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ABSTRACT Safety, security, and privacy are three critical concerns affiliated with the use of drones in
everyday life. Considering their ever-shrinking sizes and capabilities, being aware of drone activities in
the vicinity becomes an important surveillance item. Therefore, keeping track of drones and preferably their
controllers should be included into the already-existing security measures. In this study, a frequency hopping
spread spectrum (FHSS) type drone controller signal detection and emitter direction finding framework
is proposed to achieve aforementioned goals. Since drone communications signals generally coexist with
other FHSS signals in 2.4 GHz industrial, scientific, and medical (ISM) band, first, a method based on
cyclostationarity analysis is proposed to distinguish the drone radio controller signals from other signals
utilizing 2.4 GHz ISM band. Then, a variant of short-term Fourier transform is introduced to extract the
parameters of detected drone remote controller signals. The correct hopping signals are then aggregated
based on the clustered parameters to obtain their combined baseband equivalent signal. Furthermore, the
resampling process is applied to reduce the unrelated samples in the spectrum and represent the spectrumwith
the reconstructed signal, which has amuch lower bandwidth than the spread bandwidth. Finally, two different
multiple signal classification algorithms are utilized to estimate the direction of the drone controller relative
to the receiving system. In order to validate the overall performance of the proposed method, the introduced
framework is implemented on hardware platforms and tested under real-world conditions. A uniform
linear antenna array is utilized to capture over-the-air signals in hilly terrain suburban environments by
considering both line–of-sight and non–line–of-sight cases. Direction estimation performance is presented
in a comparative manner and relevant discussions are provided.

INDEX TERMS STFT, cyclostationarity, direction finding, FHSS, MUSIC, drone remote controller.

I. INTRODUCTION
Drones pervade the modern civilian life almost in every
aspect. Surveying and mapping lands, logistics, surveillance,
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law enforcement support (e.g. highway speed radars),
aerial imaging and photogrammetry, and agriculture are
just to name a few of the applications where drones
are heavily employed [1]. Apparent penetration of drones
into the aforementioned fields swiftly stems mainly
from their multi–dimensional capabilities such as payload
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transportation, telecommunications, and task accomplish-
ment. On the other hand, these capabilities pose several
concerns regarding safety, security, and privacy. Among
these concerns, presence of drones is considered to be a
threat, especially in the vicinity or surrounding airspace
of critical zones [2]. In addition to being a direct physi-
cal threat to vehicles, infrastructures, and facilities, drones
could be an auxiliary source of threat especially when they
are employed to jam, interfere, or totally block commu-
nication links leading to malfunction in critical operations
and/or services. It is evident that detection of any poten-
tial or actual intrusion by cooperative and non–cooperative
drones and their pilots is required to protect critical zones,
vehicles, operations, and infrastructures. Therefore, in this
study, a method, which identifies the frequency-hopping
spread spectrum (FHSS) type drone radio controller (RC)
and estimates the angle of arrival (AoA) of the pilot of the
drone, is presented. The proposed method is successfully
implemented on hardware and tested with field measure-
ments. Results and discussions are provided along with future
directions.

A. RELATED WORK
Drone detection in a given area is an important task. One
way of drone detection is to see if there are any drone
controlling signals in a given environment. The first step to
detect RC/pilot of a drone is to sense the presence of the
control and/or communication signals exchanged between the
drone itself and its RC. Majority of signals transmitted over
the drone–RC link are of FHSS type since spread spectrum
techniques provide resilience to interference, enhance secu-
rity, and enable networking operations, as well as to provide
covert transmission [3]. Hence, detection of a spread spec-
trum signal is one of the major challenges in locating the pilot
of the drone. Even though drones exploit FHSS techniques,
one should note that they operate in civilian airspaces by
occupying industrial, scientific, and medical (ISM) bands
shared bymany other telecommunication links which employ
FHSS as well. In this respect, there are various algo-
rithms developed for signal detection over the years such as
autocorrelation–based, wavelet-based, and time–frequency
analysis based algorithms. Moreover, compressive sampling,
which is recently developed with advanced digital signal
processing techniques, is also adopted for FHSS signals
detection [4], [5]. One of the most well-known signal detec-
tion analysis is cyclostationarity which is used to detect
the periodic signals [6]. In this regard, we also utilized the
cyclostationarity analysis in order to distinguish signals. This
poses a second challenge since the RC/pilot locating process
should be able to discriminate and focus on drone–RC link
signals rather than other non-threatening FHSS signals. Once
a potential drone–RC/pilot link is detected, the next step is to
determine the direction of the incoming signals. This immedi-
ately implies the employment of radio–direction finding (DF)
techniques. Here, it is important to note that radio–DF has
a rich history and a very well–established literature on wide

variety of its application scenarios. Here, we will briefly visit
some of the widely used approaches.

DF techniques can be grouped under the following two
categories: switched beam system (SBS) and adaptive array
system (AAS) [7]. SBS method uses overlapping beams to
scan the azimuth plane. The AoA is then determined by a
search carried out across all over the candidate beam posi-
tions. Output is chosen to be the position yielding a max-
imum value for a defined cost function. It is important to
state here that the SBS method benefits from the following
two key points: firstly, it operates with a mechanically agile
directional single antenna, and secondly, it does not require
any baseband signal processing. Of course, these key points
come at the expense of several shortcomings. For instance,
the accuracy of SBSmethod relies heavily on signal–to–noise
ratio (SNR). This points out that detection range affects the
performance significantly. Furthermore, statistical nature of
wireless propagation generally implies poor SNR regimes for
links especially within regulated but unlicensed bands where
strict power limitations are imposed on transmitters. Hence,
optimal performance could only be achieved within the time
slots when SNR is above a certain threshold. Therefore, the
overall performance could be improved by prolonging the
observation intervals, which is against the nature of the prob-
lem of interest. Such shortcomings necessitate more robust
and responsive algorithms.

In contrast to SBS, AAS methods take the advantages
of smart antennas to steer the main beam in any desired
direction and establish a continuous tracking. Beam steer-
ing is achieved by combining the weights of each antenna
array element so that the maximum power is transferred
spatially for a desired location or direction. Equipped with
beam steering/tracking capability, AAS could be used in DF
with the following two groups of techniques: conventional
and subspace-based. Conventional methods form a power
spectrum in such a way that look-direction gain is forced
to be at unity gain while those of all other directions are
minimized [8]. This way, a peak search could be carried
out across the spectrum for the candidate angles/directions
for the signal source of interest. Here, it is noteworthy to
indicate that conventional techniques could operate in low
SNR regimes to some extent. However, their computational
complexities are higher as compared to those of AAS. On the
other hand, subspace–based techniques focus on separating
the signal subspace orthogonal to the noise subspace.With the
advances in digital signal processing techniques and systems,
subspace-basedmethods could be implemented and deployed
rapidly [9], [10]. Among the various direction-finding algo-
rithms, which have a different methodology, the correlative
interferometer needs a calibration process to fill a phase offset
table and requires an odd number of antennas. In addition
to this, pseudo-Doppler has a resolution problem. Regarding
expectation-maximization, while the result has a prominent
accuracy but has difficult implementation problems, and also
it requires prior information. Contrary, Multiple Signal Clas-
sification (MUSIC) algorithm gives results instantaneously,
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and also performs better under dynamically changing envi-
ronments. Furthermore,MUSIC algorithm is robust under the
multipath and mobility scenarios [11], [12].

The majority of the DF algorithms present in the literature
focus on a non-hopping carrier and operate on a narrowband
spectrum [13], [14]. When FHSS signals are considered,
majority of the DF techniques could not be employed directly.
The same reasoning holds for wideband signals as well.
However, there are some efforts in the literature to lay down
the implications of frequency changes in statistical character-
istics of DF [15]. For instance, peculiar to drone RC local-
ization, utilization of mechanically–agile directional antenna
is proposed in [16]. However, [16] considers signals that are
not of FHSS–type RC and thus the method’s performance is
not satisfactory for such signals. For the FHSS–type drone
RC, [17] proposed Anderson–Darling goodness–of–fit based
passive signal detection and DF system. In [17], regardless of
what type of a signal is present, it is not possible to distinguish
the drone RC and hence the false alarm rate of the DF results
can be high. There exists some nonlinear methods in the
literature as well. For instance in [18], a convolutional neural
network (CNN) model is proposed to localize drone con-
trollers where location information is obtained by a method
that could be considered as radio frequency (RF) fingerprint-
ing. Note that performance of this approach inherently relies
on the data set to be used for training, which prevents it from
being generalized. Considering the fact that RF environment
is dynamic, the CNN is in need of retraining for every single
change in any environment as well as for different type of
drone controllers.

B. CONTRIBUTIONS
Discussions carried out up until this point reveal that a
comprehensive approach, depending on both theoretical and
real–world measurement data validation, is required for DF
of RC signal sources since drone controllers manifest several
interesting features simultaneously. Thus, the contributions of
this study that exploit these features are:

1) To the best of authors’ knowledge, this work provides
one of the first FHSS type drone RCDF framework and
measurement results for the real–world measurement
campaign under line–of–sight (LOS) and non–line–of–
sight (NLOS) scenarios.

2) First, a method based on cyclostationarity analysis is
applied to distinguish the drone RC signal from others.
Furthermore, short time Fourier transform (STFT)–
based blind signal detection and resampling processes
are employed to convert the captured wideband signal
into a narrowband signal. Two of MUSIC variants are
implemented at the final stage over the processed data
to estimate the direction of arrival for drone RC.

3) The performance of the proposed method is empiri-
cally assessed and it is shown that the resultant frame-
work can find the direction of arrival of the drone RC
signal with an average of 1.39 degrees of error.

C. ORGANIZATION OF THE PAPER
The paper is organized as follows. The signal model for
the drone RC FHSS signals is given in Section II. Math-
emetical preliminaries of cyclostationarity and DF methods
are laid down in Section III. Section IV presents the details
of proposed method utilizing preliminaries provided in the
two previous sections. The measurement setup is explained
in Section V. In Section VI, measurement results are given
followed by discussions. In Section VII, concluding remarks
are provided and further studies are discussed.

II. SIGNAL MODEL
A single FHSS signal can be written as [19],

x(t) = s(t)×
K∑
k=1

ej(2π fk t+ϕk )wk (t − Bk) (1)

where s(t) denotes the complex baseband equivalent of the
information bearer that has a periodic burst type transmission
for t ∈ [0,T ], K stands for the total number of hops during
the duration of T , fk and ϕk represent the carrier frequency
and initial phase of the kth hopping, respectively.

Rectangular window function, wk (t), can be expressed as,

wk (t) =

{
1, t ∈ [(k − 1)Th, k Th)
0, others

(2)

where Th is the dwell time.
The start time of the kth hop is represented as Bk . Then,

we define a sequence {Ck}, which is the time difference
between kth and (k + 1)th hop, are given as,

Ck = Bk+1 − Bk , k ∈ [1,K − 1] (3)

whereBk+1 andBk are the sum of all time gaps corresponding
to (k + 1)th and kth hops, respectively.
There are many different topologies for the antenna array.

Considering the uniform linear array (ULA) enumerated with
0, 1, . . . ,M elements, complex baseband equivalent of the
received passband signal for any mth antenna element can be
described by,

rm(t) = hm(t) ∗ x(t)︸ ︷︷ ︸
ym(t)

+nm(t)+ im(t) (4)

where ∗ is the convolution operator, hm(t) is the channel
impulse response between themth element and signal source,
which has frequency flat fading, x(t) denotes the desired
FHSS signal and nm(t) stands for the complex additive white
Gaussian noise (AWGN) in which I and Q components are
i.i.d ∼ N (0, σ 2/2). Also, im(t) represents the possible inter-
ference signal that disturbs the desired signal received by
the mth element. Also, note that we assume i(t) and x(t) are
uncorrelated signals. Considering the drastic increase in the
number of wireless communication devices, the impact of
the interference might occur as co-channel interference. The
applications that use unlicensed spectrum consist of Wi-Fi
technology, ZigBee signals, and unstructured signal sources
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such as microwave ovens or several medical devices. Hence,
to define the signal model for the unlicensed spectrum region
(i.e. 2.4–2.48 GHz ISM band) can comprise an interference
signal.

III. MATHEMATICAL PRELIMINARIES
A. CYCLOSTATIONARITY
Cyclostationarity analysis can be utilized to discover hidden
periodicities within a received signal [20], [21]. In this study,
we adopt the second–order cyclostationarity of the received
signal since it reveals the hopping rate of the FHSS signal.
Cyclostationarity analysis begins by taking the autocorrela-
tion function which is denoted as,

Rr,r (t, τ ) = E
{
r(t + τ )r∗(t)

}
, (5)

where (·)∗ is the complex conjugate operator, and τ represents
the time lag. If the autocorrelation function has a periodicity
in t , it can be written by Fourier series expansion,

Rr (t, τ ) =
∞∑

k=−∞

Ak (τ )e
j 2πT0

kt

Ak (τ ) =
1
T0

∫ T0/2

−T0/2
Rr (t, τ )e

−j 2πT0
kt
dt (6)

where Ak (τ ) represents the kth coefficient at τ time lag which
is also known as a cyclic autocorrelation function (CAF),
and T0 is the fundamental period. Furthermore, the frequency
domain representation of the signals can extract unique fea-
tures. In this regard, the Fourier transform of the CAF can be
calculated by using the cyclic Wiener relationship,

Sk (f ) =
∫
∞

−∞

Ak (τ )e−j2π f τ dτ (7)

where Sk (f ) is known as spectral correlation function (SCF)
for a fixed k value.

B. MULTIPLE SIGNAL CLASSIFICATION
The well–known MUSIC algorithm is mainly dependent on
the correlation matrix of the data and the ability to extract
the signal and noise eigenvectors from input correlation
matrix [22]. In the AAS, different time delays occur since the
impinging signals arrive to the antenna elements at different
times as shown in Fig. 1.

Therefore, after defining a reference element, the delay
between the mth element and the reference element can be
calculated as,

τm =
(m− 1) d sinθ

c
(8)

where d represents distance between adjacent elements, θ
denotes the direction of arrival of a signal impinging upon the
ULA, and c stands for the speed of light. The received signal
at mth element can be formed by using the delay amounts as,

ym(t) = e−jωτmy1(t) = e−j
2π
λ
d(m−1) sin θx(t)

= ej(m−1)ψx(t) = a(ψ)x(t) (9)

FIGURE 1. The incident wave is impinging upon elements of the ULA
structure for θ angle.

where y1(t) represents the impinge signal to the reference
element, ψ = − 2π

λ
d sin θ is the spatial frequency, and a(ψ)

denotes the steering vector for the x(t). Considering all the
elements in ULA and the additive noise samples, we canwrite
the received signal in a matrix format for p signal sources as,

Y = AX+ N, Y ∈ CM×N (10)

where A is the M × p matrix to the p steering vectors, N
represents additive noise forM element. The input covariance
matrix calculated as,

Ryy = E[YYH ] = ARxxAH
+ σ 2IM (11)

where (·)H is the Hermitian transpose operator,Rxx stands for
the signal correlation matrix, σ 2 denotes the noise variance
with identity matrix IM . However, in practical applications,
Ryy usually can not be directly obtained and only sample
covariance, R̃yy, can be used [23],

R̃yy =
1
L

L∑
l=1

y(tl)yH (tl) (12)

where L represent the number of snapshot. In order to achieve
the frequency content of the signal, MUSIC uses the eigen-
value decomposition. If the corresponding eigenvalues of the
R̃yy are sorted in decreasing order, the largest p eigenvalues
indicate the signal subspace and the remaining (M−p) eigen-
values of the R̃yy represents the noise subspace. Therefore,
using the signal and noise subspaces, pseudo–spectrum of
phase can be calculated as [22],

fr (θ ) =
1

Ax(θ )HUnUH
n Ax(θ )

(13)

where Ax(θ ) denotes the steering vector for x(t) and Un
refers to the matrix of eigenvectors associated with the noise
subspace. A search over (13) is performed to find maximum
points as,

θ̂ = argmax
θ

fr (θ ) (14)

where θ̂ is the estimated AoA of the signal.
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C. ROOT–MUSIC
The root–MUSICmethod, in comparison to theMUSIC algo-
rithm, finds the roots of a polynomial rather than plotting
the pseudo spectrum or searching for peaks in the pseudo
spectrum [24]. Same as the MUSIC algorithm, the covari-
ance matrix can be estimated from several snapshots. Then,
eigenvalue decomposition of the estimated covariance matrix
is employed to obtain spectral function. The polynomial can
be obtained by taking the inverse of theMUSIC spectrum and
is given as [25],

fr (θ )−1 = Ax(θ )HUnUH
n Ax(θ ) (15)

where steering vector and noise subspace are the same as in
(13). Considering the roots of the polynomial that are inside
the unit circle, the closest p roots to unit circle are selected.
Finally, the estimation of the AoA can be determined by,

θ̂ = sin−1
[
ψ

λ

2πd

]
(16)

where d is the distance between two adjacent elements, λ
denotes the wavelength and ψ stands for the roots of fr (θ )−1.

IV. PROPOSED METHOD
Although FHSS signals occupy a wide spectrum, each hop
of FHSS signals has a lower bandwidth. On the other hand,
an accurate estimation of the AoA needs continuity in the
spectrum. For the case of FHSS signals, presence in a cer-
tain frequency with a short time is not enough for an accu-
rate estimation. Many hops are combined sufficiently, the
accumulated signal samples can be increased in a certain
frequency which is the pre–processing step of our proposed
method. In Fig. 2 the flow graph explains how the system
works in brief. First, the received multi–channel signal is
achieved using the ULA and cyclostationarity analysis of the
received signal obtained from the first antenna is performed.
After ensuring the cyclostationarity feature detection (CFD)
of the drone RC, parameters of the signal are estimated to
reconstruct the FHSS signal for the received signal array.
Here, it is crucial to reconstruct the correct hops of the FHSS
signal. Therefore, if there is an interference signal, outliers are
removed from the parameters table according to the spectral
localization of the signals. Furthermore, the resampling pro-
cess is employed to decrease the signal sample rate and reduce
the computational complexity. In the last step, AoA of the
FHSS signal is achieved by using subspace–based algorithms.

A. SIGNAL DETECTION: CYCLOSTATIONARITY ANALYSIS
In order to decide whether a drone RC signal is present or
not, CFD is adopted [20], [21]. Many FHSS signals follow a
pattern in time and this leads cyclic behavior in time domain.
The received signal can be reformed by combining the x(t)
into the r(t) by,

r(t) = h× s(t)
K∑
k=1

ej(2π fk t+ϕk )wk (t − Bk )︸ ︷︷ ︸
x(t)

+n(t)+ i(t). (17)

The periodicity is provided by s(t) whereas x(t) and r(t) are
not periodic due to the frequency hopping pattern. To analyze
hidden periodicity inside r(t), frequency hopping pattern is
suppressed on r̃(t) which is defined as,

r̃(t) = |r(t)|2 (18)

where r(t) represents the received signal from any of the
antenna elements. Considering the (17) , r̃(t) is expressed as,

r̃(t)

=

[
h× s(t)

K∑
k=1

ej(2π fk t+ϕk )wk (t − Bk )+ n(t)+ i(t)

]

·

[
h× s(t)

K∑
k=1

ej(2π fk t+ϕk )wk (t − Bk )+ n(t)+ i(t)

]∗
.

(19)

Autocorrelation function is considered for cyclostation-
arity analysis as (21), as shown at the bottom of the next
page, in which R̃r ,̃r (t, τ ) represents autocorrelation of r̃(t).
R̃r ,̃r (t, τ ) has 81 summation terms and 64 of them are 0 due
to properties of noise. σ 2 stands for the noise variance, and
Ps and Pi are the average power of s(t) and i(t), respectively.
In addition, if there is no interference signal then (21) is
simplified as,

R̃r ,̃r (t, τ ) = |h|4
∣∣Rs,s(t, τ )∣∣2 + 2 |h|2 σ 2Ps + σ 4

+2σ 2
|h|2 Psδ(τ ) (22)

Recall that s(t) is periodic that depends on hopping dura-
tion, which indicates that Rs,s(t, τ ) is also periodic. Thus,
R̃r ,̃r (t, τ ) can be expanded via Fourier Series coefficients.
Finally, SCF for FHSS signals can be obtained by calculating
the Fourier Transform of the CAF which defined in (7).
SCF should have peaks at cyclic frequencies for which the
fundamental frequency is defined as a hopping rate.

Considering the ISM spectrum band, FHSS signals such
as Bluetooth and drone RC signals can share the frequency
channels without frequency planning. Identification of FHSS
signals from other signals even though they use the same
technologies is crucial to proceed with the DF. In this regard,
CFD is applied to estimate the hopping rate of the FHSS
signal. Since the cyclostationarity based methods generally
focus on periodicities such as chip rate, pilot signals, etc.,
non-periodic signals such as DSB-SC AM do not indicate
cyclic features. Hence, any signal that behaves periodically
is detected by CFD. In order to show that, among the var-
ious communication systems that use FHSS, drone RC and
Bluetooth signals are chosen for the test purposes. In the
context of the 2.4 GHz ISM band, Bluetooth signals are one
of the most expected signals, which also uses the FHSS tech-
nology. Please note that cyclic frequency is approximately
100–200 Hz for drone RC signals according to hopping
duration [26], [27]. However, cyclic frequency is 1600 Hz
for Bluetooth signals which uses the BLE 4.2 technology.
Moreover, if the ISM spectrum is occupied with various
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FIGURE 2. Overall block diagram of the system.

signal sources, the CFD analysis estimates the periodicity
feature for signals that are periodic and reveal peaks for them.
However, the searching area of cyclic frequencies for the
Futaba T8J drone RC signal is limited to 147 Hz as will be
discussed in Section V [28]. Hence, the existence of other
peak values would not be a concern to consider. Therefore,
we first apply the CFD to identify the unknown FHSS signals
and then proceed to DF estimation of the drone RC signal.
Please note that the above cyclic frequencies can be off for
other values.

B. RECONSTRUCTION OF FHSS SIGNALS
A signal received in a wideband spectrum bears much higher
noise level for each hop of an frequency hopping (FH) signal
that makes it almost impossible to distinguish it from the
desired signal. Therefore, extraction each hop from the wide-
band spectrum and estimation of parameters of the FH signal
are required. This can be achieved by performing a two–step
post processing approach. First, we apply the time–frequency
analysis by using STFT to estimate the time durations, center
frequency, and bandwidth information for each hop. In order
to evaluate the STFT, time dependent window is employed to
the captured signal and discrete Fourier transform (DFT) is
applied to the resulting window [29], [30]. Second, we form
a set which includes several temporal parameters (e.g., dwell
time, start/stop time) and bandwidth of each hop. If there is
a signal that is not satisfying to the statistic of the set, this
hop is excluded because of a possible interference signal.
A signal is omitted if its parameters are not in range of
2– σ from the mean of the set. Since the±σ covers≈ 68% of
the normal distribution, outliers can be separated. The hops

of FHSS signals must start after the previous-hop ends and
also, the hopping duration and bandwidth of the hops are
the same as each other. Thus, in the case of multiple drone
RC signals randomly occupying the ISM band, the hops of
the interested FHSS signal can be clustered. According to
the aforementioned information, parameters that do not fit the
2–σ are labeled as outliers. Then, the received signal can be
filtered by using the lower and upper frequency band, i.e,
[fL , fH ], of each hop for a certain start and end time interval.
A bandpass filter is designed to obtain each hop from the
spectrum and suppress other signals in the same time interval.
This approach also eliminates the unwanted noise from the
signal. After filtering the hops of the FH signal, each hop
is shifted to achieve equivalent baseband signal considering
estimated center frequencies. In addition, the effects from the
resolution of the time-frequency analysis lead to the slicing
of the signal with margins. Since the eigenstructure-based
algorithms separate the signal and noise into subspaces, it is
expected that result of the direction of arrival is unnoticeable
due to resolution errors.

Let ẑ(t) be the filtered and shifted version of each hop to
its baseband frequency. It can be described as,

ẑ(t) = r(t)×
K∑
k=1

e−j(2π f̂k t)wk (t − Bk ) (23)

where r(t) is the received signal, f̂k = (fL + fH )/2 denotes
the estimated center frequency of kth hop, Bk =

∑k−1
l=1 Cl

and Cl refers to the time difference between start time of lth
and (l + 1)th hop.
By assuming that the sequence of time gaps is periodic

with N , Cl can then described in terms of the estimated

r̃(t) = |h|2|s(t)|2 + hx(t)n∗(t)+ hx(t)i∗(t)+ h∗x∗(t)n(t)+ n(t)n∗(t)+ n(t)i∗(t)

+i(t)h∗x∗(t)+ i(t)n∗(t)+ i(t)i∗(t) (20)

R̃r ,̃r (t, τ ) = |h|4|Rs,s(t, τ )|2 + |Ri,i(t, τ )|2 + 2|h|2Rx,x(t, τ )Ri,i(t, τ )+ (h2 + (h∗)2)Rx,x∗ (t, τ )Ri,i∗ (t, τ )

+2δ(τ )σ 2(
|h|2Ps + Pi

)
+ 2|h|2Ps

(
Pi + σ 2)

+ 2σ 2Pi + σ 4 (21)
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time gaps as,

Cl = Th +1ti, l ≡ i mod N , 0 < i ≤ N . (24)

Then, ẑk (t), which is baseband equivalent and also shifted
to the interval [0,Th] of the kth hop, can be expressed as,

ẑk (t) =

{
ẑ(t + (k − 1)Th + Bk ), t ∈ [O,Th]
0, others

(25)

In order to increase the signal resolution at baseband fre-
quency, time gaps between hops should be removed. There-
fore, we define a concatenated function, f̂ (t), as,

f̂ (t) =
K∑
k=1

ẑk (t − (k − 1)Th). (26)

As a result, by combining (23), (25), and (26) the whole
reconstruction process from r(t) to f̂ (t) can be formed as:

f̂ (tk ) =
K∑
k=1

[
r(tk + Bk )×

K∑
m=1

e−j(2π f̂m(tk+Bk ))wm(tk )
]

(27)

where tk ∈ [(k − 1)Th, kTh]. Note this process is realized for
every received signal from each antenna.

C. RESAMPLING
In the final step before executing the AoA algorithm, resam-
pling process is employed. Since f̂ (t) is still a wideband
signal, the signal can be modeled as non–frequency hopping,
which eliminates the spreading and has the bandwidth of each
hop. Hence, it can be converted into a relatively narrowband
signal. In this regard, resampling is applied by the factor of
fractional rate which is calculated according to the bandwidth
of each hop of the FHSS signal and sampling rate [31], [32].
Algorithm 1 demonstrates the process for an input-output
relationship as a pseudo-code. The input signal is upsam-
pled by adding zeros between samples of the original signal.
After that, an FIR anti-aliasing filter was applied to eliminate
discontinuities. In the last step, filtered signal samples are
discarded to decimate the signal, and samples are kept at each
downsample step size. It is important to note that, phase of
the input signal can change while applying the resampling
process [31]. However, since the resampling process shifts
the phase of each reconstructed signal in the samemanner, the
phase difference between channels does not change. Thus, the
result of the AoA is not affected. Furthermore, this approach
also reduce the computational complexity during covariance
matrix evaluation.

V. MEASUREMENT SETUP
The AoA estimation of FH signals is performed for signals
captured by using over–the–air received signals by using
the ULA. The measurements are taken in the test field of
TUBITAK BILGEM in Gebze, Turkey. Measurements are
conducted at a suburban area with a hilly terrain structure and
foliage, which is close to the Sea of Marmara for both LOS
and NLOS conditions, as represented in Fig. 3.

Algorithm 1 Resampling Process

Input: Complex baseband signal (f̂ (t)), estimated
bandwidth (b̂w), sampling rate (fs)

Result: Resampled signal (f̂RS (t))
Initilizations:

N = length(f̂ (t))
n← the numerator for the fractional rate between
b̂w, fs
d ← the denominator for the fractional rate between
b̂w, fs
fcutoff = π

max(n,d) rad/sample
Filter order← 2× k × max(n, d), where k = 50

for i = 0 to N-1 do
if (i/n) == floor(i/n) then

fM (i) = f̂ (i/n)
else

fM (i) = 0
end

end
hAA← fir(Filter order, fcutoff , Kaiser window)
p = fM ∗ hAA
for i = 0 to n× N − 1 do

f̂RS (i) = p(i× d)
end

A. HARDWARE SETUP
The test–bed consists of the Futaba T8J drone RC as an
FHSS signal source, four identical quasi Yagi antennas, and
one National Instruments (NI) PXIe receiver to support the
multiple input structure as shown in Fig. 3(b). In the test–bed
(a) Futaba T8J RC is used as an FH signal source. The signal
source operates in 2.4 GHz ISM spectrum band, (b) Four
identical antennas are utilized to construct our AAS. In AAS,
it is preferred to utilize ULA for the AoA process. A ULA
structure is constructed with four identical quasi Yagi anten-
nas. The separation distance between each adjacent antenna
element is kept as λ/2 ≈ 6.2 cm where λ is the wave-
length at 2.42 GHz. Furthermore, the height of antennas is
set at approximately 1.5–meter and thus, reflections from the
ground are avoided, (c) The signal from each antenna are
received synchronously with the help of a NI PXIe–1065
four–channel receiver. NI PXIe–1065 receiver chassis con-
sists of four major parts: one NI PXIe–8108 embedded
controller, one NI PXI–5652 RF signal generator, four NI
PXIe–5622 digitizer which has a 16–bit resolution and four
NI PXIe–5601 RF downconverter in which each downcon-
verter covers the frequency range 10 MHz to 6.6 GHz and
has a 50 MHz instantaneous bandwidth. The corresponding
block diagram of our setup is shown in Fig. 3(c).

1) DESCRIPTION OF THE FUTABA T8J RC FH SIGNAL
Futaba T8J RC signal source employs the first 50 MHz of a
2.4 GHz ISM frequency band which is divided into 30 RF
channels each with a channel width of 1.5 MHz [28]. The
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FIGURE 3. Since the FHSS–type RC signal reaches the uniform linear antenna array with different phases, the signal is captured by a 4–channel receiver
and the AoA of the drone RC signal is estimated by the algorithm proposed in this study.

FIGURE 4. The hopping pattern of an FH signal emitted by Futaba T8J RC.

illustration of the hopping pattern of the FH signal source is
shown in Fig. 4.
1t1,1t2, and1t3 represent the time gaps between the hops

and their repetitions. These parameters are given by,

Cl =


Th +1t1, l ≡ 1 mod 3
Th +1t2, l ≡ 2 mod 3
Th +1t3, l ≡ 3 mod 3.

(28)

The fundamental period of the Futaba T8J RC signal can
be calculated as [28],

3Th +1t1 +1t2 +1t3︸ ︷︷ ︸
C1+C2+C3

= 6.8 ms (29)

where Th defines the dwell time and 1t1 < 1t2 < 1t3.

B. EXPERIMENTAL PROCEDURES
Since the signal source operates in the 2.4 GHz – 2.45 GHz
spectrum, it spans over 50 MHz bandwidth. At this point,
while the signal is captured at a high sample rate, only a
section of the spectrum has been considered to prevent data
overflow. Therefore, the bandwidth of interest is adjusted
to 10MHz and resulting sampling rate is 20 MS/s. The center
frequency is set to 2.42 GHz to monitor the spectrum where
the hops of the FH signal will likely appear the most. The
signals are collected as an I/Q samples with a length of 3 MS.
Also, MATLAB 2018B is used to run the pre–processing
algorithm for the FH signal, the MUSIC, and root–MUSIC
algorithms.

One should note that the accuracy of the MUSIC and
root–MUSIC algorithms highly depends on the phase of the
received signal. If there is a phase difference between each
receiver before the measurement campaign, the performance
of the algorithms degrade tremendously. In order to ensure the
phase coherency between each receiver, we perform a calibra-
tion procedure to cancel out the possible phase mismatches
that can occur from local oscillator errors and environmental
factors such as cable length etc. [33].

1) CALIBRATION PROCESS
First, a signal generator is configured to generate a narrow-
band signal at 2.42 GHz. The signal generator is placed
right across the ULA to guarantee 0◦ for AoA. Four–channel
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FIGURE 5. Drone RC signal detection: Cyclostationarity Feature Detection.

receiver is set at 2.42 GHz. Phase differences of each antenna
are calculated according to the reference antenna. Also, this
process is implemented in the LabVIEW program. Finally,
once the phase difference are calculated, each phase differ-
ence value is integrated into the measurement process before
starting the measurement campaign. Thus, phase coherency
is assured across the receivers.

VI. MEASUREMENT RESULTS
In this study, FH signals have been reconstructed with respect
to parameters of each hop, and the performance results of two
different AoA algorithms for FH signals are evaluated under
LOS and NLOS cases.

First, the drone RC signal detection is accomplished by
applying CFD to provide distinction from other signals. In
this regard, the received signal is simulated for the Futaba
T8J drone RC signal with respect to measurement setup. The
Monte Carlo simulation is analyzed under the Rayleigh fad-
ing model for each channel and SNR ranges between−18 dB
to 2 dB. The probability of detection is obtained with cyclo-
stationarity based signal detection for different channels of
the receiver as shown in Fig. 6. Since the channel is modeled
as Rayleigh fading, the detection probability varies slightly
between each channel of the receiver. However, 0.9 detection
accuracy is reached after the −4 dB SNR for all channels of
the receiver. Hence, cyclostationarity is employed for the real-
world considerations. For instance, the drone RC signal and
the Bluetooth signal are identified with the maximum peak
of the cyclostationarity function that described the hopping
rate of FH signals as seen in Fig. 5(a) and Fig. 5(b). Since
the CFD is based on matches between adjacent signals, more
hops that capturedwill give a higher peak value in the hopping
rate. Furthermore, the number of hops that had been received
for each distance, which is showed as drone RC locations
is 20, 24, 22, 11, and 4 for the observation time interval,
respectively.

After being assured of the drone RC signal, in order to
obtain reliable results a minimum number of hops should be
captured by the receiver. Fig. 7(a) shows the hopping pattern
of a captured signal and how the received signal behaves dur-
ing the observation time. The parameters of the FH signal are

FIGURE 6. Probability of detection for each channel of the ULA.

extracted and reconstruction process is applied as discussed
in Section IV. Fig. 7(b) shows how the sparse hopping signals
are assembled together and shifted to baseband frequency to
get the continuity. This is employed for the received signal
from each antenna.

The DF results obtained for the received signals with
pre–processing and without pre–processing stages for
MUSIC and root–MUSIC algorithms are shown in Table 1,
Table 2, Table 3, Table 4, and Table 5.1 In order to
check the accuracy of the proposed method, the true AoA
values, θG, for each drone RC location are calculated
by using Garmin GPSmap 62sc and Google Earth Pro.
The true AoA values for each drone RC location are
{4.43◦, 6.41◦, 8.55◦, 10.33◦, 2.1◦} for 115.24m, 164.74m,
214.74m, 264.62m and 512m, respectively.

The drones can be moved from one point to another
point within a short time. Besides the fast movement of
the drone, the drone controller does not move that fast.
Therefore, we demonstrate the DF of the drone RC with
slow angle changes for different distances. The results are
given in Table 1, Table 2, Table 3, Table 4, and Table 5
based on different antenna numbers, processing effects, and
different estimators. The results show that angle accuracy is

1Please note that all Tables are given at the end of the Manuscript.
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FIGURE 7. The pre–processing result before the execution of AoA algorithm.

TABLE 1. AoA estimations of drone RC where has a 2.10◦ angle position
at 512.00 meters apart from the antenna array with respect to a different
number of antennas (M). The best estimation for drone RC is highlighted
in boldface font.

TABLE 2. AoA estimations of drone RC where has a 6.41◦ angle position
at 164.74 meters apart from the antenna array with respect to a different
number of antennas (M). The best estimation for drone RC is highlighted
in boldface font.

TABLE 3. AoA estimations of drone RC where has a 8.55◦ angle position
at 214.74 meters apart from the antenna array with respect to a different
number of antennas (M). The best estimation for drone RC is highlighted
in boldface font.

TABLE 4. AOA estimations of drone RC where has a 10.33◦ angle position
at 264.62 meters apart from the antenna array with respect to a different
number of antennas (M). The best estimation for drone RC is highlighted
in boldface font.

152066 VOLUME 9, 2021



B. Kaplan et al.: Detection, Identification, and Direction of Arrival Estimation of Drone FHSS Signals

TABLE 5. AoA estimations of drone RC where has a 2.10◦ angle position
at 512.00 meters apart from the antenna array with respect to a different
number of antennas (M). The best estimation for drone RC is highlighted
in boldface font.

FIGURE 8. MUSIC phase–spectrum calculated for received signal from
115.24 meters distance and 4.43◦ angle.

improved with antenna number and pre–processing effect. In
the literature, root-MUSIC known to be manifest a conver-
gent behavior under the assumption of increased number of
antennas. Therefore, it is expected to compare MUSIC and
root–MUSIC performances in a generalized measurement
campaign. However, due to the number of antennas avail-
able in this campaign no significant difference is observed
between MUSIC and root-MUSIC algorithm. The compari-
son of estimated AoAs for MUSIC and root–MUSIC algo-
rithms illustrates that the pseudo spectrum is shifted with
a miscalculated value. For instance, the phase–spectrum of
the measurement that is taken from a 115.24-meter distance
is calculated for with processing and without processing
as shown in Fig. 8. It clearly indicates that pre–processing
of the received signal array improves the DF estimation of
FHSS–type drone RC. However, the estimator results are
getting worse with fewer antennas (e.g. M= 2) for both with
pre–processing and without pre–processing.

In order to validate the proposed method, the results
are compared with [17]. In [17], Anderson–Darling test

FIGURE 9. Performance comparison between various direction–finding
algorithms in simulation environment.

goodness–of–fit approach which depends on statistical char-
acteristics of the signal is utilized for signal detection. How-
ever, the performance of statistical methods for spectrum
sensing algorithms decreases in cases where the statistical
characteristics of noise and fading components are domi-
nant [34]. Also, this approach can determine the presence of
the signal, but can not determine whether the detected signal
belongs to the drone RC signal. On the other hand, cyclo-
stationarity signal analysis is much robust under the fading
and low SNR values [35]. Since cyclostationarity analysis
takes advantage of higher-order statistics, the cyclic features
could still be extracted under difficult channel conditions and
variable noise levels [36], [37]. Furthermore, in the proposed
method drone RC signal can be classified by using CFD
which results of the SCF has a cyclic frequencies at a hopping
rate of the FHSS signal. Thus, in the real world scenarios CFD
method performs well.

It is also noted that environment characteristics of the mea-
surement campaign affects the performance of the proposed
algorithm. In Table 5, the results are calculated for the signal
that is captured at the farthest distance while considering
LOS condition. According to the Table 1, Table 2, Table 3,
and Table 4 which are the NLOS cases, the increase in the
Tx–Rx separation degrades the results. On the other hand,
at 512m which is the LOS case, the difference between true
value and estimated value is only 1.10◦. Considering sensor
fusion for the drone detection suite which is provided by
combination of image processing, acoustic, RADAR systems,
the environment conditions can be deceptive. However, the
drone’s pilot signal can be detected and the direction of the
signal can be estimated by passive RF sensing for both LOS
and NLOS cases. This additional information will narrow the
search space for other sensors such as camera of the drone
detection suite.

At this point, one might wonder the performance compari-
son for various direction-finding algorithms that has different
methodologies. In order to calculate the root-mean-square
error, Monte Carlo simulation is considered for MUSIC,
pseudo–Doppler, correlative interferometer, and expectation
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TABLE 6. Abbreviations used in this study.

maximization under the AWGN condition. As seen in Fig. 9,
the subspace–based algorithms have prominent results among
other methods. While the SNR is high the correlative inter-
ferometer and expectation–maximization methods diverge,
however the error values of MUSIC and pseudo–Doppler
methods decrease as SNR increases. Moreover, as discussed
in Section I, the pseudo–Doppler method has insufficient
resolution for direction estimation. Hence, these information
leads to the usage of subspace–based algorithms.

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS
This study focuses on the problem of AoA estimation of
real–world drone RC signals. For this purpose, the signals
are collected over–the–air by using quasi Yagi antennas with
ULA for different locations of the signal source. First, cyclo-
stationarity based signal identification is applied to distin-
guish drone RC signals from Bluetooth signals. Once the
drone RC signal is identified, rather than directly feeding
wideband signals to the AoA algorithm, the performance of
the DF with the reconstruction of FH signals is discussed.
For this reason, time–frequency analysis is used to get the
FH signal to reconstruct in the baseband center which leads
to the accurate estimation of AoA. The performance results
show that gathering the hopping signal samples at a frequency
point against the noise will improve the performance of DF
estimation for FH signals. In future studies, we will consider
the Kalman filtering for the tracking of the hops of an FH
signals and use different subspace–based AoA estimation
methods. Also, for the case that the multiple drone RC signals
exist, the probability of correct clustering under the different
conditions for various SNR values will be analyzed. Fur-
thermore, if there is a high resolution DTED-2 digital map
of measurement region available, footprinting based location
finding can be further applied to locate the drone RC.

APPENDIX A
GLOSSARY LIST
See Table 6.
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