genomic DNA was isolated using MagPurix ${ }^{\text {B }}$ Blood DNA Extraction Kit (Zinexts, New Taipei, Taiwan). Quality control of the isolated DNA samples was checked using SpectraMax i3x (Molecular Devices, California, USA). Samples that have an A260/280 value between 1.8 and 2.0 were included. Low-quality samples were reextracted from stored blood samples.
Fastq generation was performed on Illumina Nextseq 500 platform (Illumina, Inc., San Diego, CA, USA). Libraries covering the target genes were prepared according to the TruSight Cancer Panel protocol (Illumina, Inc., San Diego, CA, USA). Following the target enrichment process, libraries were sequenced on the Illumina Nextseq 500 platform (Illumina, Inc., San Diego, CA, USA).
TruSight ${ }^{\oplus}$ Cancer Sequencing Panel (Illumina, Inc., San Diego, CA, USA) and a custom panel (23 genes) were used according to the manufacturer's instructions for NGS. Targeted gene panel 1 included $A T M, B L M, B R C A 1, B R C A 2, B R I P 1$, CDH1, CHEK2, EPCAM, FANCC, MEN1, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51C, RAD51D, STK11, TP53, and XRCC2 (23 genes) genes, and panel 2 included AIP, ALK, APC, ATM, BAP1, BLM, BMPR1A, BRCA1, BRCA2, BRIP1, BUB1B, CDC73, CDH1, CDK4, CDKN1C, CDKN2A, CEBPA, CEP57, CHEK2, CYLD, DDB2, DICER1, DIS3L2, EGFR, EPCAM, ERCC2, ERCC3, ERCC4, ERCC5, EXT1, EXT2, EZH2, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FH, FLCN, GATA2, GPC3, HNF1A, HRAS, KIT, MAX, MEN1, MET, MLH1, MSH2, MSH6, MUTYH, NBN, NF1, NF2, NSD1, PALB2, PHOX2B, PMS1, PMS2, PRF1, PRKAR1A, PTCH1, PTEN, RAD51C, RAD51D, RB1, RECQL4, RET, RHBDF2, RUNX1, SBDS, SDHAF2, SDHB, SDHC, SDHD, SLX4, SMAD4, SMARCB1, STK11, SUFU, TMEM127, TP53, TSC1, TSC2, VHL, WRN, WT1, XPA, and XPC (94 genes) genes.
All variants classified according to our pipeline as likely pathogenic or pathogenic were confirmed by conventional capillary Sanger sequencing. For this, the genomic DNAs were amplified by PCR, purified with the enzyme Exosap-IT (USB) and Big Dye X terminator kit (Applied Biosystems), and sequenced bidirectionally using the 3500XL platform (Applied Biosystems).

NGS Data Analysis

Alignment to the reference genomes (hg19 for humans) was performed using Burrows-Wheeler Aligner. The identified variants were functionally annotated using ANNOVAR. Variants were visually examined using Integrative Genomics Viewer 2.8.13 (https://software.broadinstitute.org/ software/igv/). Recommendations of the Human Genome Variation Society ${ }^{[9]}$ were followed to describe the novel variants, and ACMG's $2015^{[10]}$ guidelines were followed for the classification of all the variants. ClinVar ${ }^{[1]]}$ and literature studies are considered for collecting information about known variations.

Results

A total of 232 cases with breast/ovarian cancer and/or breast/ovarian cancer FH, who satisfied the NCCN testing criteria for the multigene panel and excluded BRCA1/2 pathogenic/likely pathogenic variants, were included in this study. Among these 232 patients with breast and/or ovarian cancer, 44.82% (104/232) had their primary cancer diagnosis at age 45 years or younger. Of these 232 patients, 122 (52.58\%) had at least one first-degree relative affected with breast or ovarian cancer. Most of the tested individuals were female, comprising 99.1% (230/232) of the total. The majority of the breast tumors were invasive ductal carcinomas with a range of 83.1% (193/232). HER2, estrogen, and progesterone receptor status were available for a subgroup of $127 / 232$ (54.7%) of BC patients, of which 27/148 (18.2\%) had triple-negative $B C$ (TNBC). Among the mutation-positive cases, 62.5% (15/24) had been evaluated for $B C$ history, 37.5% (9/24) had been evaluated for having BC FH.
The median age at diagnosis was 39 years (range 27-70 years) among 24 cases who had germline mutations. Among these 24 patients ($24 / 232,10.34 \%$) with 22 different pathogenic/likely pathogenic germline variants, the major mutant non-BRCA genes were CHEK2 ($\mathrm{n}=7$), ATM ($\mathrm{n}=5$), and MUTYH ($n=3$). Other pathogenic/likely pathogenic variants were in the BLM ($\mathrm{n}=2$), WRN ($\mathrm{n}=2$ sisters), TP53 $(\mathrm{n}=1$), BRIP1 ($\mathrm{n}=1$), MSH2 ($\mathrm{n}=1$), NBN ($\mathrm{n}=1$), and PTEN ($\mathrm{n}=1$) genes. We identified three novel pathogenic/likely pathogenic variants that were never reported before, including BLM c.572_573delGA, ATM c. $7629+1 \mathrm{G}>\mathrm{T}$, and MSH2 c.908A>G (Table 1). Cases 20 and 23, who have the same variant in CHEK2 gene, were not related. Fourteen of 24 (58.3%) cases had BC diagnosis, 10 of 24 (41.6%) cases had a FH of BC. CHEK2 mutated four patients had BC diagnosis, and 3 cases had a FH of BC. ATM mutated 4 patients had BC diagnosis and 1 case had a FH of BC . MUTYH mutated 1 patient had $B C$ diagnosis and 2 cases had a $F H$ of $B C$. The distribution of $B C$ diagnosis and positive $F H$ of $B C$ were not significantly
different in gene mutations.
Besides breast/ovarian cancer, lung cancer ($n=3$, three families), colon cancer ($n=2$, two families), brain cancer ($n=3$, three families), osteosarcoma ($n=1,1$ family), thyroid cancer ($\mathrm{n}=1,1$ family), gastric cancer ($\mathrm{n}=1,1$ family), bladder cancer ($n=1,1$ family), liver cancer ($n=1,1$ family), leukemia ($\mathrm{n}=1,1$ family) lymphoma ($\mathrm{n}=1,1$ family), and endometrium cancer ($\mathrm{n}=1,1$ family) were also observed.

Discussion

The present study demonstrated that about 10.3% of Turkish breast/over cancer patients who were previously tested BRCA-negative could have been diagnosed as mutated with multigene testing. Our study contributed also to the knowledge of pathogenic/likely pathogenic germline variants in multiple cancer susceptibility genes in the Turkish population. In total, 232 consecutive individuals with personal or FH of breast and/or ovarian without pathogenic/ likely pathogenic variants in BRCA1 and BRCA2 genes were analyzed (Table 2).
$B C$ is the most common type of cancer and the most common mortal malign disease in women, and its incidence increases with age. It is in the first place among cancers seen in women with a rate of 24.1%. ${ }^{[12]}$ Positive FH is an important risk factor for BC . It is stated that a person with a first-degree relative with $B C$ has a 1.8 -fold risk of developing $B C$, and in the presence of two first-degree relatives, this risk increases 2.9 -fold. If the relative with $B C$ is diagnosed before the age of 30 years, the risk increases 2.9 times, and if diagnosed after the age of 60 years, the risk increases 1.5 times. ${ }^{[13]}$ In the current study, 54.16% (13/24) had BC FH, and 37.5% (9/24) had other cancer family histories of our cases. The incidence of $B C$ under 40 years of age in Turkey is reported as $20 \% .{ }^{[14]}$ A study from Turkey reported that 31% of $B C$ is seen in women between the ages of 40 and 50 years and 20.2% in women under the age of 40 years. ${ }^{[14]}$ In our study, the percentage of primary cancer diagnosis under 45 years was 44.82% and under 40 years was 59%. A high percentage of our cases had been diagnosed at a younger age. In an invasive BC cohort study, including 54 555 cases, the mean age was 49.5 years for patients with a single primary breast tumor. ${ }^{[15]}$
In hereditary $B C, B R C A 1$ and $B R C A 2$ genes, which encode proteins involved in maintaining genome continuity and DNA repair mechanisms, are indicated as susceptibility genes to $B C$ with high penetration. It is stated that the risk of developing $B C$ varies between 45% and 65% in cases with germline mutations in these genes by the age of 70 years. ${ }^{[16]}$ It has been known that there are $B C$ susceptibility genes except $B R C A 1 / 2$. In the current study, we identified non-

Case/gender/age	Test indication	Affected family member	Gene	Variant	Protein	Pathogenicity	dbSNP	Gene panel*
1/F/31	Unilateral BC (right)	Mother - lung cancer; father -colon cancer; two sisters - breast cancer	WRN	(NM_000553.6):c.3493C>T	p.(Gln1165Ter)	$\begin{gathered} \text { Pathogenic } \\ \text { (PVS1, PM2, PP3, PP5) } \end{gathered}$	rs121908447	2
2/F/34	Positive FH	Mother - lung cancer; father - colon cancer; three sisters - breast cancer	WRN	(NM_000553.6):c.3493C>T	p.(Gln1165Ter)	Pathogenic (PVS1, PM2, PP3, PP5)	rs121908447	2
3/F/29	Positive FH	Aunt - breast cancer	CHEK2	(NM_007194.4):c.422A>C	p.(Lys141Thr)	Likely pathogenic (PM1, PM2, PP2, PP3)	rs786203192	2
4/F/27	Unilateral BC (left)	Uncle - osteosarcoma; cousin - brain tumor	MUTYH	(NM_001128425.2):c.884C>T	p.(Pro295Leu)	$\begin{gathered} \text { Pathogenic } \\ \text { (PM1, PM2, PP2, PP3, PP5) } \end{gathered}$	rs374950566	2
5/F/38	BC	-	BLM	(NM_000057.4):c.1642C>T	p.(Gln548Ter)	Pathogenic (PVS1, PM2, PP3, PP5)	rs200389141	1
6/F/53	Positive FH	Aunt - breast cancer	NBN	(NM_002485.5):c.2140C>T	p.(Arg714Ter)	Pathogenic (PVS1, PM2, PP3, PP5)	rs730881864	1
7/F/70	BC	-	CHEK2	(NM_001005735.2):C.599T>C	p.(lle200Thr)	Pathogenic (PS3, PM1, PM5, PP2, PP5)	rs17879961	1
8/F/49	Positive FH	Sister - breast cancer	MUTYH	(NM 001128425.2): c.1437_1439delGGA	p.(Glu480del)	$\begin{gathered} \text { Pathogenic } \\ \text { (PS3, PM1, PM2, PM4, PP3, PP5) } \end{gathered}$	rs587778541	1
9/F/36	BC	Aunt and aunt's daughter breast cancer; grandmother brain tumor	BLM	(NM_000057.4):c.572_573delGA	p.(Arg191LysfsTer4)	Pathogenic (PVS1, PM2, PP3)	Novel	1
10/F/38	BC	Sister - thyroid cancer; cousin - gastric cancer; aunt lymphoma	ATM	(NM_000051.4):c.7629+1G>T	-	Pathogenic (PVS1, PM2, PP3)	Nnovel	1
11/F/38	Positive FH	Aunt - breast cancer	MUTYH	(NM_001128425.2):c.1187G>A	p.(Gly396Asp)	Pathogenic (PS3, PM1, PM5, PP2, PP3, PP5)	rs36053993	1
12/F/33	Positive FH	Aunt - breast cancer	ATM	(NM 000051.4): c.5986_5988delGAA	p.(Glu1996del)	Likely pathogenic (PM1, PM2, PM4, PP3)	rs1555111872	1
13/F/54	Positive FH	Mother - breast cancer	MSH2	(NM_000251.3):c.908A>G	p.(Asp303Gly)	Likely pathogenic (PM2,PP2,PP3)	Novel	1
14/M/38	$B C$, prostate cancer?	Mother's father - lung cancer	CHEK2	(NM_007194.4):c.1169A>C	p.(Tyr390Ser)	Likely pathogenic (PM1, PM2, PM5, PP2, PP3)	rs200928781	1
15/F/59	Positive FH	Cousin - breast cancer	CHEK2	(NM_007194.4):c.1049delC	p.(Pro350GlnfsTer15)	Pathogenic (PVS1, PM2, PP3, PP5)	rs1601727022	1
16/F/32	Unilateral BC	-	ATM	(NM_000051.4):c.6082C>T	p.(Gln2028Ter)	$\begin{gathered} \text { Pathogenic } \\ \text { (PVS1, PM2, PP3, PP5) } \end{gathered}$	rs876659454	1
17/F/34	BC	-	BRIP1	(NM_032043.3):c.3072delG	p.(Ser1025HisfsTer34)	Likely pathogenic (PVS1, PM2)	rs1342519012	1
18/F/29	Unilateral BC	Aunt - brain tumor; mother's mother - liver cancer; father bladder cancer	ATM	(NM_000051.4):c.6154G>A	p.(Glu2052Lys)	Likely pathogenic (HGMD-CM1612882disease causing)	rs202206540	2
19/F/42	Positive FH	Sister - breast cancer	CHEK2	(NM_007194.4):c.1232G>A	p.(Trp411Ter)	$\begin{gathered} \text { Pathogenic } \\ \text { (PVS1, PM2, PP3, PP5) } \end{gathered}$	rs371418985	1
20/F/40	BC	Mother's mother breast cancer	CHEK2	(NM_007194.4):c.1427C>T	p.(Thr476Met)	Likely pathogenic (PM1, PM2, PM5, PP2, PP3, PP5)	rs 142763740	2
21/F/45	BC	Sister - breast cancer	ATM	(NM_000051.4):c.6199-1G>T	-	Pathogenic (PVS1, PM2, PP3, PP5)	rs1591788932	1

Case/gender/age	Test indication	Affected family member	Gene	Variant	Protein	Pathogenicity	dbSNP	Gene panel*
22/F/39	Unilateral BC (left)	Father - leukemia	TP53	(NM_001276760.2):c.257C>T	p.(Thr86Met)	Pathogenic (PM1, PM2, PM5, PP2, PP3)	rs786201057	2
23/F/40	BC	Mother - ovarian cyst/cancer?	CHEK2	(NM_007194.4):c.1427C>T	p.(Thr476Met)	Likely pathogenic (PM1, PM2, PM5, PP2, PP3, PP5)	rs142763740	1
24/F/42	Bilateral BC	Brother-lymphoma; cousin - endometrium cancer	PTEN	(NM_000314.8):c.333G>A	p.(Trp111Ter)	Pathogenic (PVS1, PM2, PP3, PP5)	rs1554898097	- 1

*Panel 1: ATM, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, FANCC, MEN1, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51C, RAD51D, STK11, TP53, and XRCC2 (23 genes). Panel 2: AIP, ALK, APC, ATM, BAP1, BLM, BMPR1A, BRCA1, BRCA2, BRIP1, BUB1B, CDC73, CDH1, CDK4, CDKN1C, CDKN2A, CEBPA, CEP57, CHEK2, CYLD, DDB2, DICER1, DIS3L2, EGFR, EPCAM, ERCC2, ERCC3, ERCC4, ERCC5, EXT1, EXT2, EZH2, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FH, FLCN, GATA2, GPC3, HNF1A, HRAS, KIT, MAX, MEN 1, MET, MLH1, MSH2, MUTYH, NBN, NF1, NF2, NSD1, PALB2, PHOX2B, PMS1, PMS2, PRF1, PRKAR1A, PTCH1, PTEN, RAD51C, RAD51D, RB1, RECQL4, RET, RHBDF2, RUNX1, SBDS, SDHAF2, SDHB, SDHC, SDHD, SLX4, SMAD4, SMARCB1, STK11, SUFU, TMEM127, TP53, TSC1, TSC2, VHL, WRN, WT1, XPA, and XPC (94 genes).

BRCA1/2 twenty-one different pathogenic/likely pathogenic germline variants in cancer susceptibility genes. Similar studies reported different frequencies of non-BRCA1/2 pathogenic germline variants as $10 \%{ }^{[6]} 14 \%{ }^{[6]]} 12.3 \%{ }^{[18]}$ $3.97 \%,{ }^{[19]}$ and 4.9%. ${ }^{[20]}$ Another study including only under 40 years of age and non-BRCA1/2 BC patients reported 11% pathogenic/likely pathogenic variants in the cancer susceptibility genes. ${ }^{[21]}$ With the rate of 10.34%, our study showed a similar rate for non-BRCA1/2 pathogenic variants compared with other populations.
We analyzed cancer susceptibility genes with two different targeted gene panels (23 genes and 94 genes panels). In a study, whole exome sequencing (WES) was applied to identify new breast and/or ovarian cancer predisposition genes in 52 non-BRCA1/BRCA2/TP53 mutation carrier women at high risk for hereditary breast and ovarian cancer. ${ }^{[22]}$ The pathogenic variants were identified in CHEK2, MUTYH, PMS2, RAD51C, FAN1, POLQ, RAD54L, DROSHA, and SLC34A2 genes. ${ }^{[22]}$ The largest gene panel included 94 genes in our study and we identified the pathogenic variants in CHECK2, ATM, MUTYH, BLM, WRN, TP53, BRIP1, MSH2, and NBN genes with three novel variants. This result may be due to the relatively high case number of our study (232 cases) compared with this study (52 cases). The most frequent pathogenic variants were in CHEK2 gene in both our study and this WES study. With larger gene panels or with whole exome sequencing, new cancer susceptibility genes will be identifiable.
The most frequent non-BRCA1/2 cancer susceptibility genes were MUTYH and PTCH1 in China, ${ }^{[6]}$ CHEK2, ATM, and PALB2 in Germany, ${ }^{[23]}$ CHEK2 and ATM genes in the USA. ${ }^{[21]}$ Our study, presenting Turkey population frequencies, identified the most frequent non-BRCA1/2 pathogenic variants in CHEK2, ATM, and MUTYH, showing similarities and differences with these studies. A study from China evaluating germline variants of 16 DNA repair genes (ATM, BLM, CHEK2, FANCC, MER11A, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, RAD50, RAD51C, RAD51D, and TP53) determined 3.4% frequency. ${ }^{[24]}$ The most frequent mutations were in PALB2, TP53, ATM, and RAD51D genes ${ }^{[24]}$ different from our study except ATM frequency. In Cyprus, the frequency of non-BRCA cancer susceptibility genes was reported as 4.9% in TNBC patients with the most frequent mutated gene PALB2. ${ }^{[20]}$
The most frequent pathogenic variants were in the CHEK2 gene in our study similar to Felicio et al.'s study. ${ }^{[22]}$ CHEK2 protein is a serine/threonine kinase and is a transmission protein in the DNA damage checkpoint pathway. ${ }^{[25]}$ DNA repair begins as a result of CHEK2 protein phosphorylating the BRCA1 protein serine 988 (S988) amino acid.
c.anmer

Gene panel*Breast and uterine cancer in her aunt's daughter
Lung small cell cancer in father; postmenopausal breast cancer in her uncle's daughter
No family history
Brother - breast cancer
No family history
Mother - breast cancer; mother's aunt breast cancer Mother - invasive breast cancer
Test indication
Familial breast cancer
Risk of breast and ovarıa Hereditary breast cancer Hereditary breast cancer
 Hereditary breast cancer Hereditary breast cancer Hereditary breast cancer Breast cancer
Familial breast cancer Familial breast cancer Familial breast cancer Hereditary breast cancer Familial breast cancer Malıgnant mass in right breast Hereditary breast cancer Hereditary breast cancer Hereditary breast cancer Familial breast cancer Hereditary breast cancer Familial breast cancer Familial breast cancer Breast cancer
Invasive ductal carcinoma Familial breast cancer Familial breast cancer
Familial breast cancer - right breast cancer
Familial breast cancer - early breast cancer Familial breast cancer Familial breast cancer
 Familial breast cancer Familial breast cancer

1023480

 1023486 1023485 1024363 1024404

Gene panel*

Affected family member Sister and aunt's daughter - breast cancer
Sister - breast cancer; brother - lung cancer
Aunt - breast cancer
2 aunts, sister, and uncle's daughter - breast cancer
Father - colon cancer; sister - breast cancer
Mother - breast cancer
Mother - breast cancer
Mother and aunt - breast cancer
Sister - breast cancer Sister - breast cancer
Grandfather and mothe

Grandfather and mother - breast cancer
No family history
No family history
Grandfather, moth
Grandfather, mother, and aunt - breast cancer
No family history No family history
2 aunts - breast ca

2 aunts - breast cancer
Mother - breast cancer
Breast cancer in daughter of his uncle's son; father - colon cancer; uncle - stomach cancer

Aunt - breast cancer
Mother - breast cancer Mother - breast cancer Mother - breast cancer No family history
Mother's sister and father's sister - breast cancer
No family history No family history
Mother - breast ca Mother - breast cancer
Mother - breast cancer

Breast cancer in two aunt's daughters
Aunt - breast cancer
Aunt - breast cancer
Mother, aunt, and father's sister - breast cancer No family history No family history

Family history of cancer
Aunt - breast cancer
No family history
No family history
Mother - breast cancer
Aunt - breast cancer
Aunt's daughter - breast cancer
No family history
Aunt's daughter - breast cancer

Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer

Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer

Familial breast cancer Familial breast cancer
 Familial breast cancer

\section*{흫 	Table 2. CONT.
Case \quad Gend	} 1024442

1025022 1025374 1025381 1025547 1025569 1025931 1026059 1026220 1026599 1026732 1026986 슻 1027631 1028633 1028683

1028745 ~ 1028873 1028933 1029113 1029965 1030065 1029487 1029709 1029803 1030130 1030217 n 1030564 030800 1031034 1031239
 1031249 1031320 1031563 응 $\stackrel{\perp}{\infty}$ 1032423

Gene panel* \square No family history
Grandfather - over cancer; mother - uterine cancer No family history
No family history
Aunts - breast cancer
No family history
No family history
Aunt - breast cancer
No family history
No family history sister - breast can No family history
Daughter of father's uncle - breast cancer Aunt - breast cancer Aunt - breast cancer
No family history
Aunt - breast cancer Aunt and grandpa - br Sister - breast cancer Aunt - breast cancer No family history Sister - breast cancer
No family history
Sister - breast cancer
Two sisters - breast cancer
Father - lung and larynx cancer
No family history
Mother - breast cancer; father - lung cancer; brother - colon cancer;
Mother - breast cancer; father - lung cancer; brother - colon cancer; breast cancer suspect in daughter No family history
Mother - breast cancer
Father - pancreas cancer; uncle - lung cancer; grandpa and uncle's
daughter - breast cancer daughter - breast cancer
Sister - breast cancer
Family history of cancer
Test indication
Familial breast cancer Familial breast cancer Familial breast cancer
 Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer
 Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer
Mass in the breast
Familial breast cancer Familial breast cancer
Familial breast cancer - mass in the breast
 Familial breast cancer
Familial breast cancer Familial breast cancer

 \ddagger 수ํ じ 1030342 1032984 | N |
| :---: |
| $\stackrel{N}{2}$ |
| | 1033291 1033356 1033430

 1033631 1033642 N్ 1038206 1034096 1033852 1034279 1033889 N 1034264 1034315 1034440 1034316 1034485 | n |
| :--- |
| |
| |
| | 1034731

1034847 1038025

Test indication Familial breast cancer
Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer Familial breast cancer
 Familial breast cancer Breast cancer

Familial breast cancer Breast cancer

Familial breast cancer Breast cancer

Familial breast cancer Familial breast cancer Familial breast cancer

 Familial breast cancer

Familial breast cancer Familial breast cancer
 Familial breast cancer Familial breast cancer breast cancer

Familial breast cancer Familial breast cancer Early breast cancer Familial breast cancer
 Familial breast cancer Breast cancer

Familial breast cancer Familial breast cancer Familial breast cancer Breast cancer

\square

Table 2. CONT.					
Case	Gender	Age	Test indication	Affected family member	
1039859	F	46	Genetic breast cancer	No family history	1
1040055	F	33	Familial breast cancer	Sister, cousin, and mother - breast cancer	
1040157	F	32	Familial breast cancer	Mother - breast cancer	
1040160	F	47	Breast cancer	Father - stomach cancer; uncle - lung cancer	
1040420	F	34	Breast cancer	No family history	
1040486	F	40	Breast cancer	No family history	1
1040676	F	46	Breast cancer	No family history	1
1040814	F	52	Familial breast cancer	Sister - breast cancer; father - stomach cancer; mother - over cancer	
1040825	F	36	Familial breast cancer	Aunt and mother - breast cancer	
1003405	F	47	Familial breast cancer	No family history	1

*Panel 1: ATM, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, FANCC, MEN1, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51C, RAD51D, STK11, TP53, and XRCC2 (23 genes)
Panel 2: AIP, ALK, APC, ATM, BAP1, BLM, BMPR1A, BRCA1, BRCA2, BRIP1, BUB1B, CDC73, CDH1, CDK4, CDKN1C, CDKN2A, CEBPA, CEP57, CHEK2, CYLD, DDB2, DICER1, DIS3L2, EGFR, EPCAM, ERCC2, ERCC3,
 TMEM127, TP53, TSC1, TSC2, VHL, WRN, WT1, XPA, and XPC (94 genes)

CHEK2 protein also phosphorylates FOXM1 (forkhead box M1) which is a transcription factor, increasing its stability. FOXM1 transcription factor, on the other hand, increases the expression of BRCA2, which is involved in homologous recombination DNA repair mechanism, and X-ray repair cross-complementing protein 1 (XRCC1) genes, which are involved in the base (cutout) repair mechanism. ${ }^{[26]}$ The most frequent pathogenic variants in CHEK2 gene should not be a surprise for BC in our study due to CHEK2 effects BRCA1/2 mechanisms in different ways.
A rapid evolution occurred for genetic testing in hereditary cancer predisposition. In the past years, the recommended genetic tests were preferred and requested primarily according to the phenotype of the patient, while the current approach is to perform panel-test-based genetic tests. ${ }^{[27]}$ Although the genetic test to be planned is shown as an indication for only one or two mutations based on the criteria specified in the guidelines, this also means testing the presence of many pathogenic variants in many different genes. Indeed, NCCN guidelines recommend a multigene panel assessment for efficiency and cost-effectiveness for individuals with negative BRCA1 and BRCA2 test results and suspected of having one or more inherited syndromes for cancer prevention, surveillance, and management. It should be kept in mind that the ultimate goal of all these expanded, panel-based genetic tests is to provide the highest level of care and treatment approaches that can be given to cancer patients and their relatives. This situation aims to prevent cancer formation among unaffected family members, especially in the evaluation of contralateral BC risk and evaluation of other cancers with a high probability of occurrence (e.g., ovarian, colorectal, pancreatic cancers). In recent years, genetic tests used in the diagnosis of $B C$ have become an indispensable tool in the personalization of the treatment of the disease and in identifying and managing individuals at risk in their families. The multigene targeted panel testing is offered for being cost-effective. ${ }^{[28]}$ In addition, with the correct interpretation of genetic tests and genetic counseling, an important contribution is made to specialists responsible for the treatment of individuals with $B C$.

Conclusion

In summary, the present study performed a characterization of germline variants identified in cancer susceptibility genes, using two targeted gene panels and bioinformatic analyses in Turkish non-BRCA1/BRCA2 mutation carrier cases with personal and/or familial BC history. Our results suggest that non-BRCA1/2 genes such as CHEK2, ATM, MUTYH, BLM, WRN, TP53, BRIP1, MSH2, and NBN may have a role in BC. Three novel pathogenic/likely pathogenic variants in

BLM, ATM, and MSH2 genes were identified in the current study. This is a cross-sectional study from Istanbul, which is a city demonstrating general Turkey demographic features, which reports the non-BRCA1/2 gene frequencies, and which suggests that targeted gene analysis increases the diagnosis rate in cases with personal and/or FH of BCs.

Disclosures

Ethics Committee Approval: The study was approved by the Local Ethics Committee.
Peer-review: Externally peer-reviewed.
Conflict of Interest: None declared.
Authorship Contributions: Concept - A.A., S.Y.; Design - A.A., S.Y.; Supervision - A.A., S.S., F.C.G.; Materials - A.A., F.C.G., S.Y.; Data collection \&/or processing - A.A., S.Y., S.S.; Analysis and/or interpretation - A.A., S.S.; Literature search - A.A., SY.; Writing - A.A., S.Y., S.S., F.C.G.; Critical review - A.A., S.Y., S.S., F.C.G.

Acknowledgments: We would like to thank Aslı Guner Ozturk Demir for her kind contribution. We also would like to thank all our patients and their families who contributed to this study.

References

1. Reiner AS, Sisti J, John EM, Lynch CF, Brooks JD, Mellemkjær L, et al; WECARE Study Collaborative Group. Breast cancer family history and contralateral breast cancer risk in young women: an update from the women's environmental cancer and radiation epidemiology study. J Clin Oncol 2018;36:1513-20.
2. Boujemaa M, Hamdi Y, Mejri N, Romdhane L, Ghedira K, Bouaziz H, et al. Germline copy number variations in BRCA1/2 negative families: Role in the molecular etiology of hereditary BC in Tunisia. PLos One 2021;16:e0245362.
3. Ronowicz A, Janaszak-Jasiecka A, Skokowski J, Madanecki P, Bartoszewski R, Bałut M, et al. Concurrent dna copy-number alterations and mutations in genes related to maintenance of genome stability in uninvolved mammary glandular tissue from BC Patients. Hum Mutat 2015;36:1088-99.
4. Tynan M, Peshkin BN, Isaacs C, Willey S, Valdimarsdottir HB, Nusbaum R, et al. Predictors of contralateral prophylactic mastectomy in genetically high risk newly diagnosed breast cancer patients. Breast Cancer Res Treat 2020;180:177-85.
5. Huber D, Seitz S, Kast K, Emons G, Ortmann O. Use of fertility treatments in BRCA1/2 mutation carriers and risk for ovarian and BC: a systematic review. Arch Gynecol Obstet 2020;302:715-20.
6. Lang GT, Shi JX, Huang L, Cao AY, Zhang CH, Song CG, et al. Multiple cancer susceptible genes sequencing in BRCA-negative BC with high hereditary risk. Ann Transl Med 2020;8:1417.
7. Hu C, Hart SN, Gnanaolivu R, Huang H, Lee KY, Na J, et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med 2021;384:440-51.
8. Ki CS. Recent advances in the clinical application of next-gen-
eration sequencing. Pediatr Gastroenterol Hepatol Nutr 2021;24:1-6.
9. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 2016;37:564-9.
10. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.
11. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018;46:1062-7.
12. Stewart SL, King JB, Thompson TD, Friedman C, Wingo PA. Cancer mortality surveillance--United States, 1990-2000. MMWR Surveill Summ 2004;53:1-108.
13. Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 2001;358:1389-99.
14. Özmen V. Breast cancer in Turkey: Clinical and histopathological characteristics (analysis of 13.240 patients). J Breast Health 2014;10:98-105.
15. Hu C, Polley EC, Yadav S, Lilyquist J, Shimelis H, Na J, et al. The contribution of germline predisposition gene mutations to clinical subtypes of invasive breast cancer from a clinical genetic testing cohort. J Natl Cancer Inst 2020;112:1231-41.
16. US Preventive Services Task Force, Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, et al. Risk Assessment, genetic counseling, and genetic testing for BRCA-related cancer: US Preventive Services Task Force recommendation statement. JAMA 2019;322:652-65.
17. Germani A, Petrucci S, De Marchis L, Libi F, Savio C, Amanti C, et al. Beyond BRCA1 and BRCA2: Deleterious variants in DNA repair pathway genes in Italian families with breast/ovarian and pancreatic cancers. J Clin Med 2020;9:3003.
18. Schubert S, van Luttikhuizen JL, Auber B, Schmidt G, Hofmann W, Penkert J, et al. The identification of pathogenic variants in BRCA1/2 negative, high risk, hereditary breast and/or ovarian cancer patients: High frequency of FANCM pathogenic variants. Int J Cancer 2019;144:2683-94.
19. Gomes R, Spinola PDS, Brant AC, Matta BP, Nascimento CM, de Aquino Paes SM, et al. Prevalence of germline variants in consensus moderate-to-high-risk predisposition genes to hereditary breast and ovarian cancer in BRCA1/2-negative Brazilian patients. Breast Cancer Res Treat 2021;185:851-61.
20. Zanti M, Loizidou MA, Michailidou K, Pirpa P, Machattou C, Marcou Y, et al. NGS panel testing of triple-negative breast
cancer patients in Cyprus: A study of BRCA-negative cases. Cancers (Basel) 2020;12:3140.
21. Maxwell KN, Wubbenhorst B, D'Andrea K, Garman B, Long JM, Powers J, et al. Prevalence of mutations in a panel of breast cancer susceptibility genes in BRCA1/2-negative patients with early-onset breast cancer. Genet Med 2015;17:630-8.
22. Felicio PS, Grasel RS, Campacci N, de Paula AE, Galvão HCR, Torrezan GT, et al. Whole-exome sequencing of non-BRCA1/ BRCA2 mutation carrier cases at high-risk for hereditary breast/ovarian cancer. Hum Mutat 2021;42:290-9.
23. Hauke J, Horvath J, Groß E, Gehrig A, Honisch E, Hackmann K, et al. Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med 2018;7:1349-58.
24. Fan Z, Hu L, Ouyang T, Li J, Wang T, Fan Z, et al. Germline
mutation in DNA-repair genes is associated with poor survival in BRCA1/2-negative breast cancer patients. Cancer Sci 2019;110:3368-74.
25. Stolarova L, Kleiblova P, Janatova M, Soukupova J, Zemankova P, Macurek L, et al. CHEK2 Germline variants in cancer predisposition: stalemate rather than checkmate. Cells 2020;9:2675.
26. Tan Y, Raychaudhuri P, Costa RH. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol 2007;27:1007-16.
27. Grignol VP, Agnese DM. BC genetics for the surgeon: an update on causes and testing options. J Am Coll Surg 2016;222:90614.
28. Koldehoff A, Danner M, Civello D, Rhiem K, Stock S, Müller D. Cost-effectiveness of targeted genetic testing for breast and ovarian cancer: a systematic review. Value Health 2021;24:303-12.

[^0]: Address for correspondence: Akif Ayaz, MD. Tibbi Genetik Anabilim Dali, Istanbul Medipol Universitesi, Tip Fakultesi, Istanbul, Turkey Phone: +90 5303283230 E-mail: aayaz@medipol.edu.tr
 Submitted Date: December 20, 2021 Accepted Date: February 20, 2022 Available Online Date: March 09, 2022
 ${ }^{\circ}$ Copyright 2022 by Eurasian Journal of Medicine and Oncology - Available online at www.ejmo.org
 OPEN ACCESS This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

