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Abstract—The reconfigurable intelligent surface (RIS) tech-
nology has attracted interest due to its promising coverage and
spectral efficiency features. However, some challenges need to
be addressed to realize this technology in practice. One of the
main challenges is the configuration of reflecting coefficients
without the need for beam training overhead or massive channel
estimation. Earlier works used estimated channel information
with deep learning algorithms to design RIS reflection matrices.
Although these works can reduce the beam training overhead,
still they overlook existing correlations in the previously sampled
channels. In this paper, different from existing works, we propose
to exploit the correlation in the previously sampled channels to
estimate RIS interaction more reliably. We use a deep multi-
layer perceptron for this purpose. Simulation results reveal
performance improvements achieved by the proposed algorithm.

Index Terms—Deep learning, massive MIMO, phase optimiza-
tion, previous channel information, reconfigurable intelligent
surface.

I. INTRODUCTION

The massive multiple-input multiple-output (mMIMO) tech-

nology is a key enabler for communications in the fifth-

generation and beyond that ensures high spectral efficiency

exploiting the high spatial multiplexing gains [1], [2]. This

technology is especially useful when it operates at millimeter-

wave frequencies. Reconfigurable intelligent surfaces (RISs)

[3], [4] have been proposed as a means of improving the

coverage and efficiency of mMIMO systems.

An RIS is structured to have a massive number of passive

reflecting elements. Each element reflects an incident wave

in a controllable direction and phase. Similar to beamform-

ing at the base station (BS), RIS operation in optimizing

the communicating requires precisely knowing the wireless

channel. Therefore, channel estimation is an integral part of

RIS interaction [5]. An outstanding challenge facing channel

estimation in this context is the huge number of reflecting

elements. This leads to prohibitively high channel estimation

and hardware complexity burdens if traditional methods are to

be employed [6] in this setting.

Prior art on RIS interaction addresses the problems of

channel estimation and beamforming design [7]–[12]. Along

this line, the overhead of channel and beam training is ad-

dressed in [7] through the use of compressive sensing and

deep learning (DL). Subsequently, an approach for efficient

RIS configuration is proposed in [8]. The promising gains of

these solutions motivated more research in these directions

[13]. More recently, supervised DL is used to exploit the

mapping between pilots to improve channel estimation [9],

and unsupervised DL to reflect beamforming for RIS-assisted

systems [10]. Besides, a minimum variance unbiased estimator

is used to leverage channel estimation in [11]. Moreover, deep

reinforcement learning is used to estimate the best reflection

coefficients of the RIS surface by adjusting its reflection matrix

[12].

Despite the successes of the aforementioned approaches,

they overlook existing correlations in previous channel infor-

mation. Inherently, a strong correlation exists between previ-

ously sampled channels and the ones being estimated. The

exploitation of this correlation naturally promises to improve

the performance of RIS interaction.

This paper proposes an algorithm for exploiting previous

channel information for improving the quality of optimal RIS

interaction. We design a deep multi-layer perceptron (MLP)

for this purpose. Extensive experimental results show a per-

formance improvement achieved by the proposed algorithm.

These results are validated over the DeepMIMO dataset [14].

Organization: The rest of the paper is organized as fol-

lows. The system model and preliminaries are presented in

Section II. Section III details the proposed algorithm for

optimum phase interaction. Simulation results are presented

in Section IV, and the paper is concluded in Section V.

Notation: Plain-faced, bold-faced lower-case, bold-faced

upper-case, and calligraphic font letters represent scalars, vec-

tors, matrices, and sets of vectors, respectively. A determinant

of a matrix X is denoted by |X|. E[.] represents statistical

expectation. The superscript T denotes algebraic transpose.

A�B is the Hadamard product of A and B. N (m,R) is a

complex Gaussian random vector with mean m and covariance

R.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

This work assumes a K-subcarrier OFDM communication

system. Communication takes place between single-antenna

transceiver ends. An M -element RIS is considered to support

this communication. Similar to the case in [7], we assume

that there is no direct link for communication to simplify the
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setting. Thus, the signal observed at the receiver end can be

written as follows

yk = hT
R,kΨhT,ksk + nk, (1)

(a)

= (hR,k � hT,k)
Tψsk + nk, (2)

where sk is the transmit signal governed by E[|sk|
2] = PT

K
,

and PT is the total transmit power. Also, Ψ represents the RIS

interaction diagonal matrix. nk ∼ NC(0, σ
2
n) is the received

noise, and hT,k, hR,k ∈ C
M×1 is the channel from the

transceiver to the RIS at the kth subcarrier.

The main system model components are shown by Fig. 1. It

is noted that phase shifters are assumed in the RIS architecture.

Thus, an interaction vector is modelled as [ψ]m = ejφm and an

interaction vector is chosen from a foreknown set of interaction

vector codebook P . We adopt an assumption made in [7] that

a few active reflecting elements are randomly placed between

the passive ones on the RIS. Thus, the sampled channel vector

from the transceiver to the RIS active elements, hT,k, hR,k ∈

C
M × 1, can be expressed as hT,k = GRIShT,k and hR,k =

GRIShR,k, where GRIS is an M×M selection matrix whose

elements are tuned according to the RIS elements. Therefore,

the RIS channel vector is written as hs = hT,k � hR,k.

B. Channel Model

We model transmitter-RIS (hT,k) and RIS-receiver (hR,k)

channels according to a wideband geometric channel model

used in [15]. This model assumes L scattering clusters

where each cluster corresponds to a specific propagation

path (ray). Each ray is described by several parameters; its

azimuth/elevation angles of arrival, θl, φl ∈ [0, 2π), complex

coefficient αl ∈ C, and time delay τl ∈ E. The transmitter-

RIS path loss is denoted by ρT . The pulse-shaping function,

with Ts-spaced signaling, is denoted by p(τ) at time instant

τ . Eventually, one can express the channel in the frequency

domain as follows

hT,k =

√
M

ρT

D−1∑
d=0

L∑
l=1

αla(θl, φl)p(dTs − τl)e
−j 2πk

K
d, (3)

where a(θl, φl) ∈ C
M×1 is the RIS array response vector. A

block-fading channel model is assumed in this work, i.e., hT,k

and hR,k stay unchanged over the channel coherence time.

C. Deep Learning

DL models use two or more hidden layers to have better

data representation. The usage of multiple hidden layers allows

magnifying intrinsic distinctive data features while suppressing

irrelevant information at each layer. Thus, raw data can be

used without the requirement of sophisticated feature engi-

neering/crafting.

MLP is a suitable DL model to handle grid-like data in both

one or two dimensions. In this paper, two-dimensional data

is aimed to be represented, so MLP is a suitable choice for

this purpose. MLP with a deep architecture includes an input

layer, at least two hidden layers, and an output layer. It uses

backpropagation for training which is a supervised learning

���

����	
��


�
�������� ��������

�����
�������
�����

Fig. 1. The system model of an RIS-assisted transceiver system.

technique [16]. Besides, it can distinguish data of nonlinear

separability [17].

III. RIS PHASE INTERACTION OPTIMIZATION USING

PREVIOUSLY SAMPLED CHANNELS

A. A Motivation

RIS interaction aims at determining the optimal interaction

vector ψ∗ in the sense of maximizing the receiver achievable

information rate. This is achieved by solving

ψ∗ = argmax
ψ∈P

K∑
k=1

log2(1 + SNR|(hT,k � hR,k)
Tψ|2), (4)

to achieve the optimal rate R∗ defined as

R∗ =
1

K

K∑
k=1

log2(1 + SNR|(hT,k � hR,k)
Tψ∗|2). (5)

Finding the optimal interaction vector requires performing

an exhaustive search over the codebook provided. In essence,

the formulation in (4) is challenging as one needs to search for

an interaction vector for all subcarriers [12]. Hence, the costs

of obtaining an interaction vector through an exhaustive search

are prohibitively large. This is in terms of the costs of training,

computation, and power dissipation as detailed in [7]. To this

end, it is intuitively sound to think of finding an efficient

solution approaching the optimal rate approximately as in

(5). Machine learning (ML)-based algorithms are promising

to handle complex models. This is especially the case when it

is difficult or impossible to have a closed-form mathematical

expression of a system [18]. Thus, it is intuitive to think of an

ML framework for optimizing interaction vectors.

The performance of an ML algorithm depends on the

quality of the input and output datasets. In other words, the

correlations between the datasets have critical importance for

the effectiveness of ML models. In the current literature,

phase optimization relies on correlation over the currently

sampled channel. On the other hand, the existing inherent

correlation over previously sampled channels can be exploited

similarly, as a further step. As a preliminary example of

this argument, Fig. 3 illustrates the correlations between the
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Fig. 2. The RIS functionality in a communication environment.

current output with the previous output. So, it proves that

there is a strong correlation between the current output and

the previous outputs. Said conversely, there is a correlation

between previously sampled channels with the output to be

estimated. Therefore, incorporating the previously estimated

sampled channel can improve the performance.

B. The Proposed Algorithm

The proposed algorithm is composed of two stages. First, is

a training stage where the DL model is configured and trained.

Second is a testing stage whereby optimum phase interaction

is carried out using the trained model.

In the training stage, the RIS employs an exhaustive search

reflection beamforming approach while collecting the dataset

for the DL model. After collecting the dataset ts − 1, the

number of previous channels is concatenated with the current

ones, where ts represents the time step 1. Once the training

1For example, if the ts is set to 3 and there are 1024 optimum phase
interactions to be estimated, then each input will have a 3×1024 matrix.
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Fig. 3. A toy example to show correlation across channel samples.

dataset is fully acquired, the DL model is trained. The main

rationale of these processes is depicted in Fig. 2. Besides,

the steps are detailed in Algorithm 1. In this algorithm,

the sampled channel vector at every coherence block (s) is

estimated. Then, the optimal interaction is found by exhaustive

beam training (Steps 4 through 6). Afterward, a new data

sample for the training dataset is obtained by concatenating

the previous channels with the current one (Steps 7 through

9). These processes are repeated until a sufficient dataset is

collected. It is noted that we analyze the performance of

the proposed algorithm for different sizes of training datasets

in the following section. Finally, the DL model is trained

according to the input and output datasets.

The training stage is followed by the testing stage char-

acterizing the run-time operation of the algorithm. The first

step in the testing stage is estimating the sampled channel

to be used to find the optimum phase interaction vector.

Then, the estimated sampled channel vector and the previously

sampled channel vectors are fed to the trained DL model and

the reflection beamforming vector is estimated. Algorithm 2

outlines the testing stage of the proposed algorithm.

C. A Note on Computational Complexity

The computational complexity of the proposed algorithm

is primarily based on that of the training and testing stages.

While the training stage complexity depends on both the

exhaustive search and DL model, the testing stage complexity

depends only on the DL model. The computational complexity

of the exhaustive search is O(wp), where w and p represent

the sizes of the codebook [19]. It is noted that this exhaustive

search is made for each training sample.

A deep MLP model is used in this work with an input

layer, three hidden layers, and an output layer, as a DL

model. The training computational complexity of this model

is O(nt × (ij + jk + kl + lm)) for five layers, where input

layer, hidden layers, and output layer represented by i, j, k, l,

m, respectively, and n and t represents number of epochs and

training examples, respectively. Furthermore, the per-sample
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computational complexity of testing is roughly half of the

per-sample training computational complexity since the testing

stage does not require back-propagation [20].

Algorithm 1 The Proposed Algorithm: The Training Stage

Input: Number of training samples (S), two pilots received

at the transmitter and receiver for each channel coherence

block, codebook (P), and ts.

Output: A trained DL model.

1: for s = 1 + ts to S do

2: RIS estimates ĥt and ĥr using training received pilots.

3: ĥs = ĥt � ĥr

4: for n = 1 to |P| do

5: RIS reflects beam and receives the feedback Rn(s).
6: end for

7: RIS constructs r(s) = [R1(s), R2(s), . . . , R|P|(s)].
8: Added ts long historical information as an additional

dimension.

9: A new data point ([ĥ(s), [ĥ(s − 1), . . . , [ĥ(s − ts −
1)], rs〉) is added to the training dataset (D).

10: end for

11: Train the DL model using the generated dataset D.

Algorithm 2 The Proposed Algorithm: The Testing Stage

Input: Two pilots received at the transmitter and receiver, ts,

and trained DL model.

Output: The interaction vector.

1: while True do

2: RIS estimates ĥt and ĥr using testing received pilots.

3: ĥs = ĥt � ĥr

4: Added ts long historical information as an additional

dimension.

5: The interaction vector is estimated using the trained DL

model and sampled channels.

6: end while

IV. SIMULATIONS AND RESULTS

A. Parameter Setting

We adopt the DeepMIMO dataset [14] to obtain channel

realizations. This dataset considers the outdoor ray-tracing

scenario ‘O1’. The parameters of this set are listed in Table I.

It is noted that the values of (Mx, My , Mz), PT , and L are

changed for some simulations and these parameter changes

are specified where the simulations are presented. According

to this setting, the transmitter is assumed to be fixed, whereas

the receiver’s location is randomly distributed in the x-y

plane as illustrated in Fig. 4. It is noted that this scenario

is generated according to Remcom Wireless InSite [21], and

is publicly available on the DeepMIMO dataset [14]. The

RIS is chosen to be BS 3, as further described in [7]. An

optimum ts is empirically set to 3 based on the performance

and generalization capability of the proposed algorithm.
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Fig. 4. The assumed RIS ray tracing operation [7].

TABLE I
PARAMETERS OF THE DEEPMIMO DATASET.

Property Value

Frequency band 28 GHz

System bandwidth 100 MHZ

Antenna spacing 0.5λ

Number of BS Antennas (Mx, My , Mz) = (1, 32, 32)

Active transmitter Row R850 column 90

Active receivers From row R1000 to row R1200

Active BSs 3

Number of paths 1

Number of OFDM subcarrier 512

OFDM limit 64

OFDM sampling factor 1

B. Hyperparameters of Deep Learning Model

The DL architecture for RIS interaction optimization is

implemented by the MATLAB R2019a DL Toolbox. All of

the hyperparameters are tuned empirically by considering the

performance and generalization capability of the proposed

algorithm. In the MLP model, an input layer, three hidden

layers (fully-connected layers), and an output layer are used.

More specifically, 1024 units are used in the input layer. 1024,

4096, and 8192 hidden units are used in the first, second, and

third hidden layers, respectively, and 1024 units are used in

the output layer to find optimum phase interactions. In all of

these layers, the rectified linear unit is used as an activation

function, and after all hidden layers, a dropout is used with a

0.5 factor to prevent overfitting. The regression layer is used

to estimate numerical optimal RIS interaction in the output

layer. It is noted that only the first K = 64 subcarriers are fed

to the DL model as in [7].

The maximum number of epochs is selected to be 49, the

batch size is 500, and 	2 regularization is used with a value of

0.0001. Besides, the initial learning rate is selected as 0.1 and

dropped in every 8 iterations with a 0.5 factor. The dataset is

split into two sets; training and testing. In the testing stage,
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Fig. 5. Incorporating previous channel information in RIS phase optimization.

always 6200 samples are used, and the number of samples

used in the training is varied in all simulations. The structure

of the DL model used is illustrated in Fig. 5.

C. Performance Evaluations and Discussions

The optimal RIS interaction selection performance is eval-

uated in terms of the achievable rate for various scenarios.

In this regard, we compare the algorithms in [7] with the

proposed algorithm.

Fig. 6 represents the achievable rate performance of the

proposed algorithm for optimum phase interaction when the

RIS operates with either a 48×48 or a 32×32 uniform planar
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Fig. 6. The achievable rate comparison between the algorithm in [7] and the
proposed algorithm when M = 32× 32 and M = 48× 48.

array (UPA). Fig. 6 shows that the proposed algorithm is

superior to the algorithm in [7] when the UPA is 48×48

and 32×32. Also, the performance of the proposed algorithm

is evaluated for different PT and L values in Figs. 7 and

8, respectively. These figures also reveal the effectiveness of

the proposed algorithm. This is especially the case when the

amount of training data is low.

As the proposed phase interaction algorithm is based on DL,

it is important to verify that the established model does not

memorize the inputs during the training stage. To investigate

this, the testing and training losses versus epochs for optimum
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Fig. 7. The achievable rate comparison between the algorithm in [7] and the
proposed algorithm when M = 32× 32, PT = 5 and PT = 0.
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Fig. 8. The achievable rate comparison between the algorithm in [7] and the
proposed algorithm when M = 32× 32, L = 1 and L = 5.

phase interaction are plotted in Fig. 9 when (Mx, My , Mz)=(1,

32, 32), L=1, PT =5, and the training and testing dataset sizes

are 20000 and 6200, respectively. As can be seen in the figure,

the loss of the testing set converges to that of the training set.

This verifies the nonexistence of overfitting, so validating the

generalizability of the proposed algorithm. It is noted that the

loss graph is provided solely for one scenario. Similar behavior

is observed for the graphs of other scenarios.
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Fig. 9. The loss graph of the proposed algorithm when M = 32×32, L = 1,
and PT = 5.

V. CONCLUSIONS

In this paper, RIS-assisted wireless communication systems

are considered and an algorithm for phase optimization is

proposed. This is based on exploiting an existing correlation

between the current and previously estimated channels. A

DL model is designed to exploit this correlation to increase

the achievable rate. The increase of the achievable rate was

revealed by extensive simulations conducted over a ray-tracing

dataset.
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