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Abstract. Accurate de novo assembly using short reads generated
by next generation sequencing technologies is still an open problem.
Although there are several assembly algorithms developed for data gen-
erated with different sequencing technologies, and some that can make
use of hybrid data, the assemblies are still far from being perfect. There
is still a need for computational approaches to improve draft assemblies.
Here we propose a new method to correct assembly mistakes when there
are multiple types of data generated using different sequencing technolo-
gies that have different strengths and biases. We exploit the assembly
of highly accurate short reads to correct the contigs obtained from less
accurate long reads. We apply our method to Illumina, 454, and Ion Tor-
rent data, and also compare our results with existing hybrid assemblers,
Celera and Masurca.

Keywords: de novo assembly · Assembly improvement · Next genera-
tion multi-platform sequencing

1 Scientific Background

Since the introduction of high throughput sequencing (HTS) technologies, tradi-
tional Sanger sequencing is being abandoned especially for large-scale sequencing
projects. Although cost effective for data production, HTS also imposes increased
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cost for data processing and computational burden. In addition, the data qual-
ity is in fact lower, with greater error rates, and short read lengths for most
platforms. One of the main algorithmic problems in analyzing HTS data is the
de novo assembly: i.e. “stitching” billions of short DNA strings into a collection
of larger sequences, ideally the size of chromosomes. However, “perfect” assem-
blies with no gaps and no errors are still lacking due to many factors, including
the short read and fragment (paired-end) lengths, sequencing errors in basepair
level, and the complex and repetitive nature of most genomes. Some of these
problems in de novo assembly can be ameliorated through using data generated
by different sequencing platforms, where each technology has “strengths” that
may be used to fix biases introduced by others.

There are three kinds of assemblers mainly used to do genome assembly:
(i) greedy assemblers [1–3], (ii) overlap-layout-consensus (OLC) graph based
assemblers [4–6] and (iii) de Bruijn graph based assemblers [7–11]. Greedy assem-
blers follow a greedy approach such that: given one read or contig, at each step
assembler adds one more read or contig with the largest overlap. The problem of
greedy assemblers is that they can get stuck at local maxima. Therefore they are
generally used for small genome assemblies. Since they also use more memory
and are slower, it is not feasible to assemble large genomes with greedy assem-
blers. OLC graph based assemblers work well when the long reads are available
for assembly. They generate all-against-all pairwise alignments and build the
graph by representing reads as nodes and overlaps between reads as edges. They
obtain the consensus assembly by following a Hamiltonian path on the graph.
Assemblers that are based on de Bruijn graphs are designed primarily for short
reads. They use a k-mer graph approach instead of calculating all-against-all
pairwise alignments. They build the graph by using k-mers as edges and the
overlaps between k-mers as nodes. They follow an Eulerian path through the
k-mer graph to find a consensus assembly. Several assemblers use multiple read
libraries [12,13,15,16] for better assembly construction. CABOG [12] was ini-
tially designed for Sanger sequencing, and then it was revised to use 454 data,
but it also accepts Illumina data to generate a hybrid assembly. Masurca [13]
is able to assemble Illumina reads together with longer 454 and Sanger reads.
MIRAest [15] can use Sanger, 454, Illumina, Ion Torrent and corrected PacBio
data for hybrid assembly. It works on small genomes. Cerulean [16] uses long
PacBio reads and short Illumina reads to construct a hybrid assembly. It uses
ABySS [10] assembler to generate assembly graphs with paired end Illumina
reads. Then, as input, it uses these assembly graphs and also long PacBio read
alignments to the assembled contigs.

Additionally, strategies to merge different assemblies using different data
sources into a single coherent assembly are described in the literature (e.g. [18]).
Our method differs from that of [18], in data types. [18] works on Illumina,
454 and ABI SOLID data, where we work on Illumina, 454 and Ion Torrent
data. Also pre- and post-processing steps of the two methods differ. [18] at first
assembles 454, Illumina and SOLID data separately with different assemblers
and then assembles the resulting contig collection again with another assembler.
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In this work, we propose a method to improve draft assemblies (i.e. produced
using a single data source, and/or single algorithm) by incorporating data gener-
ated by different HTS technologies, and by applying novel correction methods.
To achieve better improvements, we exploit the advantages of both short but
low-error-rate reads and long but erroneous reads. We show that correcting the
contigs built by assembling long reads through mapping short and high quality
read contigs produces the best results, compared to the assemblies generated by
algorithms that use hybrid data all at once. With this study, we also have the
opportunity to compare Ion Torrent and Roche/454 reads in terms of assembly
performances.

2 Materials and Methods

We cloned a part of human chromosome 13 into a bacterial artificial chromo-
some (BAC), and sequenced it separately using Illumina, Roche/454, and Ion
Torrent platforms (Table 1). We also obtained a “gold standard” reference assem-
bly for this BAC using GRCh37-guided assembly generated by Mira [14] using
Roche/454 data, which we then corrected using the Illumina reads [17]. Since
Roche/454 and Ion Torrent platforms have similar sequencing biases (i.e. prob-
lematic homopolymers), we separated this study into two different groups: Illu-
mina & 454 and Illumina & Ion Torrent. We applied the same method on the two
groups and evaluated them separately which gave us the opportunity to com-
pare Roche/454 and Ion Torrent data. The flowchart of the pipeline is depicted
in Fig. 1.

Table 1. Properties of the data

Technology Length range Mean length Mean base qual (phred s.) Paired

Illumina 101 bp (all reads have equal length) 101 bp 38 paired

Roche/454 40 bp-1027 bp 650 bp 28 single-end

Ion Torrent 5 bp-201 bp 127 bp 24 single-end

Technology: The name of the sequencing technology used to produce the reads. Length range:
Minimum and maximum lengths of the generated reads. Mean length: The mean length among
all reads. Mean base qual: The average phred score sequence quality of all reads. Calculated
by summing up all phred scores of the bases in a read and dividing it to sequence length of the
read, over all reads. Paired: Represents whether the sequencing is performed as paired-end or
single-end.

2.1 Pre-processing

Pre-processing steps consist of the following:

– First, we discard the reads that have low average quality value (phred score
17, i.e. ≥2 % error rate).

– Then, we remove the reads with high N-density (with >10 % of the read con-
sisting of Ns) from consideration. Ns would destroy the assembly contiguity.
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Fig. 1. Flow chart of the assembly improvement processes only for Illumina & 454.
Same is valid for Illumina & Ion torrent.
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– Third, we trim the groups of bases at the beginning and/or at the end of
the read that seem to be non-uniform according to sequence base content (A,
T, G, C) (See Fig. 2). These regions would cause erroneous structures in the
assembly.

– Finally, we apply the pre-processing operations of each assembler we used.

Fig. 2. Non-uniform A, T, G, C regions of Ion Torrent reads. First 8 bases and the
bases after the 130th base are trimmed in pre-processing.

2.2 Assembly

After the pre-processing step, we used several assembly tools suitable to assem-
ble different types of data: We used Velvet [7], a de Bruijn graph based assembler
that is designed to assemble short reads for assembling the Illumina reads. Con-
sidering the trimmed beginning and/or end parts of 101bp long paired-end reads
from Illumina, and after testing kmers 21 and 31, we decided to use k = 51 for
short read assembly. We ran Velvet with shortPaired mode with insert size
400bp, expected coverage 80, coverage cutoff 2, and minimum contig length 100.
N50 value of the resulting short read contigs was 8,865 bp. We used two differ-
ent OLC assemblers: Celera [5] and SGA [6] to assemble the long read data sets
(Roche/454 and Ion Torrent) separately. We ran Celera assembler in unmated
mode and with default parameters to assemble 454 and Ion Torrent reads. N50
value of the assembly obtained with 454 and Ion Torrent reads with Celera was
1,308 bp and 1,284 bp, respectively. We also used SGA assembler in unmated
mode for the same data sets. We obtained N50 values of 505 bp and 117 bp
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for Roche/454 and Ion Torrent data, respectively. In addition, we also used a de
Bruijn graph based assembler, SPAdes [8], to assemble the long read data. Again,
we applied default parameters. N50 values of the assemblies obtained with 454
and Ion Torrent reads with SPAdes were 212 bp and 259 bp, respectively.

We mapped all draft assemblies to the E. coli reference sequence using
BLAST [19]’s MegaBLAST [20] task to identify and discard E. coli contami-
nation due to the cloning process. We discarded any contig that mapped to the
E. coli reference sequence with sequence identity ≥95 %. Finally, we obtained
one short read, and three long read assemblies without contamination.

2.3 Correction

In the correction phase, we wanted to exploit the accuracy of the short read con-
tigs (SRC) and the coverage of the long read contigs (LRC) to obtain a better
assembly. Hence, we mapped all SRCs onto all LRCs of each group and cor-
rected the LRCs according to the mapping results. First, we used BLAST [19]’s
MegaBLAST [20] mapping task to map the SRC onto the LRC. We then used
an in-house C++ program to process the MegaBLAST mapping results. Since
MegaBLAST may report multiple mapping locations due to repeats, we only
accepted the “best” mapping locations. Reasoning from the fact that short
reads show less sequencing errors, we preferred the sequence reported by the
SRC over the LRC when there is a disagreement between the pair. By doing
this, we patched the “less fragmented” long read assemblies. If there is an over-
lap between different SRC mappings at the same region on the LRC, the latter
overwrites the first. Figure 3 shows a visual representation of the strategy on
correcting the LRCs.

Briefly, we describe our strategy in the following steps:

– If there is a mapping between a SRC and a LRC, and if the mapping does not
start at the beginning of the LRC, add the unmapped prefix of the LRC.

– Next, if the mapping does not start at the beginning of the SRC (very rare
situation), add the unmapped prefix of the SRC with lowercase (i.e. low con-
fidence) letters.

– Over the mapping region between SRC and LRC, pick the SRC values.
– If the mapping does not end at the end of the SRC (rare), add the unmapped

suffix of the SRC, again with lowercase letters. One may argue that it might
disturb the continuity of the resulting contig, however, we observe such map-
ping properties very rarely. The reason for using lowercase letters is to keep
track of the information that there is a disagreement between the SRC and
LRC on these sections, so the basepair quality will be lower than other sections
of the assembly.

– Finally, add the unmapped suffix of the LRC and obtain the corrected contig.

We repeated this process to correct each of the three long read assembly contig
sets. We applied our correction strategy on each data set multiple times until
there is no improvement in the Coverage and Average Identity metrics.
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Fig. 3. Correction method: correct the long read contig according to the mapping
information of the short read contig.

2.4 Evaluation

To evaluate and compare the resulting and corrected assemblies all-against-all,
we mapped all of the assembly candidates, including primary assemblies and
also final corrected assemblies to the “gold standard” BAC assembly. According
to the alignment results, we calculated various statistics such as the number
of mapped contigs, how many bases on the reference sequence were covered,
how many gaps exist on the reference sequence, and the total gap length. We
calculated metrics such as “Coverage” and “Average Identity” and compared
the resulting assemblies with these metrics.

To calculate these statistics, we kept an array of arr reference[0,0,0,...0],
where length(arr reference) = length(reference). We updated the contents of
arr reference according to the alignments. If there is a match at a location, we
assigned the corresponding position in the array to “1”, if there is a mismatch
at a location, we set it as “−1”, and if that location is not included in any align-
ment, we left it as “0” (which means a gap). We assumed deletions in the contig
(query) as mismatches. We also calculated the number of insertions in the con-
tig. Scanning the array and summing up the number of “1”s (matches), “−1”s
(mismatches), “0”s (gaps) and “insertionInQuery”, we obtained the number of
matches, mismatches, gaps, and insertions in contig. Using these numbers, we
calculated the Coverage (Eq. 1) and Average Identity values (Algorithm 1).

We also used two hybrid assemblers, Celera-CABOG [12] and Masurca [13],
with Illumina & 454 and Illumina & Ion Torrent. These hybrid assemblers load
all reads as input and assemble them with a hybrid method. We assembled the
two data sets with these hybrid assemblers to compare our correction method
with the results of them.

Coverage =
(

# of covered bases
length of the reference

)
(1)
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Algorithm 1. Average identity
while no contigs left do

alignmentLength ← matches + mismatches + insertionInContig

identity ←
(

matches
alignmentLength

)

avgIdentity ← avgIdentity + identity × contigLength
end while

avgIdentity ←
(

avgIdentity
∑contigNum

i=1 contigLengthi

)

3 Results

We present the results in Table 2, and interpret them in different point of views.

3.1 454 vs. Ion Torrent

Ion Torrent reads are shorter than 454 reads and they have less mean base quality
(Table 1). So, we did not expect to have better assembly with Ion Torrent reads
than 454 reads. The results in Table 2 agree with our expectations. In Table 2,
we see that the assembly of 454 reads performs better on evaluation metrics
than Ion Torrent with all kind of assemblers. The assembly of Ion Torrent reads
with Celera assembler has very low coverage value: 26.94 %. The reason for the
low coverage might be because Celera assembler is not designed for Ion Torrent
read type (shorter reads with lower quality). Even 454 and Ion Torrent reads
have similar error types at the homopolymer regions. SGA assembly with Ion
Torrent reads performs better on Coverage (86.57 %) but it cannot reach to the
Coverage of SGA assembly with 454 reads (99.83 %). The assembly of Ion Torrent
reads has the highest coverage with SPAdes assembler (94.94 %). Correction of
the Ion Torrent contigs improves the assembly quality but even after correction
phase Ion Torrent corrected assembly cannot reach the results of 454 corrected
assembly.

3.2 Assemblers

Table 2 shows that the assembly obtained by Velvet with only short Illumina
reads showed good coverage (99.05 %) and average identity rates (97.52 %). The
number of contigs obtained with Velvet assembly is 455, of which 437 map to the
reference. There are 39 gaps and the total size of the gaps is 1,671 bp. Our aim
was to increase the coverage, improve the average identity, decrease the number
of contigs and gaps, and shrink the lengths of the gaps.

Since we observed that 454 reads resulted better assembly than Ion Torrent
reads as stated in Sect. 3.1, we compared different assemblers using 454 con-
tigs. The assembly of Celera with the 454 long reads has 97.58 % coverage and
92.59 % average identity, which are lower than Illumina-Velvet values. Number
of contigs (735) is reasonable but number of gaps and total gap length are high
(18 and 4,280 bp, respectively). SGA assembly using 454 reads has very high
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Table 2. Results of assembly correction method on BAC data.

Name Length # of # of mapped # of covered Coverage Avg. # of Size of

contigs contigs bases identity Gaps Gaps

Reference 176.843

Velvet

Ill. Velvet 197,040 455 437 175, 172 0.99055 0.97523 39 1,671

Celera

454 Celera 908,008 735 735 172, 563 0.97580 0.92599 18 4,280

Ion Celera 39,347 27 27 47, 638 0.26938 0.96932 47 129,205

Corrected Celera#

Ill-454 Celera 371,065 250 250 176, 071 0.995635 0.944558 5 772

Ill-454 Celera2
∗

365,802 245 245 176, 343 0.9971 0.9455 4 500

Ill-Ion Celera 93,909 30 28 81, 819 0.46267 0.96327 36 95,024

Ill-Ion Celera2 145,262 30 28 91, 962 0.52002 0.97412 33 84,881

Ill-Ion Celera3 216,167 30 28 99, 645 0.56347 0.98066 34 77,198

SGA

454 SGA 62,909,254 108, 095 101, 514 176, 546 0.99832 0.97439 1 297

Ion SGA 842,997 6, 417 6, 122 153, 092 0.86569 0.99124 197 23.751

Corrected SGA

Ill-454 SGA 295,009 335 335 176, 757 0.99951 0.96823 5 86

Ill-Ion SGA 197,509 291 291 175, 052 0.98987 0.97501 45 1,791

Ill-Ion SGA2 203,064 291 291 175, 676 0.99340 0.97413 34 1,167

SPADES

454 SPADES 12,307,761 49, 824 49, 691 176, 843 1.0 0.98053 0 0

Ion SPADES 176,561 110 107 167, 890 0.94937 0.92909 9 8,953

Corrected SPADES

Ill-454 SPADES 290,702 298 298 176, 454 0.99780 0.96538 5 389

Ill-Ion SPADES 198,665 52 52 171, 977 0.97248 0.94215 4 4,866

Ill-Ion SPADES2 200,307 52 52 172, 101 0.97319 0.94230 2 4,742

Masurca

Ill-454 Masurca 380 1 0 0 0 0 0 0

Ill-Ion Masurca 2,640 8 8 1, 952 0.01104 0.98223 9 174,891

Celera-CABOG

Ill-454 Celera 1,101,716 891 891 174, 330 0.98579 0.92452 12 2,513

Ill-Ion Celera 0 0 0 0 0.0 0.0 0 0.0

Name: the name of the data group that constitutes the assembly; # of Contigs: the number of contigs that belong
to the resulting assembly; # of Mapped Contigs: the number of contigs that successfully mapped onto the reference
sequence; # of Covered bases: the number of bases on the reference sequence that are covered by the assembly;
Coverage: percentage of covered reference; Avg. identity: percentage of the correctly predicted reference bases; #
of Gaps: the number of gaps that cannot be covered on the reference genome; Size of Gaps: total number of bases
on the gaps.∗“2” represents the results of the second cycle of correction, “3” represents the third cycle.
#A mistake is noticed on Ill-454 Celera data and the results are corrected after being published in the proceedings
of CIBB2015.

coverage (99.83 %) and identity (97.43 %). It has just one gap with size 297 bp,
but the number of contigs is also very high (101,514), which is an unwelcome sit-
uation. SPAdes-454 assembly also had a large number of contigs (49,824) which
completely cover the reference sequence with 98.05 % average identity. SPAdes
assembly resulted in lower number of contigs and had higher coverage and aver-
age identity than SGA. If we evaluate the results according to the number of
contigs, Celera-454 results seem more reasonable than SGA or SPAdes results,
since it returned a reasonable number of contigs even with low coverage and
average identity.
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3.3 Correction

We observed that the correction method improved both 454 and Ion Tor-
rent based assemblies generated with all assemblers we tested (Table 2). In the
remainder of the paper, we only mention the 454-based assemblies for simplicity.

When we applied our correction method on Celera-454 assembly using the
Velvet-Illumina assembly, we achieved better coverage and average identity rates:
the coverage of 454 assembly increases up to 99.56 % and the average identity
rate increases up to 94.45 % on the first correction cycle. The second correction
cycle increases the coverage and average identity rates to 99.71 % and 94.55 %,
respectively, and the correction converges. The number of contigs decrease to
245 from 735, and the number of gaps decrease down to 4 (500 bp) from 18
(4,280 bp). Since the third correction cycle does not give better results it is not
shown in Table 2.

Our correction method increased the coverage of SGA-454 assembly up to
99.99 % from 99.82 % but with less average identity and with more gaps although
the total length of the gaps is decreased. Correction using the short read assembly
decreased the number of contigs down to a reasonable number (335). Corrected
SGA assembly has the largest coverage rate among all, and also with more
identity than Velvet-Illumina assembly.

The number of contigs in SPAdes assembly also decreased to 298 from 49,691
using our correction method. With the decrease in number of contigs, the cov-
erage also decreased (99.78 %) as well as the average identity (96.53 %). The
number of gaps increased to 5 from 0 with a total size of 389.

In summary, we obtained substantial assembly correction in draft assemblies
by using advantages of different technologies.

3.4 Hybrid Assemblers

We also compared the results of two hybrid assemblers on our multiple type of
data. We used Masurca and Celera-CABOG with default parameters given two
groups of hybrid data as input: Illumina & 454 and Illumina & Ion Torrent.
Hybrid assemblers Masurca and CABOG did not show good assembly rates.
We obtained zero coverage with 454 and Illumina reads using Masurca. The
only contig left after the contamination removal did not map to the reference
sequence. We also observed very low coverage (1.10 %) with 98.22 % average
identity with Ion Torrent & Illumina reads. Therefore, we conclude that Masurca
did not work very well in our case with our data types.

Similarly, we obtained zero coverage with Ion Torrent & Illumina using
CABOG. All of the resulting contigs obtained from the assembly were removed
as contamination. However, CABOG performed substantially better with Illu-
mina & 454, and generated assembly with 98.58 % coverage and 92.45 % average
identity. The assembly composed of 891 contigs and 12 gaps with total gap length
of 2,513 bp. Still, the performance of CABOG was not better than the corrected
assembly results described above.
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3.5 Combination of the Data from all Platforms

We combined data from all 3 platforms to generate a new assembly in order to see
if we have better coverage or accuracy on the results. The results are presented
in Table 3. Our method is originally designed for two data types. It corrects one
data type’s contigs with the other data type’s contigs, so we needed to combine
three types of contigs sequentially. As mentioned in Sect. 2.3 our method accepts
that the corrector data is more accurate than the corrected data. If there is a map
between the two, it replaces the values of the corrected data with the values of the
corrector data. For that reason, while working with 3 data combination, we decided
to use Velvet-Illumina contigs which are built by the highest accurate reads as the
last corrector. On Table 3, it is seen that Celera-454 contigs increase the coverage
rate of Celera-Ion Torrent contigs (from 26.93 % to 84.26 %) although decreasing
the average identity rate from 96.93 % to 94.51 %. Correcting the resulting contigs
with Velvet-Illumina contigs increases the coverage (96.32 %) and average identity
rates (95.50 %) even higher. The coverage and average identity rates are improved
on the second and third cycles too. Correcting Ion SPADES, with 454 SPADES
gives higher coverage (99.82 %) and average identity (97.33 %) rates than correct-
ing them with only Velvet Illumina contigs (97.24 % and 94.21 % respectively).
After using Velvet Illumina contigs for the last correction, the results are improved
approximately by 0.1 % and 0.01 % respectively. Correcting Ion SGA contigs with
454 SGA contigs was not possible because of memory limitations of BLAST map-
ping with such huge data. Instead, we used corrected version of “454 SGA contigs
with IlluminaVelvet contigs” to correct the IonSGAcontigs.The coverage is higher
than both Ill-Ion SGA and Ill-454 SGA, average identity is lower than Ill-454 SGA.

Table 3. Results with combination of 3 data types

Name Length # of # of mapped # of covered Coverage Avg. # of Size of

contigs contigs bases Identity gaps gaps

Reference 176.843

Corrected Ion Celera

454-Ion Celera 500, 251 27 27 149, 021 0.84267 0.94515 63 27, 822

Ill-“454-Ion Celera” 570, 865 27 27 170, 348 0.96327 0.95503 16 6, 495

Ill-“454-Ion Celera”2
∗

575, 726 27 27 172, 516 0.97553 0.95541 12 4, 327

Ill-“454-Ion Celera”3 578, 727 27 27 174, 535 0.98694 0.95555 10 2, 308

Corrected Ion SPADES

454-Ion SPADES 11, 224, 602 60 60 176, 540 0.99828 0.97334 6 303

Ill-“454-Ion SPADES” 9, 543, 712 45 45 176, 712 0.99925 0.97347 1 131

Corrected Ion SGA

Ill-454”-Ion SGA 281, 155 212 212 176, 769 0.99958 0.96562 4 74

Masurca(all)

Ill-454-Ion Masurca 3, 398 7 5 1, 477 0.00835 0.99363 5 175366

Celera-CABOG(all)

Ill-454-Ion Celera 575, 642 485 485 164, 621 0.93088 0.94664 39 12, 222

Name: the name of the data group that constitutes the assembly; # of Contigs: the number of contigs that belong
to the resulting assembly; # of Mapped Contigs: the number of contigs that successfully mapped onto the reference
sequence; # of Covered bases: the number of bases on the reference sequence that are covered by the assembly;
Coverage: percentage of covered reference; Avg. identity: percentage of the correctly predicted reference bases; #
of Gaps: the number of gaps that cannot be covered on the reference genome; Size of Gaps: total number of bases
on the gaps.∗“2” represents the results of the second cycle of correction, “3” represents the third cycle.
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We also used the hybrid assemblers Masurca and CABOG with default para-
meters with the combination of three data. Masurca resulted in very low coverage
0.8 % as it did before with the dual combinations. CABOG resulted in lower cov-
erage and higher average identity compared to Ill-454 combination and higher
in both compared to Ill-Ion Torrent combination. Hybrid assembler still did not
result in as high coverage and average identity as obtained with the correction
method.

We note that exploiting all the data gives us more accurate results especially
when we are using a diverse data which has different strengths and weaknesses.
However, one must be careful about the weaknesses and strengths of the data
and where and in which order to use each of them.

4 Conclusion

In this paper, we presented a novel method to improve draft assemblies by cor-
recting high contiguity assemblies using the relatively more fragmented contigs
obtained using high quality short reads. Assembling short and long reads sepa-
rately using both de Bruijn and OLC graph based assemblers according to data
types and then using correction methods gives better results than using only
hybrid assemblers. Using three data types together for correction or as the input
of the hybrid assemblers rather than using only two of them gives more accurate
results.

However, the need to develop new methods that exploit different data prop-
erties of different HTS technologies, such as short/long reads or high/low quality
of reads, remains. In this manner, as future work, our correction algorithm can
be improved by exploiting the paired end information of the short, high quality
reads after the correction phase to close the gaps between corrected contigs.

Funding. The project was supported by the Republic of Turkey Ministry of
Development Infrastructure Grant (no: 2011K120020), BİLGEM TÜBİTAK
(The Scientific and Technological Research Council of Turkey) grant (no:
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