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Abstract: Herein, we report a copper oxide-cobalt oxide/nitrogen-doped carbon hybrid (Cu2O-
Co3O4/CN) composite for electrochemical water splitting. Cu2O-Co3O4/CN is synthesized by an
easy two-step reaction of melamine with Cu2O-Co3O4/CN composite. The designed composite is
aimed to solve energy challenges by producing hydrogen and oxygen via electrochemical catalysis.
The proposed composite offers some unique advantages in water splitting. Carbon imparts superior
conductivity, while the water oxidation abilities of Cu2O and Co3O4 are considered to constitute
a catalyst. The synthesized composite (Cu2O-Co3O4/CN) is characterized by SEM, EDS, FTIR,
TEM, and AFM in terms of the size, morphology, shape, and elemental composition of the catalyst.
The designed catalyst’s electrochemical performance is evaluated via linear sweep voltammetry
(LSV) and cyclic voltammetry (CV). The Cu2O-Co3O4/CN composite shows significant electrocat-
alytic activity, which is further improved by introducing nitrogen doped carbon (current density
10 mA cm−2, onset potential 91 mV, and overpotential 396 mV).

Keywords: water splitting; hydrogen evolution reaction; oxygen evolution reaction; electrocatalyst;
Cu2O-Co3O4/CN composite

1. Introduction

The world is facing an energy crises nowadays. A rough estimation shows that, in
2050, the energy consumption will be doubled when compared to 2020 [1]. Now, the world
is dependent on nonrenewable energy sources to meet energy requirements [2]. However,
with the increase in energy prices, energy demand, and global warming, researchers
are thinking about renewable energy resources [3,4]. The main reasons for the increase
in energy demand are the world’s high growth rate and a great industrial revolution.
Throughout the whole history of humankind, humans used energy from fossil fuels. In the
past, only two types of fossils (wood and charcoal) were used, but, due to the industrial
revolution, many more options, including oil, coal, and natural gas [5,6], have also been
used to meet the energy requirements. According to a survey, fossil fuel reservoirs have
been enough for decades, but, with time, these reservoirs are depleting [7,8].

Modern day research is focused on developing renewable energy sources, and water
splitting is a promising source of energy [9,10]. There has been a noticeable increase in
oxygen evolution reaction (OER) in recent years, and it is estimated that this increase will be
doubled in future years [11,12]. The conventional method of hydrogen and oxygen output
involves a steam reforming method [13]. Nowadays, O2 is also produced by using the
photocatalytic method. In these methods, sunlight is used to create oxygen and hydrogen
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molecules. Solar water splitting methods of oxygen and hydrogen production include
thermochemical and photobiological methods [14,15].

In the water-splitting process, sunlight is used as an energy source, and a water molecule
is used as an electron donor to complete fuel cells [16]. Two half reactions are involved: the first
one is the hydrogen evolution reaction, and the second one is the oxygen evolution reaction.
Different types of charge separators are used to enhance the rate of reaction. Some of the charge
separators are semiconductors, such as nanobelts, nanotubes, nanowires, and nanosheets [17,18].
Hetrojunction semiconductors are also being used for better charge separation. Cobalt is
commonly used as a catalyst in hydrogen and oxygen evolution reactions [19]. Photolytic
corrosion is the main problem in these reactions. This problem can be minimized by increasing
electrodes’ stability and providing more active sites for the photocatalytic activity of hydrogen
and oxygen [20]. Researchers are exploring other options, such as nitrides, phosphides,
selenides, and carbides [21,22]. These types of non-nobel metal catalysts show high corrosion
resistance and better electroconductivity [23–28]. Some highly efficient catalysts recently
reported for HER are CoS2, FeS2, MoSe2, g-C3N4/Co-MOF (ZIF-67), g-C3N4/Nb2O5, CdS
QD/MoO3–OV/g–C3N4, and NiS2 [1–4].

Nanotubes and nanosheets are used to increase active sites for electrocatalytic HER
nanowires [28,29]. Metal carbides show similar behavior, in terms of catalytic properties
and electronic band. Due to these reasons, carbides show high hydrogen adsorption and
maximum electrical conductivity [30]. Due to the presence of a d-band structure, they
show high electrical conductivity and low hydrogen adsorption capacity. Mo2C and WC
are both categorized as non-Pt catalysts for hydrogen evolution reactions. These have been
tested at different pH ranges and proved to be a stable support for HER [31].

Some catalysts can perform both oxygen and hydrogen evolution reactions [32,33]. Pt,
Rh, and Ir-based catalysts can serve as bifunctional catalysts, but such types of catalysts
are lower in number and have very high costs [34]. The great challenge in this field
is to find a low cost, easily available bifunctional catalyst that can work both in acidic
and basic environments [35,36]. The last few years’ foci have been shifted to a low cost
and earth abundant transition metal, transition metal oxide, transition metal sulfides,
transition metal nitrides, and transition metal carbides [37]. The most common metals
used in these catalysts are iron, nickel, copper, and cobalt [38]. The catalysts prepared by
these metals’ combinations have an exceptional ability for electrochemical water splitting
and show improved reaction kinetics, fast charge transfer, and high conductivity. Cobalt
based catalysts have been frequently used in water splitting and electrocatalysis [39–41].
The catalysts’ conductivity can be further enhanced by adding some dopants, such as
nitrogen [42]. Melamine is a well known and common precursor for the preparation of
nitrogen-doped carbon [43–45].

This study aims to synthesize an effective electrocatalyst for the oxygen evolution reac-
tion (OER). Copper oxide-cobalt oxide/nitrogen-doped carbon hybrid (Cu2O-Co3O4/CN)
composite is synthesized by a simple two-step method using low cost precursors. The
material is characterized by different analytical techniques and applied for electrochemical
water splitting.

2. Experimental
2.1. Chemical and Reagent

Cobalt chloride hexahydrate (CoCl2·6H2O), trisodium citrate (Na3C6H5O7) 99%,
Nafion solution (C7HF13O5S) 5%, glycine (C2H5NO2) 99.9%, potassium dihydrogen phos-
phate (KH2PO4) 99%, ethanolamine (C2H7NO) 98%, copper sulphate pentahydrate (CuSO4
·5H2O) 99%, potassium hydroxide (KOH) 99%, dipotassium hydrogen phosphate (K2HPO4)
99%, and hydrogen peroxide 30% (H2O2) were purchased by Sigma Aldrich. Ethylene gly-
col (C2H6O2) 99.0% was obtained from Merck. Sulfuric acid (H2SO4) 98% was purchased
from Riedel-de Haën.
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2.2. Synthesis of Cu2O-Co3O4/CN Composite

In the first step, the Cu2O-Co3O4 composite was synthesized by using a reported
method [46]. Briefly, a 0.5 mM solution of CuSO4·5H2O was prepared in 20 mL of water.
A quantity of 13 mL of ethanol was added and stirred vigorously to form a clear solution.
Then, 1 mM solution of CoCl2·6H2O, 10 g of trisodium citrate, 3 mL of 200 mL solution of
KOH, and 0.3 mM solution of glycine were added to the reaction mixture. After vigorous
stirring for a half hour, the reaction mixture was transferred to a Teflon lined stainless-
steel autoclave. The autoclave was placed in a temperature programmed electric oven,
and the mixture was kept for 12 h at 180 ◦C. After cooling to room temperature, the
obtained product was filtered and washed several times with deionized water to remove
the unreacted chemicals. The product was dried at 50 ◦C for 6 h in a vacuum oven. The
dried product was calcined at 300 ◦C for 2 h to obtain Cu2O-Co3O4 composite.

For the synthesis of Cu2O-Co3O4/CN composite, 40 g of melamine, 1 g of glucosamine
hydrochloride were mixed with Cu2O-Co3O4 composite, and 400 mL water was added.
The mixture was heated at 80 ◦C till the water was dried. The solid product was ground
and heat treated at 400 ◦C and 500 ◦C under a nitrogen atmosphere. The obtained product
was cooled to room temperature and stored for further use.

2.3. Characterization of Composite

SEM analysis was carried out on a Hitachi SEM S-4700, Japan. For the TEM imaging, the
Jeol JEM-F200 Multi-purpose Electron Microscope was used, equipped with an EDS detector.
AFM images were recorded on a Bruker AFM (MultiMode 8-HR), Bruker, Germany. FTIR
spectrum was recorded in transmission mode on Nicolet iS10 ThermoScientific, Germany.

2.4. Electrochemical Water Splitting

The electrochemical experiments were carried out on two modes of electrochemical
workstations; cyclic voltammetry (CV) and linear swap voltammetry (LSV). CV measure-
ments were performed on a three electrode system, standard electrode (Pt wire), reference
electrode (Ag/AgCl), and the working electrode. Cu2O-Co3O4/CN composite was de-
posited on a glassy carbon electrode (working electrode) with a diameter of 3 mm. The
synthesized catalyst’s electrochemical activity was studied in alkaline media (1 M KOH
solution). Different electrochemical parameters, including potential window, scan rate,
and pH, were also optimized to achieve maximum efficiency. The selected window range
was from −1.0V to +1.0V, and the scan rate was 0.06 mV/s to 0.1 mV/s. The slurry for
the glassy carbon electrode was prepared by mixing 4 mg of synthesized catalyst, 80 µL of
Nafion, which acts as a binder, and 1 mL of water. This mixture was sonicated to form a
dispersion for 30 min. This dispersion was then loaded onto the working electrode and
dried at room temperature.

3. Results and Discussion
3.1. Characterization of Cu2O-Co3O4/CN Composite

The synthesized Cu2O-Co3O4/CN composite was characterized by transmission elec-
tron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy
(AFM), energy dispersive X-ray spectroscopy (EDS), and Fourier transform infrared
spectroscopy (FTIR). The morphology and particle size of the Cu2O-Co3O4 and Cu2O-
Co3O4/CN composites were first characterized by TEM. TEM images of the Cu2O-Co3O4
and Cu2O-Co3O4/CN composites are shown in Figure 1a,b, respectively. From both the
images, it is evident that each composites’ morphology is different from the other. This is
due to an additional layer of nitrogen doped carbon on the Cu2O-Co3O4 composite. The
calculated particle size is in the range of 80–100 nm. The morphology was also justified
by SEM (Figure 1c,d) and AFM (Figure 1e,f). In the Cu2O-Co3O4 composites, particles
are visible, and they are semispherical. However, after the addition of CN, there is a clear
change in shape and morphology. This is formed by calcination at higher temperatures.
AFM results show the surface of the products: the Cu2O-Co3O4 is rough as compared
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to the Cu2O-Co3O4/CN composite, which has a slightly smoother surface with fewer
grooves. The elemental composition of the materials was determined by EDS analysis,
which indicates the mass percentage of copper (41%), cobalt (33%), and oxygen (21%) in the
Cu2O-Co3O4 composite. On the other hand, carbon (24%), nitrogen (11%), oxygen (17%),
copper (27%), and cobalt (21%) are present in the Cu2O-Co3O4/CN composite.
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FTIR analysis was carried out in transmittance mode to confirm the formation of
composites (Figure 2). The transmittance peaks at 645 cm−1 and 540 cm−1 belongs to cobalt
oxide and copper oxide, and it is present in both materials, while the peak at 1100 cm−1

is due to the presence of -O-C-O- vibrations [41]. The peak presence at 3300 cm−1 is due
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to hydroxyl groups, which are abundantly present on the surface of metal oxides. The
FTIR results confirm the C=O bond of amide as the peaks appearing at 1668 cm−1 and
1570 cm−1, which indicates the stretching and bending of C=O. The peak at 1418 cm−1

indicates the presence of a hydroxyl group, and the symmetrical vibration peaks at
1635.74 cm−1 and 1733.65 cm−1 belong to C=O and C=N bands, respectively. The peak at
1703 cm−1 shows the interaction between the carbonyl group and the metal ions. The peaks
for the metals’ coordination with COO appear at 1560 cm−1 and 1560 cm−1, respectively.
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3.2. Electrochemical Water Splitting by Cu2O-Co3O4/CN Composite

The electrochemical activity of the Cu2O-Co3O4/CN composite on a glassy carbon
electrode was studied using linear sweep and cyclic voltammetry for water splitting. To
obtain maximum efficiency, different parameters, such as scanning rate, potential window,
and pH, were optimized for both Cu2O-Co3O4 and Cu2O-Co3O4/CN composites. Initially,
the pH of the electrolyte solution was optimized. The blank solution’s electrochemical
response and all the synthesized materials, including Cu2O-Co3O4, CN, Cu2O-Co3O4/CN
at 400 ◦C, and 500 ◦C, were recorded at different pHs (7, 7.4, and 8). The figure shows that
the composite shows maximum redox potential at pH 8. The electrochemical response
of these catalysts is low, at 7 and 7.4. These results show that the current density of the
synthesized composite at optimized conditions increases in the scan rate, from 0.06 mV/s
to 0.1 mV/s.

The catalyst was prepared in a slurry and applied to GCE via micropipette. Then,
the effect of catalyst volume was evaluated. Figure 3 explains the linear calibration curve
and the volumetric activity of the synthesized catalyst. Different concentrations of Cu2O-
Co3O4/CN give reversible cyclic voltammetric peaks, showing reduction as well as oxida-
tion peaks. With the increasing volume of the catalyst, from 0.1 µL to 0.5 µL, the oxidation
peak current (Ipa) increases from 2.99 µA to 5.879 µA. Cu2O-Co3O4/CN shows a peak
potential (Epa) of 0.138 V, in comparison to 0.608 V for blank. Peak currents for different
volumes of the catalyst, from 0.1 µL to 0.5 µL, are −4.104 µA, −4.505 µA, −5.764 µA,
−7.514 µA, and -9.605 µA, respectively. For the Cu2O-Co3O4/CN composite, the cathodic
peaks potential (EPC) is −0.018 V. Reduction and oxidation rates increase as the amount
(volume of slurry) of synthesized catalyst increases. The reason is that, as the composite
amount increases, the active sites for reduction and oxidation reaction also increase. The
relationship between current and concentration is linear at pH 8, as shown in Figure 3b. R2

obtained for reduction and oxidation are 0.959 and 0.91, respectively.
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The electrochemical activity of nitrogen doped carbon was monitored at different
scan rates in 1 M KOH. Different ranges of current were obtained at different scan rates
(Figure 4a). Initially, a 0.06 mV/s scan rate was set for electrochemical analysis and
the redox phenomenon was observed in the voltammogram (0.618 V for oxidation and
−1.101 V for reduction). The current obtained due to oxidation is 0.0458 mA, and for
reduction is −0.0334 mA. The potential difference (∆E) is −1.710 V. This scan rate is very
slow and consumes more time. The deposition and the results are not accurate, due to
surface damage. The peak current for both oxidation and reduction increased at higher
scan rates, as shown in Figure 5b. R2 for oxidation and reduction are 0.891 and 0.846,
respectively. These results indicate that electrochemical activity is directly proportional to
the scan rate.

The linear sweep voltammetry response in 1M KOH was also evaluated (Figure 4c),
and a similar trend was obtained. The obtained current density is 0.890 mA/cm2, and
the Tafel slope is 334 mV/decade (Figure 4d). Moreover, at η (overpotential) = 0.58876 V,
current density is 1 mA/cm2. The reversible potential of OER is 1.19 and 0 V vs. reference
electrodes, respectively. Therefore, as current density increases, the electrocatalytic activity
of the material rises with the scan rate.

Similarly, the electrochemical response of Cu2O-Co3O4 composite was also measured
in 1M KOH solution, using CV and LSV (Figure 6). A mild redox phenomenon is detected
at a scan rate of 0.06 mV/s (Figure 5a). As the scan rate rises, the corresponding reduction
and oxidation peaks are detected. The highest peak current is observed at 0.1 mV/s
(Epa = −0.0884 V with Ipa = 3.21 mA and Epc = −0.9676 V at Ipc = −2.13 mA). The
calibration curve for the scan rate vs. the corresponding current is presented in Figure 6b.
The obtained curve for oxidation has a slope of 0.06355 with a standard error of 0.00562
and R2 = 0.96744. The correlation coefficient for reduction is 0.8742. LSV curves for the
Cu2O-Co3O4 composite at different scan rates are shown in Figure 6c. At 0.1 mV/s, it
shows the start potential of 1.64 V in OER’s direction, and has an anodic current that
increases quickly when the extra potential is given. The experiment’s outcome indicates
that the possible start of the Cu2O-Co3O4 composite is near the OER’s thermodynamic
potential. Therefore, the Cu2O-Co3O4 composite provides a Tafel slope and a current
density of 3.89 mA/cm2. Moreover, the η (overpotential) obtained from the Cu2O-Co3O4
composite is 0.370 V, with a current density of 1.07 mA/cm2 (Figure 5d).
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The effect of the scan rate electrochemical activity of the Cu2O-Co3O4/CN composite
synthesized at 400 ◦C and 500 ◦C was also studied in 1 M KOH. The voltammograms
obtained for the Cu2O-Co3O4/CN composite synthesized at different temperatures are
different from each other, which indicates that the temperature played a significant role
in the formation of the final product. Figure 6a,c present the effect of the scan rate on
the cyclic voltammograms of the Cu2O-Co3O4/CN composite synthesized at 400 ◦C and
500 ◦C. As discussed previously, at lower scan rates, a lower amount of current is produced,
which increased with increasing scan rates and, finally, reached a maximum point at a scan
rate of 0.1 mV/s. Calibration curves are plotted between scan rates, and currents are shown
in Figure 6b,d for the Cu2O-Co3O4/CN composites synthesized at 400 ◦C and 500 ◦C,
respectively. The obtained correlation coefficients are 0.7924 and 0.96502, respectively.

LSV experiments on the Cu2O-Co3O4/CN composite electrodes were studied in the
1M KOH solution. The effect of different scan rates on the LSV response of the Cu2O-
Co3O4/CN composite synthesized at different temperatures is shown in Figure 7. Although
the pattern is the same, the current density and Tafel slopes of the nitrogen doped carbon
and the Cu2O-Co3O4/CN composite are different. A current of 0.1 mV/s shows a start
potential of 1.682 V toward OER; the anodic current shows a rapid increase as the potential
is applied. The catalyst synthesized at 400 ◦C shows better efficiency, as compared to the
product synthesized at 500 ◦C. The main reason for the better efficiency of Cu2O-Co3O4/CN
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composite at 400 ◦C could be better electron transfer due to the higher conductivity of
metal oxides and nitrogen doped carbon, and a higher surface area. The Tafel slope for the
product synthesized at 400 ◦C is 281 mV/decade and the current density is 0.599 mA/cm2,
as shown in Figure 7b. In addition, a current density of 10 mA/cm2 was recorded at η
(overpotential) = 396 mV. These experiments explain the good electrocatalytic response
of the Cu2O-Co3O4/CN composite toward OER. Similarly, at 500 ◦C, the overall catalytic
performance is low. OER’s onset potential is 1.6194, Tafel slope 261 mV/decade and current
density 0.771 mA/cm2, as shown in Figure 7c,d.
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Using Ag/AgCl as the reference electrode for electrolytes is commonplace in poten-
tiometry and voltammetry, and their importance in the chemical laboratory is unquestion-
able. Ag/AgCl electrodes are usually more effective for many purposes.

The electrochemical performance of Cu2O and Co3O4 particles and their different
composites is well documented in literature [47–53]. Similarly, the electrical conductivity
of nitrogen doped carbon is also reported [54–58]. Incorporating a nitrogen doped carbon
into an already conductive Cu2O-Co3O4 composite resulted in the formation of a versatile
catalyst. The Cu2O-Co3O4/CN composite shows low overpotential compared to several
other reported materials. Two metal oxides and already conducting nitrogen doped carbon
improved the catalytic water splitting performance in the 1 M KOH solution. The activity
diagram of the Cu2O-Co3O4/CN composite is shown in Figure 8.
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4. Conclusions

In combination with transition metals, such as copper and cobalt and their composites,
carbon based materials are considered ideal candidates in electrocatalysis. In this research,
a novel combination of nitrogen doped carbon with a cobalt oxide and copper oxide (Cu2O-
Co3O4/CN) composite was synthesized. The Cu2O-Co3O4 composite is selected for its
enhanced water splitting ability, while nitrogen doped carbon is chosen to enhance the
catalyst’s electrical conductivity. The synthesis was completed in two steps, at two different
temperatures, and the resulting composite was used as a catalyst for electrochemical
water splitting. A 1 M KOH solution was used to study the oxygen evolution reaction
(OER). Different electrochemical parameters were optimized for the best conditions for
water splitting. The OER efficiency of the catalysts prepared at 400 ◦C and 500 ◦C also,
compared material prepared at 400 ◦C, showed better electrochemical performance. These
results demonstrate that this combination can be used commercially for renewable energy
production from water with several optimizations. Synthesis is quite easy, and the materials
used for synthesis are also low cost; thus, the proposed method would be cost effective
and ideal for scale up.
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