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A B S T R A C T   

While it took decades to arrive to a conclusion that ferritin is more than an indicator of iron storage level, it took 
a short period of time through the COVID-19 pandemic to wonder what the reason behind high levels of ferritin 
in patients with severe COVID-19 might be. Unsurprisingly, acute phase reactant was not a satisfactory expla-
nation. Moreover, the behavior of ferritin in patients with severe COVID-19 and the subsequent high mortality 
rates in patients with high ferritin levels necessitated further investigations to understand the role of ferritin in 
the diseases. Ferritin was initially described to accompany various acute infections, both viral and bacterial, 
indicating an acute response to inflammation. However, with the introduction of the hyperferritinemic syndrome 
connecting four severe pathological conditions such as adult-onset Still’s disease, macrophage activation syn-
drome, catastrophic antiphospholipid syndrome, and septic shock added another aspect of ferritin where it could 
have a pathogenetic role rather than an extremely elevated protein only. In fact, suggesting that COVID-19 is a 
new member in the spectrum of hyperferritinemic syndrome besides the four mentioned conditions could 
hopefully direct further search on the pathogenetic role of ferritin. Doubtlessly, improving our understanding of 
those aspects of ferritin would enormously contribute to better coping with severe diseases in terms of treatment 
and prevention of complications. The origin, history, importance, and the advances of searching the role of 
ferritin in various pathological and clinical processes are presented hereby in our article. In addition, the im-
plications of ferritin in COVID-19 are addressed.   

1. Introduction 

Initially addressed as a surrogate marker for the status of iron storage 
in the human body, ferritin which is derived from the Latin word “fer-
ratus” for iron-bearing, was considered to be merely related to iron and 
iron level in the human body [1]. Low ferritin levels indicated decreased 
body iron levels whereas high levels indicated normal or increased iron 
levels [2]. 

Later by the seventies, ferritin was shown to be increased in acute 
infectious diseases [3] hence aided in the explanation of increased 
ferritin levels in acute inflammatory conditions, the majority caused by 
infections. Consequently, ferritin starred in medical textbooks as a 
marker that differentiated between iron deficiency anemia and anemia 
of chronic diseases since it is higher in the latter due to inflammation 
and low in the first secondary to decreased iron levels [4]. 

Later on, elevated ferritin levels that were previously related to acute 

or chronic inflammatory conditions whether or not caused by an 
infection, were shown to play a central role in the pathogenesis of 
various inflammatory and autoimmune diseases [5,6]. In fact, the 
description of hyperferritinemia, Shoenfeld’s syndrome, as “an iron 
sword of autoimmunity” [7] sums up many years of searching for the 
significance of ferritin in severe diseases. Indeed, the mere fact that high 
ferritin levels were addressed as a syndrome “hyperferritinemic syn-
drome” sheds light on the huge implication of high levels of ferritin in 
the pathogenesis and severity of those diseases [8]. The correlation 
between hyperferritinemia and the four major pathologies of adult-onset 
Still’s disease, macrophage activation syndrome, catastrophic anti-
phospholipid syndrome and septic shock is a great example of the 
implication of ferritin, particularly as all share in common a very severe 
disease course with high mortality [9]. 

And finally, when the pandemic of COVID-19 came to the attention 
of the entire world by the start of the year 2020 [10], ferritin was forced 
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back into the debate regarding its role in severe diseases such as the 
newly born COVID-19 [11–13]. For instance, and early in the pandemic, 
ferritin served as a marker of severity and prognostic factor of COVID-19 
[14–16]. 

Therefore and based on that, we directed our work toward the origin 
of ferritin, its role in iron hemostasis, the appearance of the acute phase 
protein era, the special features of hyperferritinemia, the introduction 
and significance of the hyperferritinemic syndrome, and eventually the 
early presence of ferritin in the pandemic of COVID-19, to an extent of 
calling ferritin an additional piece in the puzzle of the hyperferritinemic 
syndrome [17]. 

2. Ferritin 

First isolated from a horse spleen in 1937, ferritin was defined as a 
crystallizable protein that contained more than 20% of iron [18]. Few 
years later, Granick showed that ferritin consisted of 54.5% protein, 
12.1% nucleic acid, and 35% ferric oxide-hydroxide [19]. Furthermore, 
the same author wrote later on about the importance of ferritin in iron 
metabolism and homeostasis [20]. 

Detection and quantification of ferritin were not possible until 1972 
when ferritin purification was achieved and anti-ferritin antibodies were 
developed [21]. Following the year 1975, ferritin was widely accepted 
as an iron storage protein of both prokaryotes and eukaryotes where 
ferritin was found to store iron in most tissues as a cytosolic protein [22]. 
Since then, measurement of serum ferritin level served as a new and 
indirect method to assess the intracellular iron. Considering the fact that 
ferritin is the primary iron storage mechanism, ferritin plays a critical 
role in iron homeostasis. For instance, ferritin makes iron available for 
essential cellular activities including protecting DNA and proteins from 
the potentially toxic effects of iron [23]. Furthermore, ferritin is now 
known to protect cells from the toxic effects of free iron, besides being 
involved in different functions including immune regulation [24]. 

In regard to iron storage, iron is stored in two proteins, either in 
ferritin or in hemosiderin. Hemosiderin is predominantly present within 
macrophages and low to undetectable levels in the plasma and thought 
to be a result of phagocytosis of damaged red blood cells. When the 
quantity of iron exceeds ferritin storage capacity, ferritin cages become 
damaged [25]. Ferritin and hemosiderin have high affinity and sensi-
tivity to iron however, ferritin stores slightly more iron than hemosid-
erin in low iron conditions such as iron deficiency anemia, whereas in 
iron overload hemosiderin stores more iron than ferritin [26]. 

2.1. Structure of ferritin 

Ferritin is a large molecule of approximately 10–12 nm in diameter, 
formed by a spherical molecule called “apoferritin shell” which stores 
iron inside its hollow center and thus called ferritin [1,27] (Fig. 1). Each 
apoferritin shell can store up to approximately 4500 iron atoms [28]. 

In vertebrates, ferritin consist of 2 subunits forming the apoferritin 
shell, L and H subunits which are encoded by the FTL and FTH genes 
respectively [24]. The expression of the L and H subunits varies 
depending on the tissue type and physiological status of the cells. For 
instance, in spleen and liver, L subunit is the predominant one, while in 
the heart, H subunit predominates [29]. Both L and H subunits attach to 
each other and form the outer apoferritin shell. The N-terminal peptides, 
which are present in L and H subunits, extend in order to form the gates 
that allow ferrous to exit from ferritin molecule [30]. 

2.2. Synthesis of ferritin 

The process of ferritin synthesis has been mostly studied in animals. 
Synthesis of ferritin takes place at the level of the cytoplasmic 5′-un-
translated mRNA [31]. Iron regulatory proteins 1 and 2 (IRP1 and IRP2) 
regulate ferritin synthesis at translational level by interacting with iron 
responsive element (IRE) found in 5′-untranslated region of ferritin 
mRNA [32]. In high intracellular iron conditions, IRP dissociates from 
IRE which in turn permits eIF4F binding to IRE. Following eIF4F-IRE 
binding, the IRE-RNA translation of ferritin begins thus building up 
new molecules of ferritin. On the other hand, when iron levels are low, 
IRP binds to IRE preventing eIF4F binding which blocks the process of 
ferritin synthesis [25] (Fig. 2). 

The IRE-containing flanking region produces a highly stable stem- 
loop structure, with the six-membered loop demonstrating the high af-
finity interaction with IRP. It is noteworthy to mention that the inter-
action between the IRE and the IRP is an iron-dependent process [32]. 

2.3. Release of ferritin 

Serum ferritin is predominantly L-ferritin which is released from the 
liver [33]. Several experiments conducted in liver of rats showed that 
secretion of ferritin is elicited by increased serum iron levels [34]. 
Moreover, several cytokines such as IL-6 and TNF-alpha were shown to 
stimulate the release of ferritin into the blood stream [35]. The latter 
explains high ferritin levels seen in inflammatory conditions, which is 

Fig. 1. Structure of ferritin. Ferritin is a large molecule formed by a spherical molecule called “apoferritin shell” which stores iron inside its hollow center and thus 
called ferritin. 
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discussed below. 

2.4. Functions of ferritin 

Though ferritin is a major contributor for iron homeostasis [36], it is 
implicated in various physiological and pathological conditions (Fig. 3). 
In terms of iron homeostasis, both iron deficiency and overload might 
lead to deleterious consequences, hence the role of ferritin in balancing 
iron concentration cannot be overemphasized [37]. The pathological 
manifestations of iron excess correlate with the tissue site where iron 
accumulates. For example, pancreatic deposition of ferritin leads to 
diabetes [38], pituitary deposition leads to hypogonadism [39], skin 

iron deposits lead to hyperpigmentation [40], and liver accumulation 
leads to liver disease that may progress to cirrhosis [41]. Furthermore, 
recent studies have indicated that accumulation of iron has also been 
implicated in oncogenesis, aging, and progression of chronic neurode-
generative conditions, such as Alzheimer and Parkinson disease [23]. 

Ferritin has multiple sites that catalyze the oxidoreduction of ferrous 
and O2 producing di-ferric mineral precursors. Those precursors migrate 
into the central cavity of ferritin and form ferric hydrated oxo mineral 
[42]. Though elevated ferritin levels in infections are viewed as an in-
flammatory marker, high levels are an important host defense mecha-
nism due to toxicity of iron for bacteria resulting in inhibiting bacterial 
growth [43]. 

Ferritin can be found in cell organelles other than cytosol, such as the 
nuclei, mitochondria, and lysosome, where it can perform various 
different functions depending on the cellular context. As an example, 
mitochondrial ferritin can protect the cell from the ROS (reactive oxygen 
species) and thus, ferroptosis (programmed cell death depending on 
iron) [44]. In addition, nuclear ferritin was shown to be effective in 
protecting DNA from iron-induced oxidative damage [45]. In the 
cytosol, a small fraction of intracellular iron is maintained in the labile 
iron pool, while the majority is utilized in enzymes or sequestered in 
ferritin to prevent iron mediated oxidative damage [43]. 

2.5. Regulation of ferritin 

While ferritin can store iron and release it when there is a decreased 
level, intracellular iron is the first and main regulatory factor of ferritin 
synthesis at both the transcriptional and the translational levels [21]. 
Ferritin production is tightly controlled at the translational stage by the 
interaction between iron regulatory protein (IRP) and the conserved 
iron responsive element (IRE) in the 5′-untranslated region of ferritin H 
and L subunit mRNAs as mentioned earlier [32]. Ferritin synthesis is also 
regulated by oxidative stress, hormones (thyroid and insulin), growth 
factors, second messengers, hypoxia-ischemia and hyperoxia [46]. 

In the liver, particularly in HepG2 hepatic cell line, while IL-1b in-
creases the synthesis of both H and L subunits, IL-6 primarily induces the 
synthesis of the L-subunit [47]. In excess iron levels, iron generates toxic 

Fig. 2. Synthesis of ferritin: in low iron conditions, IRP binds to IRE preventing eIF4F binding thus blocking ferritin synthesis. In high intracellular iron conditions, 
IRP dissociates from IRE which in turn permits eIF4F binding to IRE. Following eIF4F-IRE binding, the IRE-RNA translation of ferritin begins and hence building up 
new molecules of ferritin. IRE: iron responsive element; IRP: iron regulatory protein. 

Fig. 3. Functions and implications of ferritin.  
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free radicals which might directly damage the hepatocytes [43]. 

2.6. Ferritin as an acute phase reactant 

Acute phase response is a series of reactions conducted by host cells 
secondary to injury, trauma, infection, autoimmune diseases, or neo-
plasms [48]. Acute phase responses are aimed at inhibiting the processes 
involved in cell damage while promoting the processes involved in tissue 
repair [49]. Acute phase reactants are in fact acute phase proteins which 
are mainly produced and secreted by hepatocytes. Cytokines were found 
to have a major role in the regulation of acute phase protein synthesis. 
For instance, interleukin-1β (Il-1β), tumor necrosis factor-alpha (TNF- α) 
and interleukin-6 (Il-6) are pro-inflammatory cytokines thus stimulating 
the production of acute phase proteins [50]. In turn, interleukin-10 
(Il-10) and transforming growth factor beta (TGF-β) are examples of 
anti-inflammatory cytokines downregulating the synthesis of acute 
phase proteins [51]. 

Acute phase reactants that are synthesized by the liver in relatively 
large quantities (over expressed) are denoted as “positive” acute phase 
proteins (APP) and include Hp, SA, fibrinogen, Cp, AGP, α-1-antitrypsin, 
lactoferrin, and CRP. The APP’s synthesized at a lower level are termed 
“negative” and include proteins such as albumin, transferrin, and 
transthyretin [52]. Ferritin, a positive acute phase reactant presents in 
high concentrations in both intracellular and extracellular media. 
Ferritin has multiple forms depending on the ratio between its two 
subunits, the H and L subunits [53]. Since the functions of these two 
subunits differ, they determine the metabolic features of ferritin [54]. H 
subunit rich ferritins contribute to the intracellular iron traffic in terms 
of dynamism by accumulating and releasing iron faster [55]. On the 
other hand, L subunit rich ferritins with its ability of accumulating more 
iron increase preferentially when iron load occurs since L subunit rich 
ferritin is more stable than H subunit rich ferritin [56,57]. Up-regulated 
expression of both H and L subunit of ferritin is effective for protection 
against oxidative stress [58]. However, most stimuli directing ferritin 
synthesis in inflammation cause upregulation of H subunit rich ferritin 
synthesis more than L subunit rich ferritin indicating importance of 
rapid sequestration of iron and decrease in available cell iron in 
inflammation. Upregulation of H subunit rich ferritin also provides 
resistance to oxidative damage by hydroxyl radicals during inflamma-
tion by leaving little amount of iron available to produce these radicals 
by Fenton reaction [59]. 

Acting as an acute phase reactant, ferritin sequesters and stores iron 
intracellularly. The role of ferritin in iron homeostasis in the context of 
inflammation has a great importance in body protection against infec-
tion, injury, and cancer. For instance, Fenton reaction includes ferrous 
iron (Fe+2) reacting with H2O2 to generate hydroxyl radical, one of the 
most active oxygen radicals [60]. Oxygen radicals assist neutrophils and 
macrophages during phagocytosis by reacting with cellular components 
of phagocytosed materials. During inflammatory and infectious condi-
tions, large amounts of oxygen radicals are produced. Subsequently, 
oxygen radicals leak into the fluids and tissues around inflammation 
leading to a considerable amount of cellular damage by reacting with 
the cellular components [61]. Therefore, a decrease in available iron by 
increasing ferritin levels protect against the damage free radical could 
produce at the inflammation site. 

2.7. Autoimmune diseases and ferritin 

Elevated ferritin levels have been described in various autoimmune 
diseases. The mechanism behind high levels of ferritin in autoimmune 
diseases is believed to be secondary to immune stimulation of ferritin 
synthesis by cytokines [62,63]. 

Rheumatoid arthritis is an autoimmune inflammatory disease 
characterized by inflammation of joints and increased level of TNFα and 
IL-1α [64]. Serum ferritin levels in patients with rheumatoid arthritis 
can be within the normal range however, synovial fluid and synovial 

cells have been shown to have an increased levels of ferritin [65]. In 
turn, patients with systemic juvenile arthritis were found to have 
elevated serum ferritin levels at the time of diagnosis [66]. The levels of 
ferritin decrease during therapy and its levels help guide the physicians 
in the use of glucocorticoids as described in the same study. Even though 
C-reactive protein demonstrates significant correlation with rheumatoid 
arthritis disease activity, similar and less significant correlation with 
serum ferritin levels was observed [67]. 

Systemic lupus erythematosus is a chronic autoimmune disease 
that has been shown to affect multiple organs and tissues due to various 
types of autoantibodies with diffuse inflammation [68]. Elevated acute 
phase proteins are not a characteristic of systemic lupus erythematosus 
unless an infection is accompanied however, high ferritin concentrations 
were detected in the urine of lupus patients with nephritis [69]. Another 
study demonstrated that serum ferritin levels are elevated in patients 
with more active disease [70]. 

Multiple sclerosis is another autoimmune disease which results in 
demyelination of central nervous system (CNS) [71]. As iron is required 
for myelin formation; iron dysregulation was shown to be involved in 
the pathogenesis of multiple sclerosis [72]. In fact, iron delivery to brain 
tissue is dependent on transferrin as transferrin receptors are located in 
the gray matter areas whereas ferritin binding sites are found in the 
white matter areas. Moreover, multiple sclerosis leads to differences in 
the levels of transferrin and ferritin binding sites within the demyelin-
ating areas [73]. Whether a cause or result of demyelination, the caus-
ative correlation between demyelination and loss of ferritin binding 
remains unestablished. Additionally, hyperferritinemia was more com-
mon in patients with multiple sclerosis compared to healthy controls in a 
study conducted among 150 patients with multiple sclerosis [74]. 

Other autoimmune diseases shown to be associated with high 
ferritin levels are polymyositis and dermatomyositis especially in the 
elderly when compared to younger patients [75]. In addition, patients 
with thyroiditis were found to have elevated ferritin levels which 
decreased following treatment with anti-inflammatory drugs [76]. 

2.8. Infectious diseases and ferritin 

High ferritin levels during acute infectious diseases have for a long 
period of time served as a good example of a strong correlate. A Scan-
dinavian study from the seventies [3] which included 18 patients with 
acute infections, demonstrated an abrupt increase in serum ferritin 
immediately following infection. The authors showed that rapid eleva-
tion of serum ferritin level was similar among the enrolled patients 
regardless of whether the etiological agent was viral or bacterial. 
Furthermore, ferritin and haptoglobin displayed parallel behavior in 
terms of the rise and fall in serum levels. In contrast to the rapid 
elevation of serum ferritin at the beginning of the disease; it took as long 
as five weeks for ferritin levels to start dropping. An even longer dura-
tion until ferritin started to decrease in infectious diseases was reported 
in another study [77]. 

Bacterial infections were found to contribute to an increase in ferritin 
levels as well. Kawamata et al. [78] investigated ferritin levels in 22 
Japanese children with Mycoplasma pneumonia infection. Although 
serum ferritin was increased in the acute phase of pneumonia, it rapidly 
decreased during the recovery phase. The authors suggested that ferritin 
levels could serve as an indicator for the severity of the disease. More-
over, ferritin was also proposed to serve as a diagnostic marker in pa-
tients with Legionella pneumonia lung infection [79]. 

In addition to bacteria, high ferritin concentrations have also been 
reported in viral infections. Elevated serum ferritin levels were 
described in influenza viral infections. For instance, increased ferritin 
levels were described in 6 out of 22 patients infected with H5N1 influ-
enza virus [80]. Moreover, elevated ferritin levels were used as a rapid 
diagnostic surrogate marker in the diagnosis of Legionnaire’s disease 
during the H1N1 epidemic, a marker that could aid in distinguishing 
H1N1 infection from Legionnaire’s disease during the influenza season 
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[81]. Furthermore, high ferritin levels were associated with worse 
prognosis in patients infected with influenza A [82]. Similarly, higher 
ferritin levels were correspondent with a poor immune response to the 
influenzae vaccine [83]. Besides influenza viruses, high ferritin levels 
were associated with hemorrhage and death in Ebola hemorrhagic fever 
[84]. An interesting case report of 2 patients with Chikungunya infec-
tion who developed hyperferritinemic syndrome manifested as 
adult-onset Still’s diseases following the infection and reasoned to be 
due to the triggering of high ferritin levels by the viral infection and the 
subsequent development of auto-inflammatory disease [85]. 

In addition to the previously mentioned infectious agents, an 
elevation of serum ferritin has also been demonstrated in other bacterial 
and viral infections, such as EBV, HIV and tuberculosis [86]. 

Previous outbreaks of coronaviruses and ferritin: 
In fact, data is scarce in regard to levels of ferritin during the severe 

acute respiratory syndrome (SARS) epidemic [87,88] and the 
Middle-East respiratory syndrome (MERS) outbreak in Saudi Arabia [89, 
90]. However, during the early SARS epidemic, a study from Taiwan 
describing the first 10 patients infected with the SARS virus showed high 
ferritin levels in 7 out the 10 patients enrolled [91]. The levels of ferritin 
ranged from 590 ng/ml to 4984 ng/ml. Furthermore, rising ferritin 
levels were found to be correlated with clinical deterioration in the 
patients studied. 

2.9. Obesity and ferritin 

Obesity is a worldwide health problem affecting millions of people 
across the globe [92]. The correlation of ferritin with obesity has been 
widely studied. Ferritin concentrations were significantly associated 
with metabolic syndrome and obesity in a study conducted among 
Mexican American men [93]. Interestingly, the findings were indepen-
dent of age and body mass index. Another study was aimed at addressing 
the significance of ferritin levels in obese and overweight individuals 
[94]. Ferritin was found to have a positive correlation with both CRP 
levels and body mass index however, a negative association was re-
ported with regards to correlations with levels of hemoglobin, iron, and 
transferrin. Based on the findings, the authors concluded that ferritin is a 
marker of inflammation in obese and overweight persons rather than a 
marker for iron deficiency. 

2.10. Malignancy and ferritin 

Ferritin levels are also overexpressed in many malignancies. In fact, 
the medical literature is replete with papers that describe an association 
between ferritin levels and a variety of malignancies. For instance, high 
ferritin levels were reported in solid tumors such as breast cancer in old 
and new studies, suggesting a correlation with the pathogenesis of the 
diseases alongside a marker for prognosis [95,96], non-small cell lung 
cancer [97] and pancreatic cancer [98]. In the latter, ferritin was 
demonstrated to act as an independent predictor of mortality in patients 
with pancreatic cancer. 

In CNS malignancies, elevated cerebrospinal fluid (CSF) to serum 
ferritin ratio was postulated to mark active tumor synthesis in patients 
with glioblastoma, whereas serum ferritin levels were shown to serve for 
diseases activity and guide to therapy in patients with neuroblastoma 
[99]. Certain studies correlated the elevation of serum ferritin to higher 
risk of certain cancers. For instance, a Taiwanese cohort study demon-
strated that the elevation of serum ferritin increased the risk for hepa-
tocellular carcinoma [100]. The increase in serum ferritin was due to 
localized release inside the tumor site, the authors explained. Further-
more, surgical excision of tumors reduced serum ferritin levels by nearly 
50% in individuals with increased serum ferritin, indicating a link be-
tween tumor bulk and serum ferritin elevation [101]. In addition, it has 
been demonstrated in vitro, that cancer cells from various malignancies 
release ferritin or ferritin-like compounds [102–104]. 

2.11. Hyperferritinemia and hyperferritinemic syndrome 

The association of high levels of ferritin with various inflammatory 
as well as infectious diseases has been known for decades [8] and 
described in details above (Table 1). However, extremely high levels of 
ferritin were addressed as a separate pathological entity. For instance, 
hyperferritinemia is considered when ferritin levels increase up to more 
than 400 ng/ml [11]. Such high levels of ferritin were shown to be 
correlated with a constellation of symptoms constituting the “hyper-
ferritinemic syndrome”, Shoenfeld’s syndrome [9]. 

In 1998, Alberto Piperno addressed various diseases which share 
together elevated ferritin levels as a common mechanism. Piperno 
named the diseases as “hyperferritinemic conditions” [105]. The con-
ditions, according to the author, were inconsistent and unlike previously 
known pathologies of iron overload due to congenital or acquired dis-
orders, which were correlated mainly with iron overload. 

In the year 2013, the group of Shoenfeld et al. presented hyper-
ferritinemia as a continuation of a spectrum of disorders called 
“hyperferritinemic syndrome” [9]. The authors illustrated four patho-
logical processes where hyperferritinemia was the common base and 
connector. The disorders were adult-onset Still’s disease (AOSD), cata-
strophic antiphospholipid syndrome (cAPS), macrophage activation 
syndrome (MAS) and septic shock. The article concluded the similarities 
in clinical, laboratory and therapeutical aspects of the disorders even-
tually proposing to include those four uncommon diseases under one 
entity “hyperferritinemic syndrome”. Earlier during the year 2013, prior 
to suggesting the term “hyperferritinemic syndrome”, the same group 
illustrated that hyperferritinemia could serve as an early marker for 
secondary antiphospholipid syndrome in patients with systemic lupus 
erythematosus (SLE) [106]. 

The spectrum of hyperferritinemic syndrome consists of several in-
flammatory, autoimmune, and infectious diseases as follows: 

3. Adult-onset Still’s disease 

Adult-onset Still’s disease is a rare systemic auto-inflammatory dis-
order of unknown etiology [107]. Several infectious agents have been 
suspected as a trigger of the disease due to the similarities in clinical 
presentation [108,109] however, none has been proven to be the etio-
logic agent. Adult-onset Still’s disease is characterized by spikes of fever 

Table 1 
Autoimmune, inflammatory, and infectious diseases associated with high levels 
of ferritin.  

Autoimmune and Inflammatory diseases 

Rheumatoid arthritis 
Systemic juvenile arthritis 
Systemic lupus erythematosus 
Multiple sclerosis 
Polymyositis 
Dermatomyositis 
Adult-onset Still’s disease 
Catastrophic antiphospholipid syndrome 
Macrophage activation syndrome 

Infections 

Septic shock 
Mycoplasma pneumonia 
Legionella pneumonia 
Influenza viral infections 

H5N1 
H1N1 
Influenza A 

Ebola hemorrhagic fever 
Chikungunya 
EBV 
HIV 
Tuberculosis 
COVID-19  
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accompanied by joints pain, and an evanescent salmon pink macular or 
maculopapular rash [110]. In addition, myalgia, lymphadenopathy, 
splenomegaly, and hepatomegaly are also found. Laboratory findings 
include among others elevated C-reactive protein (CRP) and erythrocyte 
sedimentation rate (ESR), leukocytosis with neutrophilic predomi-
nation, anemia, elevated liver enzymes and hyperferritinemia [111]. 

Hyperferritinemia has been proposed as a tool to aid in the diagnosis 
of adult-onset Still’s disease. For instance, several studies indicated a 
threshold of 1000 ng/ml for a possible diagnosis of adult-onset Still’s 
disease [112]. Higher levels, to the upwards of 30,000 ng/ml were re-
ported to be a common finding, reaching even as much as 250,000 
ng/ml in some studies [113]. Therefore, even though the threshold was 
proposed to be at 1000 ng/ml; most patients presented with much 
higher levels. 

Moreover, the value of ferritin in adult-onset Still’s disease has been 
used as an indicator of the disease activity especially as it normalizes 
following the initiation of treatment and when the disease goes into 
remission [112]. In addition, levels of ferritin were directly correlated 
with disease activity [114,115]. Furthermore, in a study which included 
147 patients with adult-onset Still’s disease, ferritin alongside CRP were 
shown to serve as a predictor of both mortality and macrophage acti-
vation syndrome [116]. As macrophage activation syndrome is a 
life-threatening complication of adult-onset Still’s disease, ferritin levels 
in this regard serve to guide clinicians in terms of early diagnosis, 
treatment, and prevention of complications. 

Along with the previously mentioned implications of ferritin in 
adult-onset Still’s disease which included disease activity, severity, and 
complications, it has been recently suggested that ferritin could be part 
of the pathogenesis of the disease, particularly following the several 
researches made in regard to ferritin in COVID-19 [117]. The findings 
were based on the fact that ferritin stimulates and amplifies the secretion 
of numerous cytokines. 

4. Macrophage activation syndrome (MAS) 

Macrophage activation syndrome (MAS) or often and interchange-
ably called secondary hemophagocytic lymphohistiocytosis (HLH), is a 
hyperimmune complication of a number of autoimmune diseases that 
include juvenile arthritis and systemic lupus erythematosus [118]. The 
disease is characterized by a rapid expansion and activation of T-lym-
phocytes and macrophages that express hemophagocytic activity [119]. 
Due to the similarities of clinical presentation with systemic inflam-
matory diseases, macrophage activation syndrome is often mis-
diagnosed or diagnosed late in the disease course which directly leads to 
high morbidity and mortality rates [120]. 

The clinical presentation of macrophage activation syndrome con-
sists of high fever, skin manifestations such as purpura or petechiae, and 
edema [121]. Multiorgan involvement is also common including respi-
ratory symptoms manifested by dyspnea, cough, or respiratory failure in 
severe cases; gastrointestinal as well as renal complications were also 
reported [122]. Neurological symptoms were also documented in pa-
tients with macrophage activation syndrome particularly during the 
early stages of the disease [123]. The CNS manifestations vary and 
include meningitis, encephalomyelitis, and cerebral hemorrhage. Lab-
oratory findings in macrophage activation syndrome consist of pancy-
topenia, hyperferritinemia, abnormal liver function tests and elevated 
triglycerides [124]. 

Since macrophage activation syndrome resembles in clinical pre-
sentation several autoimmune and inflammatory diseases and while 
early diagnosis and treatment are lifesaving, a set of criteria for diag-
nosis were established. Ferritin level constituted one of the cornerstones 
of these criteria. For instance, a minimum of 500 ng/ml level is 
considered the threshold for the diagnosis of macrophage activation 
syndrome [120]. Nevertheless, levels of ferritin can be as high as 5000 
ng/ml or even higher. One study showed that ferritin levels above 1000 
ng/ml are almost specific for the diagnosis of macrophage activation 

syndrome [125]. In fact, hyperferritinemia is a must criterion for the 
diagnosis of macrophage activation syndrome. For example, and while 
juvenile idiopathic arthritis (JIA) is one of the most common associa-
tions with macrophage activation syndrome, Ravelli and a panel of ex-
perts [126] developed a diagnostic guideline for the diagnosis of MAS as 
a complication of systemic JIA. Unsurprisingly, a threshold of ferritin 
level higher than 684 ng/ml was included as an obligatory requirement 
for the diagnosis. The authors stressed the importance of the criteria in 
facilitating the diagnosis of macrophage activation syndrome, as well as 
providing a tool for better enrollment of patients in studies and hence 
permitting further evaluation of potential therapies. 

It is noteworthy to mention, that previously proposed diagnostic 
criteria for macrophage activation syndrome were based on the HLH- 
2004 diagnostic guidelines [127]. The latter which set ferritin levels 
at 500 ng/ml, were used mainly for the diagnosis of primary HLH. 

The presence and importance of ferritin and its value in all of the 
mentioned criteria and guidelines, shed light on the enormously 
important role of ferritin in macrophage activation syndrome. 

5. Catastrophic anti-phospholipid syndrome 

Antiphospholipid syndrome is a systemic autoimmune disease 
caused by the formation of autoantibodies against the phospholipid 
bound proteins of platelets leading to widespread intravascular throm-
bosis of arteries and veins [128]. Antiphospholipid syndrome may occur 
alone and called primary, or concomitantly with other systemic auto-
immune disease, most commonly systemic lupus erythematosus thus 
named secondary [129]. The diagnosis of antiphospholipid syndrome is 
based on both clinical and laboratory criteria indicating thromboem-
bolic phenomena and the presence of antiphospholipid antibodies 
[130]. 

A small percentage of patients with antiphospholipid syndrome may 
develop a severe form of the disease called catastrophic anti-
phospholipid syndrome [131]. The latter is characterized by dissemi-
nated microvascular thrombosis leading to multiorgan failure and high 
mortality rate [132]. Interestingly, ferritin was shown to be involved in 
antiphospholipid syndrome as well as in its catastrophic form. In a study 
which included 176 patients with antiphospholipid syndrome [133], 9% 
of the patients had high serum ferritin levels versus 0% of 98 healthy age 
and sex matched controls. Among the hyperferritinemic patients, ferritin 
levels correlated with venous thrombosis alongside cardiac, neurolog-
ical, and hematological events. In regard to 14 patients with cata-
strophic antiphospholipid syndrome in the study, hyperferritinemia was 
reported in 71% of the patients. Ferritin levels were found significantly 
higher in comparison to patients with antiphospholipid syndrome 
without the catastrophic variant (816 ng/ml vs. 120 ng/ml). Based on 
their findings, the authors suggested a pathogenetic role of ferritin in the 
severe form of the disease especially that patients with milder form had 
significantly lower levels of ferritin. 

6. Septic shock 

As opposed to the above mentioned autoimmune and auto-
inflammatory members of the hyperferritinemic syndrome, septic shock 
represents the infectious part of the spectrum of hyperferritinemic 
syndrome. This connection is highly important when it comes to the 
following section of COVID-19 and ferritin. 

Septic shock is a severe and life-threatening complication of sepsis 
[134]. While sepsis is a response to severe infection, septic shock is 
marked by a systemic hypoperfusion resulting in multiorgan failure 
[135]. Among 36 children with severe sepsis and septic shock admitted 
to the intensive care unit, Garcia et al. [136] demonstrated three sub-
groups according to ferritin levels as follows: 13 children had less than 
200 ng/mL, 11 children had levels of 200–500 ng/mL, and 12 children 
had levels higher than 500 ng/mL. Accordingly, the mortality rate was 
found to be 23%, 9% and 58%, respectively. The authors presented 
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ferritin levels of more than 500 ng/mL were associated with a signifi-
cantly high mortality rate in comparison with lower levels. Moreover, a 
pathogenetic and immunomodulatory role of ferritin in sepsis were 
addressed in patients with sepsis-induced acute kidney injury in a recent 
study [137]. 

6.1. The pandemic of COVID-19 

By the end of 2019, a new corona virus was reported to cause acute 
and severe respiratory illness in Wuhan, China [138]. At the beginning it 
was designated as a novel-corona virus however, it was changed latter 
on to be named SARS-CoV-2 based on the genomic similarities with the 
SARS virus that emerged during the winter season of 2002–2003 [87]. 

The constellation of the symptoms of SARS-CoV-2 infection were 
called COVID-19 which stands for corona virus disease of 2019. Due to 
the rapid and worldwide spread of the SARS-CoV-2 infection, COVID-19 
was declared as a pandemic and global health emergency by the world 
health organization (WHO) in March 2020 [10]. 

As those words were being written, around 250 millions people were 
infected with SARS-CoV-2 worldwide and approximately 5 millions died 
secondary to COVID-19, according to the weekly epidemiological report 
issued by the WHO [139]. 

6.2. COVID-19 and ferritin 

Following the global spread of the COVID-19 pandemic and early 
throughout the pandemic, elevated levels of ferritin in patients with 
COVID-19 brought the attention of medical staff treating huge numbers 
of patients [140] as well as researchers by predicting poor outcomes 
[141]. The possible correlation between ferritin and worse prognosis 
however, barely scratched the surface of the hidden elements beneath it 
which necessitated further investigation. Subsequently, ferritin levels 
progressed from a prognostic point of view, to serve as a severity risk 
factor. More importantly, the dramatic increase in ferritin levels, 
alongside lymphopenia, reduced NK cell number and activity, abnormal 
liver function tests, and coagulopathy, had researchers speculating, and 
later agreeing that COVID-19 might be the newest member in the group 
of hyperferritinemic syndromes [142]. In fact, the aspects of COVID-19 
that resemble hyperferritinemic syndromes in terms of severe manifes-
tations include systemic inflammatory response syndromes (SIRS) and 
acute respiratory disease syndrome (ARDS) [17,143]. The common 
ground beneath the hyperferritinemic syndrome and the mentioned 
complications encompasses the combination of high serum ferritin and a 
life-threatening hyperinflammation which eventually leads to 
multi-organ failure [142]. In this regard, the severe consequences of 
COVID-19 rely on two main pathological aspects, those produced by the 
SARS-CoV-2 itself, and those related to the host immune-inflammatory 
response [144]. Based on that interplay between the viral and immune 
system a clinical-therapeutic staging of SARS-CoV-2 infection was pro-
posed: stage I (mild), stage II (moderate), and stage III (severe). In the 
first stage, SARS-CoV-2 invades the lungs and enters pulmonary cells by 
binding to the angiotensin-converting enzyme receptor 2 (ACE2), a re-
ceptor abundant on human lungs, intestinal epithelium, and vascular 
epithelium. During the first stage of the disease, symptoms are 
non-specific, and diagnosis is made mainly by PCR. Complete blood 
counts may only show lymphopenia and neutrophilia as abnormalities 
[145]. Therefore, ferritin at this stage does not seem to have a noticeable 
role. Patients progressing to the second stage of SARS-CoV-2 infection 
suffer from the effects of viral replication and local inflammation. The 
infection of the lung is manifested by pneumonia and characterized by 
cough, fever, and in some cases, hypoxia, whereas blood tests may 
reveal increased lymphopenia and elevated transaminase levels [146]. 
In the third and most severe stage, the formerly localized inflammation 
of the lungs becomes a systemic and extrapulmonary hyper-
inflammation syndrome [147]. In blood samples at this stage decreased 
T lymphocyte counts and an enormous increase in inflammatory 

cytokines and biomarkers including ferritin are seen [148]. 
Indeed, when it comes to the cellular level, the exact interplay of 

ferritin in the pathophysiology of COVID-19 has not been fully estab-
lished yet. However, the current knowledge is that in response to injury, 
cytokines stimulate the production of defense proteins by the liver, 
including C-reactive protein and ferritin. The transcription and trans-
lation of ferritin is induced mainly by IL-1β, IL-6, and molecules of IFN-γ 
[11]. Macrophages as well as damaged cells constitute additional 
pathway explaining high ferritin levels. Importantly, ferritin promotes 
further pro-inflammatory mediator release, increasing the inflammatory 
burden and resulting in a vicious cycle. Ferritin accomplishes this by the 
activation of NF-ԟB leading to upregulation of ferritin gene transcription 
[117]. 

6.3. The implications of ferritin in COVID-19 

The implication of ferritin in severe and advanced stages of COVID- 
19 as mentioned above, raised questions regarding the role of ferritin in 
COVID-19: is it solely a biomarker of inflammation indicating a stage or 
rather a trigger for further propagation of the inflammatory cascade? 

Actually, if a line is drawn throughout the pandemic of COVID-19, 
the interpretation of elevated ferritin levels shows the following pattern:  

1. Acute phase reactant: increased ferritin levels were reported among 
the first series of patients with COVID-19 as part of the laboratory 
findings parallel to decreased lymphocyte count and high CRP levels 
[145,146].  

2. Indicator of severity of the disease: a strong correlation between 
elevated ferritin levels and the severity of COVID-19 was reported 
during the pandemic. Ferritin levels were significantly higher among 
patients with severe COVID-19 versus non-severe patients (2800 ng/ 
ml versus 708 ng/ml, respectively). Similarly, ferritin levels were 
directly associated with increased risk of ARDS in patients with 
COVID-19 in an Italian study [149].  

3. Prognostic factor: patients with COVID-19 and increased ferritin 
levels were shown to have longer time period for viral clearance as 
well as longer hospital-stay [150]. The same implications were re-
ported in another study which included the correlation between 
elevated ferritin levels and in-hospital mortality and invasive venti-
lator dependence [151].  

4. A member of the hyperferritinemic syndrome: COVID-19, as 
addressed earlier in our paper, was introduced during the pandemic 
as part of the hyperferritinemic syndrome due to the similarities in 
the presentation and severity [17,142].  

5. Other aspects and future studies: ferritin was investigated as a 
nanoparticle-based SARS-CoV-2 vaccine product tested in mice 
[152]. In addition, several studies exploring ferritin as a potential 
therapeutic target [153], possibly applicable to COVID-19. Further-
more, due to the harmful effects of iron excess and the resultant high 
ferritin levels, iron-depleting therapy was suggested as a treatment 
potential in patients with COVID-19 [154]. 

7. Conclusion 

One of the interesting consequences of COVID-19 is that it has 
brought ferritin back again to the attention of researchers. While being 
more than an iron status indicator is a matter of fact nowadays, the exact 
role of ferritin, its implication in the pathogenesis of inflammatory and 
autoimmune diseases, and its proinflammatory properties are yet to be 
completely established. Better understanding of those aspects will 
inevitably improve diagnosis, treatment, and prevention of life- 
threatening complications of many diseases. 
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