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The thesis begins with an abstract written in both English and Turkish. This is
followed by Chapter 1, which summarizes the aim and purpose of this dissertation.
Chapter 2 presents a brief history of chiral materials and solutions to some
simple scattering problems using the moments method. Chapter 3 explains our
simple proposed solution to the problem of electromagnetic scattering from two
dimensional chiral cylinders of arbitrary cross-section above a dielectric half-space
using the perturbation method and the Method of Moments.

This problem does not have an exact solution so formulating a simple approxi-
mate solution was a tedious task. However, my advisors were always available
and willing to answer my queries. We have validated the proposed method by
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parametric analysis of various chiral scatterers with different cross-sections is
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OZET

DIELEKTRIK YARI-UZAY UZERINDE KIRAL BIR
SILINDIRDEN ELEKTROMANYETIK SACILMA

Hassan Sajjad
Elektrik-Elektronik Miihendisligi ve Siber Sistemler, Doktora
Tez Danigmani: Prof. Dr. Erciimend ARVAS
Tez Es Damigmani: Prof. Dr. Cengiz OZZAIM
Ocak, 2021

Dielektrik yar1 uzay iizerinde bulunan rastgele kesitli iki boyutlu (2-D) homojen
bir kiral silindirden elektromanyetik sagilma problemi igin basit bir sayisal ¢oziim
sunulmustur. Yiizey egdegerlik ilkesi ve Moment Yoéntemi (MoM) kullanilarak,
silindir ve dielektrik yar1 uzay bilinmeyen esdeger elektrik ve manyetik yiizey
akimlariyla degistirilir. Yizeylerdeki elektrik alanin teget bilegenlerinin siirekliligi
saglanarak, bir dizi elektrik alan integral denklemi (EFIE) elde edilir. Tki dielektrik
yari uzayin kesigtigi diizlem sonsuz oldugu icin konvansiyonel MoM direkt tatbik
edilemez. Bu nedenle, pertiirbasyon yontemi kullanililarak sonsuz araytizey sonlu
geniglikte bir diizlem ile degistirilir. Bu yaklagik problem geleneksel MoM ile
¢oziiliir. Temel fonksiyonlar olarak darbe fonksiyonu, test icin Galerkin Metodu
kullanilir. Uyarma vektorii, gelen alana ek olarak cismin olmadigi durumdaki
dielektrik yar1 uzaydan yansiyan alani da icermektedir. Her iki TM ve TE diizlem
dalga uyarimlar1 kullanilmaktadir.

Hesaplanan sayisal sonuclar, kiral silindirdeki egdeger akimlari, araytizdeki
pertiirbasyon akimlari ve cesitli geometriler i¢in sagilan alanlari igerir. Cismin
kiralite parametresinin incelenmesi sonucunda, kiralitenin, sagicinin radar ke-
sitini (RCS) kontrol etmede etkili bir gekilde kullanilabilecegi ortaya ¢ikmigtir.
Sacilan alanlar basit bir teori ile hesaplanamayacagl i¢in boyle bir caligmaya
gerek duyulmustur. Gelistirilen algoritmanin gecerliligini kontrol etmek i¢in bazi
basit problemlerin sonuclar1 da sunulmaktadir. Onerilen metodun avantajlar ve

dezavantajlar1 tartigilmigtir.

Anahtar sézcikler: Bistatik sacilma kesiti, kiral malzemeler, dielektrik yari uzay,
Momentler Yontemi, pertiirbasyon yontemi, ytizey esdegerlik ilkesi.
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ABSTRACT

SCATTERING FROM A CHIRAL CYLINDER OF
ARBITRARY CROSS-SECTION ABOVE A
DIELECTRIC HALF-SPACE

Hassan Sajjad
Ph.D. in Electrical, Electronics Engineering and Cyber Systems
Advisor: Prof. Dr. Erciimend ARVAS
Co-Advisor: Prof. Dr. Cengiz OZZAIM
January, 2021

A simple numerical solution for electromagnetic scattering from a two dimen-
sional (2-D) homogeneous chiral cylinder of arbitrary cross-section placed above
a dielectric half-space is presented. The surface equivalence principle and the
Method of Moments (MoM) are used to replace the cylinder and the dielectric half-
space by unknown equivalent electric and magnetic surface currents. By satisfying
the continuity of the electric field’s tangential components at the surfaces, a set of
electric field integral equations (EFIE) is obtained. Since the dielectric surface is
of infinite extent, the conventional MoM cannot be applied directly. Therefore,
a perturbation method is used where a strip of finite width approximates the
surface of the half-space. Then, this approximate problem is solved numerically
with the conventional MoM. Pulses are used as basis functions and Galerkin’s
method is used for testing. The excitation vector now contains the reflected field
from the dielectric half-space in addition to the incident field. Both TM and TE
excitations are treated.

Computed numerical results include equivalent currents on the chiral cylinder,
perturbed currents on the interface, and the scattered fields for various geometries.
Studying various parameters for the chiral material revealed that the extra degree
of freedom, chirality admittance, can be used effectively in controlling the radar
cross-section (RCS) of the scatterer. However, the scattered fields cannot be
predicted by simple theory, hence the need for such a study. Results for some
simple problems are presented as well to check the validity of the developed
algorithm. Advantages and disadvantages of the proposed method are discussed

towards the end.

Keywords: Bistatic scattering width, chiral materials, dielectric half-space, Method

of Moments, perturbation method, surface equivalence principle.
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Chapter 1

Introduction

In the recent years, numerical methods have been used extensively to solve
electromagnetic (EM) problems. These problems are mostly related to antenna
computations and scattering. Many commercial softwares are available to solve
these problems but they might not be the best choice for researchers due to their
high costs and complex nature. Another factor is the simulation time required
to solve complex geometry problems. These simulations can last for days and
weeks even on a high-end workstation. Therefore, developing a source code to
find approximate solution for a complex problem using FORTRAN or MATLAB

is a more viable solution in terms of cost and time.

There are countless problems in electromagnetics but very few have exact
solutions. These problems must be solved approximately by numerical techniques.
This led to the development of various numerical methods over the years. Figure 1.1
shows a flow chart of the various techniques that are used by researchers. All
these techniques are very well developed and the details can be easily found in the
literature. These methods are divided into two groups, low frequency and high
frequency. They are further divided into time and frequency domain methods. In
this work, the Method of Moments (MoM) is used.



Computational
Electromagnetics

[

Low-Frequency
Methods

|

Integral
Equation Based

|

Differential
Equation Based

1

High-Frequency
Methods

|

|

Field Based

Current Based

]

Time
Domain

——

Time
Domain

Frequency
Domain

Frequency
Domain

@ .

Figure 1.1: Flow chart of different computational electromagnetics techniques.

1.1 The Main Problem

In this work, the aim is to formulate and solve the problem of electromagnetic
scattering from a two dimensional (2-D) homogeneous chiral cylinder of arbitrary
cross-section above a dielectric half-space. The original problem under considera-
tion is shown in Fig. 1.2. The arbitrary shaped homogeneous chiral cylinder is
placed in free space (¢, = €y, ftq = pto). The surface of the chiral body is denoted
by S.. The relative permittivity of the cylinder is given by €., the permeability is
denoted by p., and the chirality admittance is represented by £. The dielectric
half-space is characterized by (€4, pq). Its surface is denoted by S;. The setup is
illuminated by an incident TM or TE plane wave with an incident angle ¢*. E"¢

and H™ are the incident electric and magnetic fields, respectively.

The problem under consideration is solved using MoM and the perturbation
method. In this method, the infinite surface of the dielectric interface is approxi-

mated by a strip of finite width. This use of the perturbation method makes the



implementation of conventional MoM feasible. Computed results include equiva-
lent surface currents on the chiral cylinder and the interface and the scattered
fields in both regions. It is observed that, depending on the cylinder’s height above
the interface, these results converge as the finite width of the strip is increased.

The computed results are validated by assuming some special cases and comparing

them with the results in the literature.

(Einc HinC)

Air (&g, Ug)
(Eq, Hy) S
d

Dielectric (g4, tgq) (Eg, Hy)

Figure 1.2: A chiral Cylinder of arbitrary cross-section placed above a dielectric
half-space illuminated by a TM or TE plane wave.



1.2 Motivation

Computation of radar cross-section (RCS), its prediction and reduction, has been
studied and discussed by many researchers over the years. This is achieved by
various techniques, for instance, body shaping and using electromagnetic (EM)
absorbing materials as coating. One of the main application of such a study is in

defense industry, to enhance the stealth technology for fighter jets.

For applications where the transmitter (Tx) and the receiver (Rx) are at the
same location, RCS reduction refers to reduction of monostatic radar cross-section
(MSRCS). Whereas, if the Tx and Rx are at different locations, it’s called bistatic
radar cross-section (BSRCS). For two-dimensional (2-D) problems, these terms

are called monostatic/bistatic scattering width or echo width.

Generally, for reducing RCS, body shaping and coating of radar absorbing
materials (RAMs) are used. In the former case, the body of the scatterer is
designed so that the EM waves are steered in a direction other than the incident
wave’s direction. This can be an effective technique for MSRCS reduction, where
the aim is to reduce the back-scattered fields [1]. RAMs on the other hand are
used to reduce both, MSRCS and BSRCS. Here, the EM waves are absorbed by
the material as heat due to its electric and magnetic losses. Previous study [2, 3],
shows that chiral materials can be used to effectively control the scattered fields.
This has led to an in depth investigation of the material, since its inception in
1971 [4].

This work is an extension of the problem solved in [5] which deals with the
problem of scattering from a 2-D chiral cylinder of arbitrary cross-section in
free-space. It is of vital importance to analyze the scattering behaviour of the
chiral scatterer in the vicinity of other objects, specifically a half-space. This
study can be applied in remote sensing applications and geophysical explorations.
Therefore, in this work, scattering properties of a 2-D chiral cylinder of arbitrary
cross-section are studied in the presence of a dielectric half-space. It has been well

established by earlier researchers that the scattering properties of chiral materials



cannot be predicted by simple theory, even in free-space. Introducing a half-space
into the problem makes it more complicated. The scattering behavior of a chiral
cylinder above a dielectric half-space can be much different than the scattering
behavior of the same cylinder in free-space. Finding a solution to this problem is

the motivation behind this work.

The aim is to come up with a simple numerical solution and to develop a
computer algorithm that can help in finding solutions to these problems accurately
and efficiently. The proposed method should not be computationally intensive and
it must be capable and robust enough to identify, in case of any spurious results,
the incorrect solutions. This can be done by analyzing the condition number of
the matrix. Based on these findings, chiral material can be better characterized
and used more effectively to control its scattering. Such a study can find wide use
in designing EM absorbing materials for cloaking and reducing RCS of arbitrary
shaped objects.

1.3 Contribution of This Dissertation

A simple solution for the problem of EM scattering from a homogeneous 2-D chiral
cylinder of arbitrary cross-section placed above a dielectric half-space is presented
here. Surface equivalence principle [6] is used to replace the chiral cylinder and the
half-space interface with unknown equivalent electric and magnetic surface currents.
By satisfying the boundary conditions for the tangential electric field component,
a set of electric field integral equations (EFIEs) are obtained. These equations
are solved numerically, using the Method of Moments [7]. However, due to the
distribution of the unknowns on the infinite interface, moments solution cannot be
used to solve these equations in the current form. Therefore, perturbation method
is used to approximate the original problem. An auxiliary problem is used with a
known solution i.e., scattering from a dielectric interface with the body removed.
Combination of the two problems lead to a set of new coupled vector field integral
equations. The unknowns representing the half-space interface become negligible

in the far away region from the body. In other words, the infinite region problem

5



is reduced to a finite region which makes the discretization feasible for applying
MoM.

1.4 Structure of The Dissertation

A gradual approach has been applied instead of directly solving the main problem.

The dissertation structure is discussed below.

Chapter 2 presents a brief literature review on chiral materials. Then, the
constitutive relations that govern the chiral media are presented. This is followed
by a basic introduction of plane waves in chiral materials. Finally, towards the end
of the chapter some simple problems are discussed. These problems are solved by
using the surface equivalence principle and the conventional method of moments.
Computed results include the magnitude of the scattered fields and bistatic
scattering width for various problems. The problems discussed are: scattering
from 2-D PEC and dielectrics cylinders of arbitrary cross-sections, scattering from
multiple PEC and dielectric cylinders, scattering from PEC and/or dielectric
cylinders above a PEC plane, and scattering from a chiral cylinder of arbitrary
cross-section in free-space. Finally, this chapter also discusses the electromagnetic
scattering from multiple chiral cylinders of arbitrary cross-section surrounded by
free-space. Numerical results included are the co-polarized and cross-polarized
bistatic scattering width for (i) Multiple chiral cylinders in free-space and (ii)

PEC cylinder placed in the vicinity of a chiral cylinder.

Chapter 3 presents the main problem of scattering from a 2-D chiral cylinder
of arbitrary cross-section placed above a dielectric half-space. The perturbation
method is used to approximate the dielectric half-space by a dielectric strip of
finite width. The integral equations formulation is presented along with the
application of the moments method. Numerical results are validated by comparing
with published results and some limiting cases. Computed results include the
equivalent surface currents on the cylinder, the perturbed currents on the dielectric

interface, and the scattered fields. Various parametric studies are also presented



to understand the effect of chirality and the presence of the half-space on the

scattered fields in the upper and lower half-spaces.

Finally, Chapter 4 contains the summary of this work.



Chapter 2

Background of Chiral Materials
and Solution to Some Simple

Problems

In simple and plain words, chirality refers to the property of objects according to
which they cannot superimpose their mirror image without translation or rotation.
Objects which are not chiral are called achiral. A very comprehensive example of
chirality is given in [8], shown in Fig. 2.1a, for understanding the phenomenon
easily. The original left- and right-hands are represented by LH-o and RH-o,
respectively, and their images, in the reflection are denoted by LH-i and RH-i. Tt
is clear from the image that RH-o corresponds to LH-i and LH-o corresponds to
RH-i. To understand the non-superimposable nature of the chiral objects, consider
the right hand and its image in the mirror. RH-i and RH-o are finger-to-finger
aligned, but RH-o shows its back and the RH-i shows its palm. If RH-i is flipped,
it will align back-to-back but the finger-to-finger alignment will be lost.

Chiral objects can be man-made and also found naturally, for example, DNA
in biochemistry, gloves and golf clubs in sports, helical antennas and screws in
engineering. Some common examples of chiral objects are shown Fig. 2.1b. A

material made of chiral molecules or other chiral particles is called a chiral medium.



These materials have a special property due to which the polarization plane of
the EM waves, traveling through it, is rotated. This phenomenon is called optical
activity. This behaviour was observed in 1811 by Arago [9] and later on studied
by other researchers [10-12].

*google images *Wikimedia commons *google images

(b)
Figure 2.1: Examples of chiral objects. (a) Human hands and their reflection in a
mirror. Image taken from [8], (Photograph: Raphaél Caloz). (b) Other examples
of chiral objects.

2.1 Background

Besides the study in the optical domain, wave interaction with chiral objects
was studied for the first time by Lindman in 1920-22 and Pickering in 1945.

However, the modern history of electromagnetic chirality dates back to 1979, when
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Jaggard et al. presented a macroscopic model of the interaction of electromagnetic
waves with chiral structures in [13]. The next study on chirality appeared in
1982 by Engheta and Mickelson [14], where they considered transition radiation
from a chiral plate. In 1986, Silverman studied scattering from chiral/achiral
interfaces [15]. From 1986 to 1990 Lakhtakia et al., worked on scattering from
chiral and achiral interfaces in [16-18]. These authors also studied scattering
by mirror-conjugated chiral interface and scattering by a periodic chiral/achiral
interface in [19,20]. Similarly, scattering from chiral slabs and infinitely backed
chiral materials have also been presented in [21-23]. These studies helped in
demonstrating scattering from flat surfaces but the practical problems were more

complex which demanded further investigations.

Objects of cylindrical and spherical shapes are encountered frequently in EM
problems, which led to Bohren’s research on problems involving scattering from
homogeneous spheres [24], spherical shells [25], and cylinders [26]. He solved
these problems using eigenfunction solutions. Latktakia et al., investigated the
eigenmodes of a chiral coated conducting sphere in order to explore the practical
aspects of chiral media [27]. They studied a perfectly conducting sphere filled
with a homogeneous and isotropic chiral medium which forms the base for a
microwave resonator, an important circuit element. Klusken and Newman used
the volume equivalence principle to find scattering from a cylinder of arbitrary
cross-section [28]. In another study, Engheta and Jaggard [29] linked the models
of chiral media to their constitutive relations. They investigated the waves in
unbounded chiral medium and studied different interface problems. For example,
chiral-achiral interface where they studied the reflection and refraction. Along
with this, they worked on the radiation problems from different sources in chiral
media. These and other studies such as, antennas radiating in infinite chiral
media [30], point dipole radiating inside a chiral sphere [31], and scattering
by perfectly conducting bodies in an infinite medium [32] have been studied
extensively. Scattering from 2-D homogeneous chiral cylinder of arbitrary cross-
section is studied by Alkanhal and Arvas in [5]. The above mentioned studies
gave an insight into the scattering behavior of frequently encountered geometries.

The reason behind studying each case separately is that the scattering behavior

10



of chiral objects cannot be predicted by the application of simple theory.

After a thorough research on the chiral materials, researchers investigated the
effect of chiral coatings applied to dielectric and perfectly conducting bodies to
analyze the scattering behavior. A numerical solution has been provided for the
EM scattering problem from a chiral coated metal cylinder (two-dimensional) of
arbitrary cross-section in [33]. The authors observed that the results obtained
from the chiral coated cylinder were different from the results of a dielectric
coated cylinder. These results could not be predicted without the application
of a numerical method. The results were compared with exact eigenfunction
solution given in [28]. Allam mentioned in a military technical college report [34],
that chiral materials can be used for absorbing EM waves. Chiral coatings have
also been applied to dielectric cylinders with various thicknesses and material
properties in [35], to observe depolarization properties of chiral materials. The
coatings helped in reducing the radar cross-section. A study on the coupled
surface integral equation solution of EM scattering by chiral coated conducting
bodies with arbitrary shape is presented in [36]. The authors concluded that the
bistatics cross-section is reduced due to the chiral coating. In a similar study,
RCS for a chiral coated dielectric sphere has been studied in [37], with different

chiral parameters and various thicknesses of chiral coating.

The effects of chiral materials have also been analyzed in real life complex
problems where a strip may be buried in a chiral medium, or antenna placed
inside a chiral radome, or EM waves interacting with twisted metal cylinders.
For instance, the analysis of axisymmetric chiral radome [38] showed that adding
chirality to the bodies, changed the direction of the scattered field such that it was
different from the incident fields. Similarly, scattering of electromagnetic plane
wave by a perfect electric conducting (PEC) strip in homogeneous isotropic chiral
medium has been studied in [39]. Another interesting and recent study in 2016 on
scattering due to twisted PEC cylinder coated with chiral/chiro-ferrite mediums
in [40], showed larger scattering. These studies show that the chirality parameter

has to be optimized in order to achieve the desired properties.

From all the study, undertaken on the chiral materials in the 20" and early
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215 century, it has been established that the polarization rotation is a result of
the electromagnetic coupling of chiral particles. The constitutive relations, which
play an important role in the field analysis, for the chiral materials have been

studied in great details and are presented in the next section.

From the literature survey it was observed that the chiral materials help in
reducing RCS and acts as absorbing materials for EM waves unlike chiro-ferrites
or simple dielectric coatings over PEC. Despite the immense amount of research
on chiral materials the problem of a 2-D chiral body of arbitrary cross-section
in the presence of a dielectric half-space has not been studied. The main aim of
this work is to analyze the scattering behavior of chiral materials when they are

placed above a dielectric half-space.

2.2 The Constitutive Relations

Over the years, different constitutive relations for chiral materials have been used
by researchers. Three common sets are used in the literature. Initially proposed
by Fedorov in 1959 [41], then inspired by Drude [42], Born modified the relations
to [43],

D = 1 (E + &0 V % E) (2.1)

B = fipee (H + &5V x H) (2.2)

In 1962, Post proposed another set of parameters [44],

D =¢E— j¢B (2.3)
1 .

H=-B - j¢E (2.4)
7

and Lindell [45] gave the third set of relations,

D= ELE - ]fLH (25)

B = i H + j&,F (2.6)
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Here, D is the electric flux density or electric displacement (C/m?), E is the
electric field intensity (V/m), H is the magnetic field intensity (A/m), and B
is the magnetic fulx density (Wb/m?). The material is characterized by €, p, &
which, respectively, represent the permittivity, permeability, and the chirality
parameter for the three different sets of relations. The subscript DBF denotes
the Drude-Born-Fedorov parameters, and the subscript L represents Lindell’s
parameters. In this dissertation, the constitutive relations given in (2.3) and (2.4)
are used. The above given relations are equivalent and can be transformed from

one form to another. The details can be found in [45].

2.3 Plane Waves in Chiral Media

Before proceeding further it is important to understand the propagation of plane

waves in a chiral medium. Here, we briefly introduce this phenomenon.

2.3.1 General Plane Waves

The source-free Maxwell’s equations can be written as:
V xE=—jwB (2.7)
V xH = jwD (2.8)

e’ time dependence is assumed and suppressed. Replacing the constitutive
relations (2.3) and (2.4) in (2.7) and (2.8), we get the following set of Maxwell’s

equations for chiral media.
V X E =w(uE — juH) (2.9)

V xH=wlj(e+ p&®)E + (uH] (2.10)
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Here, ¢ is known as the chiral admittance. It can be shown that the following
E} and H}, is a solution to (2.9) and (2.10).

E} = A(& — jg)e " (2.11)
+ A ~ -\ _—jh1z
Hj, = n—(y + j)e (2.12)

Here, A is an arbitrary constant. The wavenumber (h;) and the wave impedance

(n.) in the chiral medium are given by:

hi = wpg + k2 + (wpé)? (2.13)

Ui

where, k = w,/ue and n = y/p/e are the wave number and the wave impedance

(2.14)

in a regular dielectric medium. E}, and H}, in (2.11) and (2.12) represent a right-
hand circularly polarized (RHCP) uniform (& =0= a%) plane wave travelling in

+z direction with the wave number h;.

Similarly, one can show that E} and H] is also a solution to (2.9) and (2.10).
Ef = O(i 4 jg)e" (2.15)

@ .
HY = —(j— ji)e " (2.16)

C

where, C'is an arbitrary constant, and the wavenumber (hs) is given by:

hy = —wpg + k2 + (wpf)? (2.17)

E; and H} in (2.15) and (2.16) represent a left-hand circularly polarized (LHCP)
uniform (£ =0= a%) plane wave travelling in 4z direction with the wavenumber

ha.

It is important to mention here that that, if Ay in (2.11) and (2.12) is replaced
with hg, the resulting fields will not satisfy (2.9) and (2.10). Similarly, if ho
is replaced with hy, the resulting fields will not satisfy (2.9) and (2.10). This

means that, h; is the wavenumber associated with the RHCP wave and hs is the
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wavenumber associated with the LHCP wave. Note also that a uniform plane
wave of the following form with arbitrary F, and EF, and 3 = hy or § = hy will
not satisfy (2.9) and (2.10).

E(z) = [£E, + §BE,]e 7" (2.18)

H(z) = [¢H, + §H,]e 7 (2.19)

In simple words, this means that a uniform plane wave, in a chiral medium, cannot

be linearly or elliptically polarized. It must be circularly polarized.

Since (2.9) and (2.10) are homogeneous equations then the sum of (E}, H})
and (Ef,H}) will be the general form of a uniform plane wave traveling in a
chiral medium (e, 1, §) in +z direction. Given below, is the most general form of

such a wave.

E" = A(% — jg)e ™" + C(3 + j§)e "= (2.20)
A . C .

H = —(j+ ja)e M + —(§ — ji)e /" (2.21)
TNe Me

Similarly, a plane wave traveling in —z direction in a chiral medium is given by,

E™ = F(2 + j9)e’™* + G(2 — j§)e’™* (2.22)
F . G A

H™ = —(—g+ji)e™* + —(—g — ji)e’"** (2.23)
TNe Me

The terms with wavenumber h; represent a RHCP wave and those with wavenum-
ber hs represent a LHCP wave. The superscripts + with E and H represent the

+z and —z propagation of the wave, respectively.

Since RHCP and LHCP waves in (2.20)-(2.23) travel with different phase
velocities, the polarization of the total wave rotates. It has been shown in
literature that, if a linearly polarized wave impinges on a air-chiral interface, part
of the wave is reflected back to the air and another part is transmitted into the
chiral medium. The reflected wave maintains its linear polarization but the part
transmitted to the chiral medium is now circular polarized. For a much more
detailed explanation, refer to [8]. As a simple example, plane waves due to an

electric current sheet in a chiral medium is presented in Appendix C.
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2.4 The Method of Moments in Brief

In this frequency domain method, the unknown function is expanded in terms
of known functions with unknown coefficients. The method starts with an exact
linear operator equation which is then solved approximately. The computed result

is an approximation to the exact result. Given the operator equation,

L(f) =g (2.24)

where L is a linear operator, g is a known function, and f is unknown. In case of
electromagnetics L is an integro-differential operator, f is the unknown function
(the equivalent surface currents in our case) and g is a known excitation (the
incident plane wave in our case). The unknown function f is expanded into N

weighted basis or expansion functions,

=Y anh,(x) (2.25)

Where h,,(z) is the expansion function and «, is the expansion coefficient. After

substituting (2.25) in (2.24), we have the following,

L (Z anhn(x)> =g (2.26)

Since L is a linear operator, (2.26) can be written as,
N

> anL(h(x)) (2.27)

When (2.27) is tested by a set of testing functions w,, (),

<wm,ZanL(hn(x))> = (Wm,g), m=1,2,...,N. (2.28)

The brackets (-) stand for the defined inner product which is used in the testing
process. Equation (2.28) can be written as N independent equations which takes

the form of (2.29) in its matrix form,

Zun Zi2 ... Zin a1 g1
e || o
_ZN1 A ZNN_ _aN_ _gN_
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A typical element Z,,, and g,, are given by
Zin = (W, L(hp(2))) (2.30)

gm = (Wm, 9()) (2.31)

The unknown coefficients can be calculated readily by taking inverse of the Z

matrix, called the moment matrix, as shown below:
[a] = (2] [g] (2.32)

Much more details can be found in [6].

2.5 Solutions to Some Simple Problems

The purpose of this dissertation is to compute scattering from a 2-D chiral cylinder
of arbitrary cross-section above a dielectric half-space using the method of moments
and the perturbation method. The main aim is to write a MATLAB program
that can solve this problem. Starting with the main problem, directly, would
make our code prone to errors. Therefore, instead of immediately solving the
main problem, first, some simpler problems were solved to gain confidence in our
developed algorithm. The results computed by our MATLAB program are in
excellent agreement with those of the FORTRAN code given in [46] and those of
other researchers. This gave us confidence in our developed algorithm. We started
with the simplest problem of scattering from a thin PEC strip in free-space and
gradually increased the complexity of the problems. The results were verified on
each step. For the sake of completeness the following problems are presented in

this section.

1. Scattering from a PEC cylinder of arbitrary cross-section.
2. Scattering from a dielectric cylinder of arbitrary cross-section.

3. Scattering from multiple PEC and/or dielectric cylinders of arbitrary cross-

section.
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4. Scattering from a PEC cylinder of arbitrary cross-section above a PEC

plane.

5. Scattering from a dielectric cylinder of arbitrary cross-section above a PEC

plane.
6. Scattering from a chiral cylinder of arbitrary cross-section in free-space.

7. Scattering from multiple chiral cylinders in free-space.

2.5.1 Scattering From a Thin PEC Strip

First, a very simple problem of scattering from a thin PEC strip in free-space is
solved. The strip is excited by a plane TM wave with an incident angle ¢* = 90°.
The conventional MoM is used to solve this problem. Pulses are used as expansion
functions and Galerkin’s method is used for testing. For a detailed application of
the moments method refer to [46]. Figure 2.2 shows the surface current density on
the thin highly conducting strip. Our results are in excellent agreement with [46],
Fig. 12-15 of [47], and Fig. 2 of [48]. Figure 2.3 shows the bistatic scattering width
(BSW) for the PEC strip in free-space.

2.5.2 Scattering From Multiple Conducting Cylinders

Next, we compute scattering from multiple conducting cylinders in free-space. As
an example, cylinders of square and triangular cross-sections are considered. The
setup and the bistatic scattering width for this problem are shown in Fig. 2.4. The
system is excited by a plane TM wave from ¢* = 90° direction. The MATLAB
and FORTRAN results are in excellent agreement.
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Figure 2.3: Bistatic scattered field for a thin PEC strip of width 2.
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Figure 2.4: Bistatic scattered far-field from two PEC cylinders illuminated by a
TM plane wave from ¢ = 90° direction.

2.5.3 Scattering From Dielectric Cylinders in Free-Space

Here, the algorithm is verified for scattering from multiple dielectric cylinders
in free-space. As an example, the same square and triangular cylinders (now
dielectric) immersed in free-space are considered. The cylinders are characterized
by (€1 = €3 = 4eg, 11 = pto = o). It can be seen in Fig. 2.5 that for the dielectric
cylinders the back- and forward-scattered fields have reduced significantly and

scattered field in other directions has increased.
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Figure 2.5: Bistatic scattered far-field for two dielectric cylinders, with square and
triangular cross-sections, placed in the proximity of each other in free-space. The
system is illuminated by a TM plane wave with the incident angle with ¢’ = 90°.

2.5.4 Scattering From PEC and Dielectric Cylinders in
Free-Space

In this section, we validate our MATLAB code for the problem of a square PEC
cylinder and a triangular dielectric cylinder. The dielectric cylinder is characterized
by €1 = 4€p, p1 = po- The problem setup and the scattered fields are shown in
Fig. 2.6. The scattered field is also compared with that of a PEC and dielectric

cylinders of the same dimensions.
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Figure 2.6: Bistatic scattered far-field due to a PEC square placed in the vicinity of

a lossless dielectric (e; =4eg, 1 =p) triangular cylinder. The setup is illuminated
by a TM plane wave incident from ¢* = 90° direction.
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2.5.5 Scattering From a PEC Cylinder Above a Ground

Plane

After solving the free-space problems, we advanced to problems where the conduct-
ing scatterer is above a ground plane. As an example, a semi-circular conducting
cylinder placed above an infinite ground plane is considered. The original problem
is shown in Fig. 2.7a. B is the semi-circular PEC cylinder of radius A\g and the
red solid line represents the perfectly conducting ground plane. The method of
images is used to obtain the equivalent model and MoM is used to solve the

problem numerically.

In the equivalent problem shown in Fig. 2.7b, we have two bodies B; and Bo,
and two sources S; and Sll. Notice that the ground plane is removed and a
semi-circular PEC cylinder (Bz) which is the mirror image of By is introduced. A
second source S} which is the image of S; has also been added. In this problem,
the incident wave is impinging the cylinder with an angle ¢ = 90° for S; and
¢ = —90° for S|. As can be seen from the geometry, this problem is similar to
solving a full circular cylinder with two excitations. There are two methods of
solving this problem, the brute force method and the smart way. These methods

are discussed next.

The Brute Force Method and the Smart Solution

For a single body problem the equation that we need to satisfy is

s
Etan

(Je) = ~E

tan

on S (2.33)

where S is the surface of the cylinder and E;  is the scattered field produced due

tan

to J.. For our problem we need to satisfy the following two equations, since we

have the original body (B;) and its image (Bs),

E?an (']C + J/c) _Eian

E?an(JC + J/c) = _EZ

tan

+E! on B (2.34)

tan

+E' on B, (2.35)

tan
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Figure 2.7: A semi-circular PEC cylinder (radius = )¢) placed above (touching)
a conducting ground plane. The setup is excited with a TM plane wave. (a)
Original problem, (b) Equivalent image problem.

The primed quantities remind us that they are related to the image cylinder. By
applying MoM to the two body problem with two sources, the currents on both

cylinders were computed.

The magnitude and phase of the induced surface currents on the cylinders are

shown in Fig. 2.8.

Since the currents on the image cylinder (Bs) are image of those on the original
cylinder By so we do not need to solve for both the currents. In this case, we can
model the problem in a smart way where the number of unknowns reduce to half.

However, the moment matrix elements are more complex now. It takes the same
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amount of time to fill the matrix but the matrix inversion time reduces due to
its smaller size. The induced surface electric currents for both the methods are
compared in Figs. 2.8a and 2.8b. It can be seen that, in the smart solution, the
number of unknowns reduced to 180 instead of 360 in the brute force case. The

results are in excellent agreement.

2.5.6 Scattering From a Dielectric Cylinder Above a

Ground Plane

The developed algorithm is also capable of solving for a 2-D dielectric cylinder
of arbitrary cross-section placed above a ground plane. The same brute force

method and smart solution is used to solve the problem.

As an example, consider a dielectric cylinder with a square cross-section placed
a distance d above a ground plane. The setup is excited by a TM incident field
impinging with an angle ¢* = 90°. The problem setup and the equivalent surface
electric and magnetic currents are shown in Fig. 2.9. Table 2.1 shows a comparison
of the simulation time for the two methods. The superiority of the smart solution
in terms of the reduced unknowns and the simulation time is clearly visible for
the problems discussed here.

Table 2.1: Comparison of the simulation time for the brute force method and the
smart solution for the two problems discussed above.

Cylinder Solution Type | Segments/Unknowns | Sim. Time (sec)
A Brute Force 360/360 41
Semi-Circular PEC Smart Solution 180/180 20
Dielectric Square Brute Force 800,/1600 204
4 Smart Solution 400/800 101
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Figure 2.8: Induced currents on a semi-circular PEC cylinder placed above a
ground plane. The brute force and the smart solution methods are compared.
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Figure 2.9: Equivalent currents on the surface of a lossless dielectric (e =2¢q, 1= f19)
cylinder with a square cross-section placed 0.25\; above a conducting ground
plane, excited by a TM plane wave from ¢’ =90°.
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2.5.7 Scattering From a Chiral Cylinder in Free-Space

The MATLAB code was modified to solve for scattering from a chiral cylinder
of arbitrary cross-section in free-space. Results from our code were in very good
agreement with the exact eigenfunction solution for TM and TE plane wave
incidence for a circular chiral cylinder. The results are discussed in Figs. A.2 and

A.3 in Appendix A.

As another example, scattering from a lossless, isotropic, and homogeneous
chiral cylinder with a square cross-section is computed for TM and TE plane wave
incidence. The chiral cylinder is characterized by €, = 3, u, = 2, £ = 0.0005.
The co- and cross-polar components of the bistatic scattering width are shown in

Fig. 2.10. The results are in good agreement with those presented in [49].

After having confidence in our results and the developed code, next, we compute

scattering from multiple chiral cylinders of arbitrary cross-section in free-space.
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Figure 2.10: Bistatic scattering width of a chiral cylinder with a square cross-

section, excited by a plane wave from ¢' = 180°. The cylinder is characterized by
€& =3, u =2, &=0.0005.
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2.5.8 Scattering From Multiple Chiral Cylinders

Finally, the algorithm is extended to solve for multiple chiral cylinders in free-
space. This is the last step before solving our main problem. The results in this
section are validated by solving some special cases. This further strengthened our

confidence in the developed code. The problems presented here are:

e Scattering from multiple chiral cylinders

e Scattering from a chiral cylinder in the presence of a PEC cylinder

This is the most generalized form of our MATLAB algorithm for computing

scattering from 2-D objects of arbitrary cross-section in free-space.

2.5.8.1 Scattering From Multiple Chiral Cylinders

The first problem solved here is scattering from multiple chiral cylinders immersed
in free-space. Cylinder 1 and cylinder 2, each of radius 0.1\g are characterized by
€1 = 1.5eg, p1 = 4pg, & = 0.0005 and € = 2¢q, po = 3o, &2 = 0.07, respectively.
Centers of the cylinders are 0.5\g apart. The bistatic scattering width of the

cylinders, when excited from ¢ = 180°, is shown in Fig. 2.11a.

Verification

In order to verify the solution, the material properties of cylinder 2 are changed
to eo = €9, o = po, & = 0. In this case, our problem reduces to a single body
problem which has been compared with the exact solution (Fig. A.2). Comparison
of the single chiral and the reduced two body problem is shown in Fig. 2.11b,

which are in good agreement.
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Figure 2.11: (a) Bistatic scattering width of two circular chiral cylinders and (b)
when the cylinder on the right (cylinder 2) is assigned free-space properties.
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2.5.8.2 Scattering from a PEC and Chiral Cylinder

After having verified the code for multi-body chiral objects, a PEC circular cylinder
is placed in the proximity of a circular chiral cylinder. The two cylinders are
excited by TM plane wave incident from ¢ = 90°. The problem setup and the

co-polarized and cross-polarized bistatic scattering widths are shown in Fig. 2.12.

0 50 100 150 200 250 300 350

¢ [deg]
Figure 2.12: Bistatic scattering width of a PEC and a chiral cylinder placed

next to each other. The cylinders are surrounded by free-space (e, po). Radius
of cylinders is 0.1)\y, d = 0.5\, and the chiral cylinder is characterized by
€2 = 260, 2 = 240, &2 = 0.003.
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Verification-1

The results are verified by a limiting case where the chiral cylinder is assigned
free-space properties. This means that the chiral cylinder no longer exists. The
bistatic scattering width of this reduced problem must match with that of a single
PEC cylinder of the same dimensions. The results are compared in Fig. 2.13

which are in very good agreement.

Single Body: PEC Cylinder
0.5 Two Body: Gylinder 1 PEC,
Cylinder 2 Free Space

0 50 100 150 200 250 300 350
¢ [deg]
Figure 2.13: Bistatic scattering width for the setup shown in Fig. 2.12, with the
chiral cylinder properties changed to those of free-space.

Verification-11

A simple study is presented here in which a circular chiral cylinder of radius 0.5\ is
placed symmetrically above a PEC strip of width 2. Distance d between the strip
and cylinder is 0.3\g. The chiral cylinder is characterized by (e = 4ey, u = po, §).
The structure is illuminated by a TM plane wave from ¢ = 90°. The chirality
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admittance £ of the chiral cylinder was varied and the effect on the scattering width
was observed. Finally, when the chirality admittance was set to zero, the results
agreed ‘exactly’ with the results from the FORTRAN code of [46]. This gave us
further confidence in our MATLAB code. The results for the co-polarized and
cross-polarized scattered fields are shown in Fig. 2.14. Note that the cross-polar
component of the bistatic scattering width has disappeared when the chirality

admittance is set to zero, as expected.

The study performed in the above sections proved that the developed algorithm
is reliable. After solving these problems, we are now able to advance to the main
problem, i.e., scattering for a 2D chiral cylinder of arbitrary cross-section above a

dielectric half-space. This problem is discussed in the next chapter.
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Chapter 3

EM Scattering From a Chiral
Cylinder Above a Dielectric
Half-Space

In this chapter, a simple numerical solution for electromagnetic scattering from
a two dimensional (2-D) homogeneous chiral cylinder of arbitrary cross-section
placed above a dielectric half-space is presented. The surface equivalence principle
and the Method of Moments (MoM) are used to replace the cylinder and the
dielectric half-space by unknown equivalent electric and magnetic surface currents.
By satisfying the continuity of the tangential components of the electric field at
the surfaces, a set of electric field integral equations (EFIE) is obtained. The
dielectric surface is of infinite extent, the conventional MoM cannot be applied
directly. Therefore, a perturbation method is used where a strip of finite width
approximates the surface of the half-space. Then, this approximate problem is used
with conventional MoM. Pulses are used as basis functions and Galerkin’s method
is used for testing. The excitation vector now contains the reflected field from the
dielectric half-space in addition to the incident field. Both TM and TE excitations
are treated. Equivalent currents on the chiral cylinder, perturbed currents on the

interface, and the scattered fields are presented for various geometries.
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It is observed that, depending on the cylinder’s height above the interface,
these results converge as the finite width of the strip is increased. The computed
results are validated by assuming some special cases and comparing them with

the results in the literature.

3.1 Introduction

Since its conception, chiral materials have been a topic of keen interest for
many researchers. Due to optical activity in these materials, the plane of a
linearly polarized light ray is rotated [50]. A chiral medium can be artificially
produced at low gigahertz frequencies [51]. The extra degree of freedom, the
chirality parameter, provides an efficient way to control the scattering properties
of chiral coated objects [52]. Various techniques such as T-matrix method [53],
volume formulation [54], eigenfunction solutions [55], finite difference time domain
(FDTD) [56], and method of moments (MoM) [5,6,57] along with others have
been used to compute plane wave scattering from chiral objects. Analytical
and numerical solutions for 2-D perfect electric conductors (PEC) and dielectric

objects, above and below a half-space, have been studied extensively [58-64].

The scattering properties of 2-D chiral objects have not been investigated
thoroughly in the presence of a dielectric half-space or a PEC plane. This study
can find various applications such as in the field of antennas, radar cross-section
alteration, remote sensing, geoscience, and bioscience applications. The proposed
system can mimic some actual micro/nano-structures above substrates in photonic
applications. This demands further investigation of chiral objects, especially in
the presence of a half-space. For more details the readers are referred to an elegant

review article on chiral metamaterials [65].

The problem of electromagnetic waves interaction with three dimensional (3-D)
arbitrary shaped chiral targets above a lossy half-space is solved using surface
integral equations [66-69]. The chiral medium is split into two different regular

homogeneous dielectric media and by using the discrete complex image method
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(DCIM) the spatial domain half-space Green’s functions are obtained [66-68].
A hybrid method is also used to solve 3-D chiral body above half-space using
hybrid finite elements methods [70]. On the other hand, the perturbation method
combined with MoM (used in this work) solves a set of coupled vector electric
field integral equations to formulate the problem, which is relatively simple to
understand and implement in 2-D. The proposed formulation is very simple because
homogeneous space operators are used instead of the numerical computations of
the half-space Green’s functions which involve Sommerfeld integrals. This method

can be generalized to 3-D problems as well.

The scattering behaviour of a cylinder above a dielectric half-space can be
very different than the behaviour of the same cylinder when it is in free-space.
Figure 3.1 shows this difference in the bistatic scattering width in the backward
region (0° <¢< 180°) for a PEC circular cylinder of radius 0.25)\;, where A
is the free-space wavelength. This cylinder is illuminated by a TM wave with
angle of incidence ¢* = 90°. It is seen that when this cylinder is in free-space
the scattered field in the backward direction is almost constant. On the other
hand, when this cylinder is placed at a height d = 0.5\ above a dielectric half-
space (eg=4€g, pa=pio) the back-scattered field (¢ =90°) has been reduced by
about 5 dB, and major lobes are introduced in other directions. In Fig. 3.2
results are given when the PEC of Fig. 3.1 is replaced by a dielectric cylinder
(e.=6€0, p.=1.5u0). For the dielectric cylinder above the half-space in Fig. 3.2,
an increase of 3 dB in the back-scattered field can be observed relative to the
free-space case. Furthermore, a 4 dB increase can be seen at 15° and 165° relative

to the field of the dielectric cylinder in the free-space.

We are not aware of any results in the literature for the scattering behavior
of a chiral cylinder of arbitrary cross-section above a dielectric half-space. That
was the motivation behind this work. Figure 3.3 shows the result when the
cylinder of Fig. 3.1 is replaced by a chiral cylinder (e, =6€g, p.=1.5u9, £=0.002).
The co-polar component of the scattered field at 30° and 150° has increased by
20 dB relative to the free-space case. Similarly, the cross-polar component of the
scattered field at 23° and 155° has increased by about 15 dB in the presence of the

half-space. The results in the presence of the half-space are computed for the first

38



time in this work. The procedure used to obtain these results is explained next.

3.2 Integral Equations

Figure 3.4 shows the original problem under consideration. A 2-D homogeneous
chiral cylinder of arbitrary cross-section is placed above a dielectric half-space.
The surfaces of the chiral cylinder and the interface are represented by S. and
Sq, respectively. The cylinder is placed in free space (e, = €y, fta = po) and
is parallel to the z-axis. The dielectric half-space is characterized by (€4, fta)-
The chiral cylinder is characterized by (€., pe, &). The parameter £ denotes
the chirality admittance of the chiral cylinder. The setup is excited by a TM
or a TE plane wave with incident angle ¢’. The excitation varies harmonically
according to e/“! (suppressed). E"¢ and H"¢ denote the incident electric and
magnetic fields. E, and H, denote the total fields external to the cylinder above
the half-space. The subscript ‘a’ is used to remind us that these fields are in the
air region (€, = €y, g = po). Similarly, the fields in the dielectric half-space
are represented by E; and Hy, and the fields internal to the chiral cylinder are
given by E. and H,. This problem does not have an exact solution, therefore an

approximate problem is solved using the perturbation method and MoM.

Surface equivalence principle [7] is used to divide the original problem of Fig. 3.4
into three simpler equivalent problems, as shown in Figs. 3.5, 3.6, and 3.7. In
the external equivalent problem of Fig. 3.5, the chiral cylinder and the dielectric
half-space are removed. The whole space is characterized by (€, po). The fields
internal to the fictitious surface S. and below the surface S; are assumed to be
zero. The field external to these surfaces is postulated to be E, and H,. To
account for this discontinuity, equivalent surface currents Jq and Mg are placed

on the surface S; and equivalent surface currents J. and M, are placed on the
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(a) (Left) PEC cylinder in free-space and (right) PEC cylinder above
dielectric half-space (DHS).
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Figure 3.1: Bistatic scattering width of a circular PEC cylinder in free-space and
when it is placed above a DHS.
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Figure 3.2: Bistatic scattering width of a circular dielectric cylinder in free-space
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Figure 3.3: Bistatic scattering width of a circular chiral cylinder in free-space and

when it is placed above a (DHS).
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Figure 3.4: The original problem: A 2-D chiral cylinder of arbitrary cross-section
above a dielectric half-space excited by a plane wave.

surface S.. These currents are given by,

J.=n.x H" (3.1)
Jg=mnyg x HIT (3.2)
M, = —n, x E¢* (3.3)
M, = —ng x EZT (3.4)

where n,. and ny, respectively, are the unit normal vectors pointing outwards from
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the surfaces S, and S; as shown in Fig. 3.5. (E¢T, HS™) show the total field just
outside S, in Fig. 3.5 and Fig. 3.4. Similarly, (E4*, HZ") represent the field just
outside Sy in Fig. 3.5 and Fig. 3.4.

(Einc HinC)

X
s T T TPl
C/ ~
/ \\
n / (€0, Mo)
C \MC
I E=H=0
I \
1 ’\\ I
\ // N !
S~ N~

(o) E=H =0

Figure 3.5: External equivalence for the the original problem of Fig. 3.4

These currents reside on S, and Sy, and radiate into the unbounded external
medium (e, pp). This field plus the incident field is equal to the total field
(Eq, H,) at any point above S; and outside S, of Fig. 3.5 and Fig. 3.4. That is,

E, = E" + E*(J,,M,) + E*(J4, M,) (3.5)

where superscript ‘a’ is used to remind us that the four equivalent surface currents

are radiating in air (&, fo)-
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On the other hand, the incident field plus the field radiated by these four
currents is equal to zero at any point inside S. and Sy as shown in Fig. 3.5. This
would be possible if,

[E"™ +E*(J.,M,) + E*(J5,Mg)], =0 onS, (3.6)

tan

[Einc + Ea(Jc, Mc) + ]5)‘1(Jd7 Md)} =0 on SC? (37)

tan

where the subscript tan denotes the tangential component, S is the surface just
inside S, and S is the surface just below S;. Obviously similar equations apply
for the magnetic field. In other words, one can replace E with H in the above

three equations.

Figure 3.6 shows an equivalent problem for the dielectric half-space of Fig. 3.4.

The incident field is not present here and the whole space is characterized by

(catg) E=H =0

Ng
-Jd -Mg T Sd
-«— <

(Ed, :ud) (Ed' Hd)

Figure 3.6: Internal equivalence for the dielectric half-space of the original problem
in Fig. 3.4.

(€4, ftq). In Fig. 3.6, the total field (E;, Hy) at any point below the surface Sy, is
assumed to be the same as the field at the same point of Fig. 3.4. This field is
produced by the surface currents —J,; and —M, residing on the surface S; and

radiating in the unbounded medium (e4, p4). That is, at any point below the
surface Sy in Fig. 3.6 and Fig. 3.4,

E; =E(—=J4,—M,) (3-8)

44



where the superscript ‘d’ is used to remind us that the sources —J; and —My

radiate in the unbounded dielectric medium (eg4, fi4).

In Fig. 3.6, the total field is zero at any point above the surface S;. This would
be possible if,
[E*(—=J4,—My)], =0 onS] (3.9)

tan
where S represent the surface just above S;. Obviously, similar equations apply

for the magnetic field.

Finally to find the field (E., H,) inside S, of Fig. 3.4, we consider the equivalent
problem shown in Fig. 3.7. Here, the surface currents —J. and —M,. are placed
on the fictitious surface S, and are radiating in the unbounded chiral medium
(€, e, €). At any point inside S, the field radiated by —J,. and —M., is the same
as the field E. and H,. in Fig. 3.4. At such a point,

E,=E‘(-J.,—M,) (3.10)

where the superscript ‘c’ is used to remind us that the sources —J. and —M..
radiate in the unbounded chiral medium (e., p., §). At any point outside S, the
field radiated by these two currents is zero as shown in Fig. 3.7. This would be
possible if,

[E(—=J.,-M,)], =0 onS’ (3.11)

tan

Obviously, similar equations apply for the magnetic field.

Equations (3.6), (3.7), (3.9), and (3.11) represent four coupled integral equations
for the four unknown surface currents. These equations are in terms of the electric
field, therefore they are known as the Electric Field Integral Equations (EFIE)
for the problem at hand. Obviously, if E is replaced by H in these four equations,
one would get the Magnetic Field Integral Equations (HFIE).

In this work, we will use EFIE, which is an exact and accurate representation
of our problem. However, we cannot solve these equations by conventional MoM
because the domain of (3.7) and (3.9) is infinite. Therefore, perturbation method
will be used to replace some of the above equations with approximate ones. This

is explained in the next section.
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Figure 3.7: Internal equivalence for the chiral cylinder of the original problem in
Fig. 3.4.

3.3 Application of The Perturbation Method

Consider the problem shown in Fig. 3.8. This is the same problem as the original
problem of Fig. 1, except that the chiral cylinder is removed and the same

half-space (€4, f1q) is illuminated by the same plane wave (E¢ H™¢).

The total field above S; in Fig. 3.8 is represented by (E;,H;). This field is
the sum of the incident and the reflected field. Similarly, the total field below
Sq in Fig. 3.8 is represented by (Eg, Hy). This is the field transmitted into the

dielectric region.
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Figure 3.8: An auxiliary problem for the original problem of Fig. 3.4.

Figure 3.9 shows an equivalent problem for Fig. 3.8 for the region above Sj.
At any point above S; in Fig. 3.9 (or Fig. 3.8) the total field is given by,

Y Einc HinC

S0r Ho
E, H
n, 1, Hy

T Jpo  Mypg Sq

—
805 MO E=H=0
Figure 3.9: External equivalence for the auxiliary problem of Fig. 3.8.
E, = E™ + E*(Jpo, Mpo) (3.12)

where (Jpo, Mpgo) are the physical optic currents and are defined by,

Jpo =1nNg X Hii_ (313)
Mpo = Ei’— X Ng (314)
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Here, ngy is the unit normal vector pointing upwards from Sy, and (E{ ;H{") denote
the total field just above the interface in Fig. 3.8 (or Fig. 3.9). The superscript ‘a’
is used on the last term of (3.12) to remind us that the physical optic currents are
radiating in the unbounded medium characterized by (e,, 1,) which are taken to
be (€, o). The second term in (3.12) is equal to the reflected field in Fig. 3.8.

From Fig. 3.9 we see that we must have,
E" + E! (Jpo,Mpo) =0 on S; (3.15)

tan tan

where, S, is the surface just below Sy.

Figure 3.10 shows an equivalent problem for Fig. 3.8 for the region below Sy.
At any point below Sy in Fig. 3.10 (or Fig. 3.8) the total field is given by,

E; = —EY(Jpo, Mpo) (3.16)

The superscript ‘d’ is used here to remind us that the physical optic currents are

radiating in the unbounded medium characterized by (€4, pq). The field in (3.16 )

Sq» Mg

n, s
E=H=0
T Jpo Mg Sd

Figure 3.10: Internal equivalence for the auxiliary problem of Fig. 3.8.

is the transmitted field into the dielectric region of Fig. 3.8. From Fig. 3.10 we

conclude that we must have,
E¢ (Jpo,Mpp) =0 on S (3.17)

where, S is the surface just above S;. Note that the reflected field denoted
by E*(Jpo, Mpp) and the transmitted field denoted by —E¢(Jpo, Mpp) can be

found exactly.
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Now let us go back to our original problem of Fig. 3.4, and divide the surface
S, into two parts as shown in Fig. 3.11. Sy, is that part of Sy which is close to the
chiral surface S.. The subscript ‘n’ here is used for ‘near’. As shown in Fig. 3.11,
the rest of the surface S; is denoted by Sgr. The subscript ‘f” here is used for ‘far’.
The equivalent surface currents (J4, My) of Fig. 3.5 are now divided into two
parts (3%, M%) and (J/, M) as shown in Fig. 3.12. In other words, (J;, M,) is
denoted by (3%, M%) on S, and by (J7, M) on Sy. Then, (3.5) can be rewritten

as follows.

E, = E™ + E*(J., M.) + E*(J%, M%) + E%(J/, M) (3.18)

It is reasonable to assume that the total field at any point just above the surface
Sqr in Fig. 3.11 would be approximately equal to the total field at the same point
of Fig. 3.8 (and Fig. 3.9). Then using the definitions in (3.1)-(3.4), (3.13), and
(3.14) one can write,

I = 3%, (3.19)

M/, = Mp,, (3.20)

where (J1,,, M) are known physical optic currents on Sy.
The total field at a point on Sy, of Fig. 3.11 (and Fig. 3.12) will be different
than the total field at the same point of Fig. 3.8 (and Fig. 3.9). The difference

will be denoted as the perturbation field. Then, one can write J); and M} on Sy,

as follows.
Ji=Jp0 +J, (3.21)

M = M7, + M, (3.22)

Here, (Jp, M}) represent the known physical optic currents on Sg,, and (J,,, M)
are unknown perturbation currents on Sg,. Then, (3.5) can be approximately

written as,

E, =E" +E"(J.,M.) + E*(J,, M)+
E*(Jpo, ’};O)+E“(J{)O,M£O) (3.23)
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Figure 3.11: A different way of representing the original problem. The surface of
the dielectric half-space is divided into near (Sg,) and far (Sy) regions.

Combining the last two terms, (3.23) can be rewritten as,
E, = E™ 4+ E*(J., M,) + E*(J,M,) + E*(J po, Mpo) (3.24)

Equation (3.6) requires that the tangential component of E, must be zero on S .

Then, using (3.24), (3.6) can be approximately written as,

Ea

tan

(3o M) + B, (3, M,) = —Ef — B, (Jpo.Mpo) on S, (3.25)

tan

Note that the right hand side of (3.25) is the negative of the total field that would
exist on S, if the chiral cylinder were removed. That is, if chiral material inside

S. was replaced by air. This field is known and it is equal to the negative of the
total field E; above Sy in Fig. 3.8 (or Fig. 3.9).
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Figure 3.12: External equivalent problem, showing the excitation and the impressed
currents.

Equation (3.7) requires that the tangential component of E, should be zero all
over S, . Since we assume that this field is known on Sy, we should enforce (3.7)
on Sy, only. Then, (3.7) can be approximately written as,

Ea

tan

(JC’ MC) + Ef, (JIN MP) = _Eigfz - E?an(JPO7 MPO) on Sd_n (326)

tan

Using (3.15) we can see that the right hand side of (3.26) must be zero. Hence,

(3.7) is approximately rewritten as follows.

a
Etcm

(Jo,M,) +E% (J,,M,) =0 on S, (3.27)

tan
Using similar reasoning, (3.8) can be written as,
E; = EY(=J,,—M,) + E*(=Jpo, ~Mpo) (3.28)
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Then (3.9) can be approximated as follows,

Egan(_']p7 _Mp> = _Egan(JPO? MPO) on S(—it’l, (329)
Using (3.17) we see that the right hand side of (3.29) is zero. Then, (3.29) is

approximately rewritten as follows.

Egan(_']}% _Mp) =0 on S(—ii;@ (330)
In summary, the perturbation technique was used to approximate three of the
original integral equations (3.6), (3.7), and (3.9) by (3.25), (3.27), and (3.30). We
kept the original equation (3.11) as it is. In the next section, we will show how to
use MoM to solve this new set of integral equations consisting of (3.11), (3.25),

(3.27), and (3.30).

3.4 Application of Moments Method

Making use of the perturbation method, the unknown currents on the interface
have been localized to a finite region (Sg,) as opposed to infinite region Sy in
the original problem of Fig. 3.4. Now, the final four equations (3.11), (3.25),
(3.27), and (3.30) are solved numerically by MoM. In order to apply MoM, the
two surfaces S, and Sy, are discretized into N; and Ny segments, respectively, as
shown in Fig. 3.13. The unknown currents are approximated by pulse expansion

functions as given below,

Nl N1
Jo(r) =2 an P+ cliPs (3.31)
n=1 n=1
Ny N1
M.(r') =2 e Pi+ ) gale P (3.32)
n=1 n=1
N1+N2 Ni+Ny .
) =2 Y bPi+ > d,lipy (3.33)
n=N1+1 n=N1+1
N1+N2 Ni+N> .
M, () =% > fuPi+ > hllps (3.34)
n=N1+1 n=N1+1
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Figure 3.13: Discretization of the S, and Sy, into N; and N, segments, respectively.

Here, a,, to h, are the eight unknown expansion coefficients, 2 denotes the unit
vector in the longitudinal direction, lAfl represents the unit vector tangential to the
n" segment on the chiral cylinder (S,), and I¢ denotes the unit vector tangential
to the n'" segment on the dielectric strip (Sg,). The pulse function P¢ is unity
if it is on the n' segment of S,, otherwise zero. Similarly, the pulse function
P? is unity on the n'™ segment of Sy, and zero otherwise. The unknowns can
be computed by testing the final four integral equations using the approximate
Galerkin’s method as in [5]. Then the testing could be considered as a weighted

point matching technique.

The result can be written in matrix form as shown in (3.35). The square matrix
on the left is called the moment matrix. It consists of 64 sub-matrices. The size
of the square moment matrix is 4 Nx4N, where N =N;+Ny. The 4N x 1 column
matrix on the left contains the unknown expansion coefficients, and the 4N x 1

column matrix on the right is called the excitation vector.
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The notation used for the sub-matrices is as follows. Consider the block matrix

7.J;ext, then the notation used is:

The first capital letter, represents the computed electric field component:

‘Z’ for z-component and ‘L’ for the lateral component.

° , represents the surface on which the electric field is

computed: ‘¢’ for the chiral surface S. and ‘d’ for the dielectric strip Sg,.

e The second capital letter, shows the source of the computed field: ‘J’ for

the electric current and ‘M’ for the magnetic current.

e The second subscript, shows the direction of the current source: z-directed

‘7’ and lateral direction ‘L’

e The Superscript, represents the surface on which the current source is

residing: ‘c’ for the chiral surface S, and ‘d’ for the dielectric strip Sg,.

e The last three lowercase letters, represent the unbounded region in which
the source current is radiating: ‘ext’ for external region (€, j1g), ‘inl’ for the

chiral region (e, ., &), and ‘in2’ for the dielectric region (eg, fiq).

For example, the (m,n)" element of the Ny x N; sub-matrix Z.J, ext(m,n)
is the z-component (Z) of the electric field produced on the m' segment of the
chiral surface S, (¢) due to a z-directed (z) electric current (J) residing on the n'"
segment of the chiral surface (¢) when this current radiates in the external (ext)

medium (e, = €, ftg = fo)-

h row and n'* column of the Ny x N; sub-

Similarly, the element in the m!
matrix LqM¢ext is the lateral (L) component of electric field produced on the m'
segment of the dielectric half-space Sy, (d) due to a lateral (L) magnetic current
(M) located on the n'" segment of the chiral surface S. (c) when this current

radiates in the unbounded external (ext) medium (e, = €, fta = o).

For the internal medium of the cylinder, the (m,n)" element of the sub-matrix

Z.Mfinl is the z-component of electric field produced on the m'* segment of the
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chiral surface S, (c) due to a lateral (L) magnetic current (M) located on the n'®
segment of the chiral surface (¢) when this current radiates in the unbounded

internal (inl) medium (e, pe, §).

Finally, for the internal medium of the dielectric half-space, the (m, n)" element
of the Ny x Ny sub-matrix [.;M{in2 is the lateral (L) component of electric field
produced on the m*™ segment of the dielectric half-space Sy, (d) due to a z-directed
(z) magnetic current (M) located on the n'" segment of the dielectric half-space

(d) when this current radiates in the unbounded internal (in2) medium (eg, j1q)-

The m* element of the Nx1 sub-matrix —Zrya on the right-hand side of (3.35)
is equal to the negative of the z-component of the incident field plus the reflected
field on the m' segment of S.. Similarly, the m" element of the sub-matrix
—Lotal Tepresents negative of the lateral component of the total field on the m!”

segment of S..

For computing these elements the method given in [49] is followed. For the
sake of completeness one typical element is discussed here. Consider an element

of Z.Jgext(m,n). This element is given by the following symmetric product,

ZJgext(m,n) = (J7¢ Eer (J°)) (3.36)

h row and n'™ column of the

The above equation gives the element in the m!
sub-matrix Z.Jgext. It is the symmetric product between J7' with the electric
field produced by J% when it radiates in the unbounded external medium. The
symmetric product is given by,
Oy Bal3y)) = [ 33 Be@p)a (3.37)
Since the testing and the expansion functions are same, this looks like a Galerkin’s
method, however, we are using point matching so the above integrand is approxi-
mated by its value at the center of the m' segment ¢™ of the chiral surface as
follows,
(327, Ber(J2)) = B

ext

E™

m . (J7%°) is the electric field at the center of ¢ segment on S, produced by J%*

electric current residing on the chiral surface S, when this current radiates in the
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free-space (e, = €, fa = 10), lme is the length of the m!™ segment of the chiral

surface S.. Hence, Z.J7ext is given by,

Zetjest(m,n) = =20 [ g e par (339)

mc

where p™* is the position vector to the center of the m'* segment, HSQ) is the

zeroth order Hankel function of the second kind and ¢™ is the n'* segment of the
cross-section of surface S, in the zry-plane. Computation of the matrix elements

is given in Appendix B.
The constitutive relations used in this work are as follows [4], [49],

D =cE - j(B (3.40)

H- 1B_ jE (3.41)

C

where, €., ., and £ denote the permittivity, permeability, and chirality admit-

tance of the chiral medium.

The electric field due to electric and magnetic surface currents (J, M) residing

on a surface S and radiating into an unbounded chiral medium is given by [49].

E(J,M) = _% /C [mH? (M R) + hoHS? (haR)+

V x HY (hR) — V x HY? (hyR)] 3 () dl!

— 5 [ I P (0 R) + g HP (o R)] V- 36l
c

+2 / [ HP (R) — haH (hoR) + ¥ x H (1 R)
C

+V x HY (hyR) M ()l + % / (W HE (hiR)
C
— hy tHY (ha R)] V' - M(r)dl! - (3.42)

where, C' denotes the contour of the surface in the xy—plane and R is the distance

between the field and source point |r — /|, Héz) is the Hankel function of zeroth

o7



order and second kind, h; and hy represent the wave numbers given by,
hy = Witk + /R + (pck)? (3.43)
hy = —wpcé + VK? 4 (wpek)? (3.44)

here,
k = wy/lice. (3.45)

and the chiral wave impedance is given by,

o= ——— (3.46)

1+ (n§)?
with

M= fe/€ (3.47)

If the unbounded medium in which the currents (J, M) are radiating is a regular
dielectric (e, ), then (3.42) is valid with hy = hy = k = w\/u€ and n. = n = /11/e.

Once, the unknown expansion coefficients a,, — h,, in (3.35) are computed, the
co- and cross-polarized scattered fields in the ¢-direction can be easily computed
as follows [49,71],

g ~ : nc __nc
( o = 670

N1+N2 2

+ Z lnd(b ——ld Q >€jkap"d005(¢_¢nd)

n=N1+1

(3.48)

n( o eallrag ) eher o)

N1+N2 2

+ Z ( 4+ d, ld a¢>eykap”d008(¢ ¢"d)
n=N1+1

(3.49)

where, o denotes the bistatic radar scattering width, I, (1,4) is the length of the

n'™ segment on S, (San), Gy is the unit vector in the ¢-direction at the field point,
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"¢ (p™?) and ¢"¢ (¢"?) are the cylindrical coordinates of the center of the n'"
segment on S, (Sgy), 7, is the free-space wave impedance, and k, is the free-space

wavenumber.

The next section presents numerical results and validation of the proposed
method.
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3.5 Numerical Results: Validation

Here, numerical results are presented for cylinder of arbitrary cross-section placed
above a dielectric half-space. As mentioned in Sec. 3.2, MoM cannot be applied
directly to the infinite interface. To overcome the problem, a region Sy, was
assumed in the vicinity of the chiral cylinder which localized the unknowns to a
finite region. For these numerical simulations, the perturbed region is assumed
by a finite dielectric strip of width ‘w’. The perturbed currents on the the
dielectric strip are denoted by (J,, M,,) and the currents on the chiral body above
the strip (half-space) are represented by (J.,M.). Each of the currents have
a longitudinal (Z) and a lateral (L) component. The media for the selected
problems is characterized by ., = p. = g = po and €, = €y, unless otherwise
specified. Both, TM and TE excitations are treated here. In both cases, the setup

is illuminated by a plane wave with an incident angle ¢ given in degrees.

Scattered fields for the problem of a 2-D chiral cylinder above a dielectric
half-space are unavailable in the literature, therefore, the results in this work are
validated by solving some special cases and comparing with available results in
the literature when possible. Two-dimensional cylinders of different cross-sections,
namely, circular, rectangular, square, elliptical, and triangular shapes are analyzed
in this dissertation. The basic problem setup is shown in Fig. 3.14. Radius of the
circular cylinder is denoted by ‘r’, distance from the dielectric interface (strip)
to the cylinder is given by ‘d’, width of the finite strip that approximates the
dielectric half-space interface is given by ‘w’, L; and Ly represent the two sides of
the rectangular cylinder, and for a square cylinder Ly = L. The setup for each
problem maybe excited by a TM or TE plane wave with an incident angle ¢¢. The

following sections present the numerical results.

60



AN —
eotat |IL Ee e, ||
C’”’C’ 1 C’MC’
A
Sa1Ma Id w Sa’ “a d w Sa’ua d w
€qsHyg €4sHg €qsHyg
(a) (b) (c)
° b
SC’“C’E-’
A >
CINTIR d W CINTIR Id a W
€qsHqg (d) €dsHqg (e)

Figure 3.14: Different cross-sections of cylinders analyzed in this work. Subscripts
a, c and d represent the free-space, chiral cylinder, and dielectric half-space,
respectively. The materials are characterized by €, p, and & which, respectively,
denotes the permittivity, permeability, and chiral admittance of the media. The
scatterer can be a PEC, dielectric or chiral. In case of lossy scatterers the electric
and magnetic loss is given by tand, and tand,,, respectively.
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3.5.1 Convergence Study for Strip Width

In this section, the problem for a chiral cylinder above a dielectric half-space is
being solved. The half-space is replaced by a strip, wide enough so that it behaves
similar to a half-space at the frequency of interest. Therefore, it is important to
analyze the effect of the strip width (w), especially, on the currents induced on
the strip and the scattered fields. The convergence study for the strip width is

presented below.

To gain some confidence in our method, instead of a chiral cylinder, we first
consider a circular PEC cylinder of radius r = 0.5A¢ placed a distance d = 0.5\
above a dielectric half-space as shown in the inset of Fig. 3.15. The free-space
wavelength )\ is assumed to be 1 meter. Permittivity of the free-space is denoted
by €, = €9, and that of the dielectric half-space is given by €; = 4¢y. Permeability
for both media is 9. The setup is excited by a TM plane wave incident from
@' = 90°. The currents induced on the dielectric strip, known as the perturbed
currents, are shown in Figs. 3.15 to 3.20. In Fig. 3.15, the width ‘w’ is assumed to
be 10 wavelengths and it is seen that the perturbed electric currents at the edges
of the strip are not small enough. Similarly, the results in Fig. 3.16 where ‘w’ is
assumed to be 30 wavelengths the result is not satisfactory. However, when ‘w’ is
assumed to be 60 wavelengths, the currents at the edges are practically equal to
zero as shown in Fig. 3.17. Similar observations can be made for the equivalent
magnetic currents on Sy, as presented in Fig. 3.18 to 3.20. From these figures we
can conclude that the perturbation currents do in fact diminish as one goes away
from the cylinder. On the other hand, for these value of r, d, and ¢’ the electric
current on the PEC cylinder is not too sensitive to the strip width as shown in
Figure 3.21.
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Figure 3.15: Equivalent perturbed electric surface current on a w = 10\ dielectric
strip. PEC cylinder radius = 0.5)¢.
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Figure 3.16: Equivalent perturbed electric surface current on a 30\, dielectric
strip for the setup in Fig. 3.15.
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Figure 3.17: Equivalent perturbed electric surface current on a 60\, dielectric
strip for the setup in Fig. 3.15.
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Figure 3.18: Equivalent perturbed magnetic surface current on a 10\, dielectric
strip for the setup in Fig. 3.15.
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Figure 3.19: Equivalent perturbed magnetic surface current on a 30\, dielectric

strip for the setup in Fig. 3.15.
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Figure 3.20: Equivalent perturbed magnetic surface current on a 60\, dielectric
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Figure 3.21: Equivalent surface electric current on the PEC cylinder for various
strip widths for the setup shown in Fig. 3.15. TM excitation, ¢* = 90°, r = 0.5\,
d = 0.5, & = €. = 4€g, f1p = e = Ho-

It is expected that the perturbed surface currents on the dielectric interface
must approach zero, as the distance from the cylinder increases. This can be seen,
when the strip width is at least 40\g or 60\q. If the perturbed currents have not
decayed considerably, the effect will be observable in the scattered far-field pattern.

In order to obtain viable results, the strip width must be chosen carefully.
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Figure 3.22 shows the bistatic scattering width for the problem considered
above. The difference in results is more clearly visible for angles closer to horizon.
This is because of the shadowing effect due to which the perturbed currents take
longer to converge. The non-convergence of the currents reflect in the scattered
fields for smaller strip widths. It is seen that, for all practical purposes the results

have converged when the width w is 60 wavelengths.

opsw/Ao [dB]

-8 T T T T T T T T T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180
¢ [deg]

Figure 3.22: Bistatic scattering width for various dielectric strip widths for the
setup shown in Fig. 3.15. TM excitation, ¢* = 90°, r = 0.5)\g, d = 0.5\,
€ = €c = 4€g, iy = fle = Ho-

Now that we have an idea of how to decide on the strip width we are ready to

compare our results with the literature for some special cases.
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3.5.2 Limiting Cases: Comparison with Literature

Published results for the problem under consideration are not available. Therefore,
to validate the algorithm and our approach some limiting cases will be compared

with the literature.

3.5.2.1 A Chiral/Dielectric Circular Cylinder Above a Dielectric Half-
Space

In this case, two checks are applied using the same geometry. The results for a
dielectric cylinder are compared with [62]. At the same time, the chirality of the

scatterer is varied.

The cylinder has a radius r = 0.5531)\g and is placed a distance d = 0.05)¢
away from the dielectric interface. The interface is represented by a strip of
width w = 40\ and characterized by ¢; = 14.44¢y, pg = po. The circular
cylinder is characterized by €, = 2.1316¢g, p. = po. The chirality admittance
(&) of the cylinder is decreased in steps, from 0.0004 to zero. When ¢ is zero,
the chiral cylinder becomes a regular dielectric. This problem has been solved
in [62]. Figure 3.23 shows the co-polarized (co-pol) and the cross-polarized (x-pol)
far-field amplitude for a chiral cylinder placed above a dielectric interface. The
cross-polarized term is due to the polarization rotation in the chiral medium. The
effect of chirality admittance on the scattering can be observed. As expected,
when & = 0, the co-polar component of the far-field approaches that of a regular
dielectric and the cross-polar term becomes zero. The results are in very good
agreement with [62] for a dielectric cylinder placed above a dielectric half-space.

Furthermore, two interesting observations can be made here,

1. The specular angle for the cross-polar component is in a different direction

relative to the co-polar term.

2. The scattered field for the highest chirality is the lowest.
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Figure 3.23: Verification I: The scattered far-field amplitude of a chiral cylinder
for different chiral admittance (£) above the interface. TM excitation (left) co-pol
(right) x-pol. For & = 0 results agree with [62].

Similar observations for the difference between the specular directions of the
co-polar and cross-polar components were made in [38], where an axisymmetric

chiral radome was analyzed using the moments method.
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As a second verification, consider a circular chiral cylinder of radius 0.5
placed above a DHS as shown in Fig. 3.24. This figure also shows the bistatic
scattered fields for TM plane wave incidence for ¢! =90°. When . = g, £ = 0,
and €, is increased, it is noticed that the scattered field approaches that of a PEC
cylinder above a DHS, as expected. For ¢, = 2600¢, the cylinder behaves as a

PEC. These results are compared with published results in the next two figures.

=b5g, ---- g.=50¢

'20 I 83 = 80 d = 057\40
5 | _gg=4g _ w=60%, |
0 30 60 90 120 150 180

¢ [deg]

Figure 3.24: Verification II: Comparison of the bistatic scattering width (BSW)
for different dielectric constants of the cylinder.

3.5.2.2 A Circular PEC Cylinder Above a Dielectric Half-Space

Two cases of a circular conducting cylinder placed above a dielectric half-space
are compared with R. Borghi [58]. For the first check, the problem setup is shown
in the inset of Fig. 3.25a. A circular conducting cylinder of radius r = 0.5\
is placed a distance d = 0.5\ above the dielectric half-space with permittivity

€, = 4eg. A strip of width w = 60 is used to approximate the half-space interface.
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This value is chosen based on initial simulations which showed the perturbed
currents approaching to zero. A strip width of 40y or above is required for a
good convergence, with at least 12 segments per wavelength. \g is the free-space
wavelength and is assumed to be 1 meter. The setup is excited by a plane wave
with an incident angle ¢’=90°. TM and TE cases are compared in Fig. 3.25. The
corresponding perturbed currents for the above problem are shown in Fig. 3.25a.
The subplot on the left shows the currents on the interface for TM excitation and
the plot on the right is for TE excitation. Note that the currents are only plotted
for a strip width of 30)\, instead of 60)\; because they are converging to zero, as
the distance from the cylinder increases. In [58], a different method was used,
hence perturbed currents are not compared. The bistatic cross-section is shown in
Fig. 3.25b. The results are in excellent agreement with published results as well

as with the experiment shown in Fig. 3.24.

The excitation vector [V] is sensitive to the incident angle, therefore, a different
excitation (¢ = 120°), for the same setup was compared with [58]. Figures 3.26a
and 3.26b, respectively, shows the perturbed currents and the bistatic scattering
width. A good agreement for the scattering width is achieved. The effect of
the asymmetric excitation can be observed in the perturbed currents and the

scattering width, as expected.

After validating the proposed method we are confident about the computed

results. Further studies are performed in the following sub-sections.
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(b)
Figure 3.25: A circular conducting cylinder (r =0.5)), placed symmetrically
above a dielectric half-space. (a) Magnitude of the perturbed currents on the

interface (b) Bistatic scattering width. ¢* = 90°, compared with [58].
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Figure 3.26: A circular conducting cylinder, of radius r= 0.5\g, placed symmetri-
cally above a dielectric half-space. (a) Magnitude of the perturbed currents on
the interface (b) Bistatic scattering width. ¢* = 120°, compared with [58].
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3.5.3 Effect of Chirality on Scattering width

Previous research has shown that the chirality parameter effects the bistatic
scattering width in an unpredictable manner. This effect can not be explained
or predicted by simple theory. This phenomenon is shown in the following
example. Consider a circular chiral cylinder of radius 0.2)\y immersed in free-space
(s = €0, 1o = Ho) and placed a distance d = 0.5\ above a dielectric half-space
approximated by a strip of width w = 40)\y. The cylinder is characterized by
(€. = 4eo, e = po, &) and the half-space is characterized by (eq = 4eg, pa = po)-
Two different incident angles are observed, (i) ¢' = ¢* = 90°, (ii) ¢' = ¢* = 45°,
where ¢ and ¢°, respectively, represent the incident angle and the angle at which
the scattered field is computed. The incident field is a TM plane wave. The
computed results are shown in Fig. 3.27. It can be observed that the fields vary
in an unpredictable manner with chirality parameter (£). Therefore, it is very
important to study this problem for various parameters and other geometries.

The following sections show such a detailed study.
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Figure 3.27: BSW variation of a circular chiral cylinder above a dielectric half-
space when the chirality admittance of the cylinder is varied. Excitation: TM
plane wave ¢' = 45° r = 0.2)\g, d = 0.5Mg, W = 40\, €. = €4 = 4deq, fle = ftg = [o
(a) o' = &° = 90°, (b) ' = ¢ = 45"
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3.5.4 Parametric Analysis: A Circular Dielectric Cylinder
Above a Dielectric Half-Space

In this subsection, a parametric study of the circular dielectric cylinder placed
above a dielectric interface is performed. This analysis will help in determining the
approximate parameters to be used in further studies. If there are any convergence
issues or spurious results they can be observed here. Three main parameters are
studied (i) radius of the cylinder (ii) height of cylinder above the interface (iii)
incident angle of the plane wave. The initial study is performed on the perturbed
currents only to analyze its behaviour. Scattering fields are not presented for this

analysis.

3.5.4.1 Effect of Cylinder ‘Radius’ on Perturbed Current

The position of the scatterer relative to the interface and size of the scatterer
affects the perturbed currents. Here, the radius ‘r’ of the circular dielectric
cylinder is varied and its effect on the perturbation current is observed. The
cylinder is placed a distance d=0.3)\g above the strip of width 40\y. The body
and the dielectric interface, both, have a dielectric constant of €, = ¢; = 4¢¢. The
permeability (p. = pg = po) of both mediums is set to unity. The setup is excited
by a plane wave incident from ¢* = 90°. Figures 3.28 and 3.29, respectively,
show the magnitude of the longitudinal and lateral, electric and magnetic surface
currents for TM excitation. A zoomed in version of the same currents can be
seen in the inset of each figure. Since the currents are symmetric, only one side is

shown in the inset.

The effect of the bigger cylinder is obvious on the perturbation current. Bigger
cylinder leads to more disturbance and it decays slower relative to the smaller
cylinders. This shows again that if the scatterer is big, a relatively wider strip is

required to approximate the half-space.
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Figure 3.28: Magnitude of the perturbed electric currents due to a circular
dielectric cylinder on a dielectric interface for TM excitation, ¢* = 90°, d = 0.3\,
w = 40\, €. = €4 = 4e€g, fe = pg = po- Inset figure shows zoomed in view for
three wavelengths on the strip, starting from center of the strip.
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Figure 3.29: Corresponding perturbed magnetic current for TM excitation, ¢! =

902, d = 0.3Mg, w = 40\g, €. = €4 = 4€q, fte = fig = po- Inset figure shows zoomed
in view for three wavelengths on the strip, starting from center of the strip.
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For comparison purposes, the TE case was also simulated. The results for the
lateral electric and longitudinal magnetic currents are shown in Figs. 3.30 and

3.31. A similar behaviour to the TM case was observed.
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Figure 3.30: Magnitude of the perturbed electric current due to a circular dielectric
cylinder on a dielectric interface for TE excitation, ¢ = 90°, d = 0.3\g, w = 40\,

€. = €g = 4deg, fte = g = po- Inset figure shows zoomed in view for three
wavelengths on the strip, starting from center of the strip.
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Figure 3.31: Magnitude of the perturbed magnetic current due to a circular
dielectric cylinder on a dielectric interface for TE excitation, ¢* = 90°, d = 0.3\,
w = 40Xy, €. = €4 = 4€g, pe = g = po- Inset figure shows zoomed in view for
three wavelengths on the strip, starting from center of the strip.

3.5.4.2 Effect of Cylinder ‘Height’ on Perturbed Current

Height of the scatterer is another important parameter which effects the per-
turbed currents. Three different heights for the circular dielectric cylinder are
analyzed here. A dielectric cylinder of radius r = 0.5 is placed at distances
d = 0.1Xg,0.5)g, 1.5Ag above a dielectric strip of width w = 40)\g. The setup is
excited by a TM plane wave with ¢* = 90°. The results for the magnitude of the
surface electric and magnetic currents on the interface are shown in Figs. 3.32
and 3.33.
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Figure 3.32: Effect of cylinder height on the magnitude of the perturbed electric
currents for TM excitation, ¢' = 90°, radius r = 0.5y, w = 40\, €. = €4 = 4o,
le = g = jo- Inset figure shows zoomed in view for three wavelengths on the
strip, starting from center of the strip.

Radius of the cylinder and other parameters are kept constant, only the distance
from the interface is varied. It was observed that, the perturbed current due to
the farthest cylinder took longer to converge. This is because it casts a bigger
shadow on the interface. This can be explained by a light source and an object
placed close to or far away from it. Consider, the light source and the object are
close to each other. In this case, the object will block most of the light from the
source and cast a bigger shadow, as opposed to when the object is far from the
light source. The same phenomenon can be observed in Figs. 3.32 and 3.33. Note
that the amplitude of the current decreases as the scatterer moves farther away

from the interface.

TE plane wave excitation had a similar response in terms of the current decay,

so it is not shown here. In that case too, current due to the farthest cylinder took
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Figure 3.33: Effect of cylinder height on the magnitude of the perturbed magnetic
current for TM excitation, ¢* = 90°, radius r = 0.5y, w = 40\, €. = €4 = 4y,
le = g = jto- Inset figure shows zoomed in view for three wavelengths on the
strip, starting from center of the strip.
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longer to converge for the same setup.

The same observations are true for a chiral body above a dielectric half-space
as well. In case of a chiral cylinder, four currents are induced on the interface
Jz, Jp, Mz, and My. A dielectric cylinder is chosen in this study to decrease the
number of graphs. To show the fact that the observations are true in general, the
currents induced on the interface due to a chiral cylinder are shown in Fig. 3.34.
The strip is divided into 499 segments. Each 499 segments show a single current
for three different heights. Starting from left to right, Jz, J,, Mz, and M. As
stated previously, the farthest cylinder has a bigger shadow, hence it takes longer

to converge.
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Figure 3.34: Circular chiral cylinder placed above a dielectric half-space. Its effect

on the magnitude of the perturbed current for TM excitation, ¢' = 90°, radius r
= 0.5)\0, W = 40)\0, €c = €4 = 460, Me = g = Ho, f = 0.002.
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3.5.4.3 Effect of ‘Incident’ Angle on Perturbed Current

The effect of incident angle of the plane wave is an essential study. Till this point,
most of the cases discussed were for normal incidence. The current distribution
on the interface was symmetric. It decayed to zero, symmetrically on both sides
of the strip, starting from a peak at the center. In this section, a plane wave is
incident on a dielectric cylinder of radius r = 0.5\ which is placed a distance d
= 0.2)\g above a dielectric interface, represented by a strip of width w = 40\q. The
setup is illuminated by different incident angles, ¢* = 30°, 45°, 75°, and 90°. The
results for the TM and TE cases are presented in Figs. 3.35 and 3.36, respectively.

The strip is divided into 499 segments. However, on the z-axis only 100
segments are shown. This allows for a clear view of the currents. It is observed
that, for angles close to horizon, the current converges slower than the normal
incidence or for angles away from the horizon. This is because of the shadow of the
scatterer and more surface waves on the interface. This is true for both TM and
TE cases. For instance, currents due to 30° incidence converges relatively slower
than other incident angles. Therefore, for incident angles close to the horizon, a

wider strip should be used for better approximation of the half-space.
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(a) Longitudinal surface electric current.

0.8

0.7

o
o

e
)

o
=

e
w

o
()

0.1

200 210 220 230 240 250 260 270 280 290 300
No. of Segments

(b) Lateral surface magnetic current
Figure 3.35: Currents on the interface due to a circular dielectric cylinder of radius
r = 0.5\ placed distance d = 0.2)\y above dielectric interface of width w = 40\,.
TM illumination with different incident angles. Dielectric constants of the body
and the half-space are €. = €5 = 4eq, €, = €9, fla = fe = Hg = }o-

85



200 210 220 230 240 250 260 270 280 290
No. of Segments

(a) Lateral surface electric current.
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(b) Longitudinal surface magnetic current
Figure 3.36: Currents on the interface due to a circular dielectric cylinder of radius
r = 0.5\ placed distance d = 0.2y above dielectric interface of width w = 40\

TE illumination with different incident angles. Dielectric constants of the body
and the half-space are €. = €5 = 4eq, €, = €9, fla = fe = Hg = }ho-
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3.5.4.4 Summary

For all the cases presented here and studied otherwise, no spurious results were
observed. The main conclusions obtained from this study, which apply to the

perturbed currents on the interface are:

e Current due to a far away scatterer, takes longer to converge.
e Current due to a big scatterer, takes longer to converge.
e The amplitude of the current is larger if the body is close to the interface.

e For incident angles close to the horizon, currents on the shadowed side of

the scatterer takes longer to converge.

e The strip width chosen should be wide enough to allow for the current on the

interface to approach to zero, as the distance from the scatterer increases.

e The results obtained for induced current due to dielectric scatterer applies
to chiral scatterers too, however in the later case, the electric and magnetic

currents have both longitudinal and lateral components.

The parameters used in the following sections are selected based on the above

analysis.
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3.6 Scattering from Circular Chiral Cylinders

In this section, circular homogeneous chiral cylinders of different parameters are
studied. The currents on the interface are presented along with the bistatic
scattering width (upper half-space only). Far-field amplitudes for various cases
are also presented to observe the fields transmitted into the lower half-space. In
some cases, scattering width for the chiral cylinder is compared with dielectric
and conducting cylinders. This helps in identifying the effect of the chirality

admittance. The section is divided into lossy and lossless cylinders.

3.6.1 Lossless Scatterers

After validating the algorithm and our approach, some results are presented for
lossless chiral cylinders of circular cross-sections above a dielectric half-space.
Consider a circular cylinder of radius r = 0.5\ placed at a height d = A\ above
a dielectric half-space (e;=4¢€y, pa= ). Perturbed currents are computed on a
strip of width w = 40\q. The system, shown in the inset of Fig. 3.37a, is excited
by a TM or TE plane wave incident from ¢°=90°. The circular cylinder is either
PEC, regular dielectric (e, =4e€g, fi.= o), or chiral (e, =4e€q, = po, £=0.002).

When the circular cylinder is chiral then the perturbed currents for TM and
TE excitations are shown in Fig. 3.37a. Although the width w of the dielectric
strip was assumed to be 40\ the results are shown only for a domain of 20}
because the perturbed currents are minimal towards the edges. The perturbed
currents for the TE case follow the same trend as the TM case, shown on the
right in Fig. 3.37a. Note that for the TE case, J;, and Mz have higher amplitudes
than Jz and My, which is expected.
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Figure 3.37: A circular chiral cylinder, of radius r = 0.5\, placed symmetrically
above a dielectric half-space. (a) Magnitude of the perturbed currents on the
interface (b) Far-field amplitude.
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Figure 3.37b compares the scattered far-field pattern of this cylinder when it
is PEC, dielectric, or chiral. For the TM case, all of them have their main lobe
in the forward scattering direction (¢ =270°) into the dielectric half-space. On
the other hand, the scattered field pattern in the air is quite different for each
cylinder. A clear back lobe (¢=90°) exists for the co-polar component when the
cylinder is chiral. The PEC or dielectric cylinder do not have their back lobe in
the ¢ =90° direction. The patterns are quite interesting for the TE case as well.

It is again concluded that this behavior is not predictable from a simple theory.

Figure 3.38 shows the BSW for a circular chiral cylinder (e.=4€q, p.=po, =
0.002) of radius 0.5\ placed a distance d =\g above a DHS (e4=2¢q, pq=i0)-
The excitation is a TE plane wave incident from ¢'=90° direction. Also included
in this figure are the results for a PEC or a dielectric cylinder of (e, =4eq, .= /i)
of the same size. The three cylinders behave entirely different from each other.
The back-scattered field (¢=90°) is highest for the dielectric cylinder. It is also
noted that the cross-polar component for the chiral cylinder is comparable with the
scattering width of PEC or dielectric at certain angles. The cross-polar component

is for the chiral cylinder, shown here for completeness.
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Figure 3.38: Bistatic scattering for a circular (r = 0.5)¢) chiral, dielectric, and a
PEC cylinder placed above a DHS. TE excitation.

The effect of incident angle on the bistatic scattering width of a circular chiral
cylinder placed above a dielectric interface is investigated. The incident plane
wave is TM. The co-polarized components are presented in Fig. 3.39. Since we
are interested in the scattering in the upper half-space, the scattering width is
presented for the upper half-space only. It was observed that for excitation angles
close to horizon, the perturbed currents on the shadowed side of the interface
took longer to converge. This effect is shown in Sec. 3.5.4.3. Depending on the
cylinder size and the incident angle, the strip width must be chosen properly for

acceptable results.

Figure 3.40 shows the corresponding cross-polar component for the bistatic

scattering width of the same circular cylinder for different incident angles.
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Figure 3.39: Co-polarized bistatic scattering width of a circular chiral cylinder
above a dielectric half-space for TM excitation with different incident angles.
Radius r = 0.15\g, d = 0.25)g, w = 40\o, €. = 4e€g, e = 3.2p0, £ = 0.002,¢4 =
10€q, g = 2.5u0.
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Figure 3.40: Cross-polarized bistatic scattering width of a circular chiral cylinder
above a dielectric half-space for TM excitation with different incident angles.
Radius r = 0.15)g, d = 0.25)g, w = 40\, €. = 4eg, pe = 3.2p0, £ = 0.002,¢4 =
10€g, g = 2.5u0.
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3.6.2 Lossy Scatterers

Here, the effect of electric (tand.) and magnetic (tand,,) losses is investigated.
The bistatic scattering width for lossy and lossless cases is compared. It would
be interesting to observe the difference of scattering with respect to dielectric
and PEC cylinders as well. A circular cylinder of radius r = 0.3\ is placed
distance d = 0.3)\g above a strip of width w = 40)\y. The scatterer is characterized
by €. = 4eg, p. = 2.8, &€ = 0.002, tand. = tand,, = 0.05. The half-space is
lossless and non-magnetic with a relative permittivity of e¢; = 2¢y. The setup is

illuminated by a TM plane wave from 90° off the z-axis.

The bistatic scattering width for the lossless and lossy chiral cylinder is com-
pared with dielectric and PEC cylinder. The co-polarized components for chiral,
dielectric, and PEC cylinders are shown in Fig. 3.41 followed by the cross-polar
component for the chiral cylinder in Fig. 3.42. For the co-polar components,
the scattering width of the chiral cylinder is lower than the PEC and dielectric
cylinders on the lit side, for both lossless and lossy cases. In case of the chiral
cylinder, the back-scattered field is greater for the lossy cylinder but in other
directions field of lossless cylinder increases. Also, it can be seen that the cross-
polar component, for the lossless case, on the lit side (90°) is greater than the
co-polar component by 2.8 dB. However, the fields decay sharply to give a null
in the cross-polar scattering width, for this case, at 50° and 130°. Notice also,
there is 9 dB difference between the chiral (lossless) and the PEC and dielectric
(lossless) cylinders at 90°. As mentioned in the literature review, chiral material
can be used as EM absorbers, if the properties are chosen appropriately. The

observations made here could not have been made with simple theory alone.

Figures 3.43a and 3.43b show the amplitude of the scattered far-field in the
upper half-space and transmitted through the dielectric interface to the lower
half-space. It can be seen that the cross-polar component has a similar pattern to

the co-polar field but magnitude of the former is smaller.
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Figure 3.41: Comparison of co-polarized bistatic scattering width of a circular
cylinder above a dielectric half-space for lossy and lossless cases. TM excitation
at ¢' = 90°. Chiral, dielectric, and PEC cylinders are compared. Radius, r
= 0.3)\g, d = 0.3N\g, w = 40)\g, €4 = 2€q, g = po, €. = 4€g, e = 2.8y, & = 0.002,
tand.=tand,, = 0.05. Solid and dashed lines, respectively, show the lossless and
lossy cases.
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Figure 3.42: Corresponding cross-polarized component for the chiral lossy and
lossless circular cylinder for the setup in Fig. 3.41.
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Figure 3.43: Amplitude of the scattered far-field. Co-polarized component for
a circular cylinder above a dielectric half-space for lossy and lossless cases. TM
excitation at ¢* = 90°. Chiral, dielectric, and PEC cylinders are compared. Radius,
r= 0.3\, d = 0.3)\g, w = 40X\, €4 = 2€, ftqg = Mo, € = 4€g, e = 2.8, & = 0.002,
tand.=tand,, = 0.05. Solid and dashed lines, respectively, show the lossless and
lossy cases. Same setup as in Fig. 3.41. The scattered field in the upper half-space
and the transmitted fields to the lower half-space are shown. y < 0 is the dielectric
half-space.
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3.6.2.1 Effect of Chirality on Scattering

A lossy circular chiral cylinder is investigated in this section. The chirality
admittance of the scatterer is changed to observe its effect on the scattering
properties. The bistatic scattering width and the far-field amplitude are shown in
Figs. 3.44 to 3.47. The results show an unpredictable behaviour due to variation
in £&. Finer steps must be taken in order to observe the effect more vividly as
shown in Fig. 3.23. The idea here is to see the effect of abrupt change. For
& = 0.001 the cross-polar fields are greater than the co-polar components on the
lit side. This is a different, but not surprising, behaviour of the chiral materials.

Such observations were made in [5] as well.
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Figure 3.44: Co-polarized bistatic scattering width of a chiral circular cylinder
above a dielectric half-space for various chirality admittance values. TE excitation
at ¢' = 45°. Radius, r = 0.2)\g, d = 0.5\g, w = 40)g, €4 = 3€0, ftq = }o, €c =
6eg, e = 1.5u9, tand, = 0.1, tand,,, = 0.
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Figure 3.45: Corresponding cross-polarized component for the setup in Fig. 3.44.

Figure 3.46: Amplitude of the co-polarized scattered far-field due to a chiral
circular cylinder placed above a dielectric half-space for various chirality admittance
values. TE excitation at ¢' = 45°. Radius, r = 0.2)\g, d = 0.5)g, w = 40\,
€y = 3€0, My = Mo, € = b€y, e = 1.549, tand, = 0.1, and tand,, = 0. Same setup
as Fig. Fig. 3.44.

99



Figure 3.47: Corresponding cross-polarized component of the far-field for Fig. 3.46.
We can see, there is no cross-polar component when £ = 0, because the chiral
becomes a regular dielectric.

3.6.2.2 Conclusion

The results computed in this section showed excellent agreement with published
literature for limiting cases. Various circular cylinders; PEC, dielectric and chiral,
were simulated with different parameters to gauge the accuracy and robustness
of the solution method proposed here. Effect of lossy and lossless scatterer on
the scattered fields was also studied. No spurious results were encountered in the
above study. To test the method further, some arbitrary cross-sections are studied

in the following sections.
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3.7 Scattering from Rectangular Chiral Cylin-
der

To show the flexibility of the approach, a chiral cylinder of rectangular cross-section
(0.25Mg x 0.15)¢) is considered next. The problem setup is shown in the inset of
Fig. 3.48. The system is excited by a TM plane wave incident from ¢’ = 30°. The
cylinder is placed a height d = 0.1)\y above a dielectric half-space represented by
a strip of width w = 40\ and characterized by €; = 4€p, pq = po. The chiral
cylinder is characterized by €. = 6€y, . = 2, & = 0.0005.

Figure 3.48 shows the magnitude of the perturbed surface currents on the
dielectric strip. Although the dielectric strip width assumed for this problem was
40)g, it can be observed that the currents are negligible after about 10\g. The
asymmetric behavior of the perturbed currents on the strip can be observed due
to the asymmetric excitation. Figure 3.49 shows the scattered far-field pattern
for the same problem. Note that the cross-polar component of the far-field is
significantly smaller than the co-polar component. Once again, it is observed that

the scattered fields are unpredictable.
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Figure 3.48: Magnitude of the perturbed currents induced on a dielectric half-space
due to a rectangular chiral cylinder placed above it. TM excitation, L; = 0.15\¢,
L2 = 025>\0, d= 0.1)\0, W = 40)\07 €d = 460, €c = 660, e = 2/110, g = 00005, le =
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Figure 3.49: Scattered far-fields due to a rectangular chiral cylinder placed above
a dielectric half-space. The setup is shown in inset of Fig. 3.48.
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3.7.1 Effect of Chirality

The effect of chirality admittance on the scattering properties of a 2-D cylinder
with rectangular cross-section is investigated. The problem setup and the bistatic
scattering results are presented in Figs. 3.50 and 3.51. A cylinder with a rectangu-
lar cross-section of (0.2 x 0.35) )\, is placed a distance d = 0.5\¢ above a dielectric
half-space, represented by a strip of width w = 40)\,. The half-space is charac-
terized by €5 = 4€y, pg = 1.5u9 and for the chiral cylinder €. = 6¢q, . = 2.5u0.
The setup is excited by a plane TM wave incident from ¢° = 75°. Electric and

magnetic loss of the scatterer is given by tand, = tand,, = 0.05, respectively.
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Figure 3.50: Co-polarized bistatic scattering width due to a rectangular chiral
cylinder above a dielectric half-space. TM excitation, L; = 0.2)\g, Ly = 0.35), d

= 0.5\, W = 40\, €q = 4eg, pg = 1.519, €. = 6¢q, fte = 2.5u9, ¢' = 75°. Electric
and magnetic losses for the scatterer are given by, tand, = tand,, = 0.05.

The currents on the interface smoothly decayed to zero and are not shown here.

From the co-polar component of the scattering width, as the chirality changes
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from zero to 0.0004, no surprising results are observed. The nulls become deeper
and the side lobes increase in magnitude. Here, the chirality is changed in smaller
steps. Finally, a random value of chirality admittance, ¢ = 0.001 is observed.
This reduced the back-scattered fields and further enhanced the side lobes. The
position of the nulls changed from approximately 150° for £ = 0 to 137° and the
null depth increased by 6 dB. The cross-polarized component decreases as the

chirality admittance decreases and finally disappears for £ = 0.
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Figure 3.51: Corresponding cross-polarized component for the setup in Fig. 3.50.
Note that there is no cross-polar component when & = 0, as expected.
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3.7.2 Effect of Incident Angle

Incident angle plays an important role in the induction of currents on the scatterer.
This section discusses the effect of incident angle on the scattering properties
of a rectangular cylinder with different parameters than the case studied in the
above section. The perturbed currents are shown in Fig. 3.52 and the problem
setup is shown in Fig. 3.53 along with the amplitude of the scattered field in
the upper half-space for the various angles. Figure 3.54 shows the corresponding
cross-polarized component of the scattered field. The setup is illuminated by a
TM plane wave from ¢' = 20°, ¢ = 60°, ¢' = 90°, ¢' = 120°, and ¢’ = 160°.

The angles are symmetric about the normal direction.
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Figure 3.52: Perturbed currents due to a rectangular cylinder placed above
a dielectric half-space, the setup is shown in Fig. 3.53. Currents plotted for
3.5\ portion of the strip, starting from the center of the strip. L; = 0.25\¢,
Lo =0.1Mg, d = 0.5)g, w = 60Ng, €5 = 2€q, ftg = flo, € = 4.5€g, pe = 2.5419, £ =
0.002, tand, = 0.1, tand,, = 0.05.

The angles are chosen to observe the symmetry of the results, which is a good
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indicator of the correct working of the algorithm. For instance, for the top left
subplot in Fig. 3.52, the symmetry in |Jz| can be observed. Its peak is centered at
segment 251, which is the center of the strip. Angles 20° and 160° show the same
off-set of peaks in opposite directions. Similarly, for angles 60° and 120°. Note
that for angle of incidence close to the horizon, the perturbed currents take longer
to converge, as expected. A similar symmetry is also observed in the far-fields for
the co- and cross-polar components. Fields in the upper half-space are plotted
only. The symmetry in the scattered fields due to the excitation and the shape of

the scatterer can be observed.
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0.0 /180

8El’Ma

€pHp
Figure 3.53: Co-polarized scattered far-field due to a rectangular chiral cylinder
above a dielectric half-space. TM excitation, L1 = 0.25\g, Ly = 0.1Ag, d = 0.5\,
w = 60\g, €q = 2€q, ftg = fto, €c = 4.5€9, e = 2.5u9, & = 0.002. Electric and
magnetic losses for the scatterer are given by, tand. = 0.1 and tand,, = 0.05,
respectively.
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Figure 3.54: Corresponding cross-polarized component for the setup in Fig. 3.53.
Zoomed in view for weaker fields is also shown. TM excitation, L; = 0.25),
Ly =0.1)\y, d = 0.5)g, w = 60X, €q = 2€0, g = o, € = 4.5€0, e = 2.500, € =
0.002. Electric and magnetic losses for the scatterer are given by, tand, = 0.1 and
tand,, = 0.05, respectively.
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3.8 Scattering from Square Chiral Cylinder

Next, a chiral cylinder of square cross-section is analyzed. The setup is shown in
the inset of Fig. 3.55, where a square cylinder of side length L; = 0.4\ is excited
by a TM plane wave with ¢' = 90°. The lossless homogeneous square scatterer is
characterized by €. = 6¢y, e = 29, & = 0.0005. The half-space is characterized
by €4 = 4¢€g, g = o and is approximated by a finite width strip of 40),.
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Figure 3.55: Magnitude of the perturbed currents induced on a dielectric interface
due to a square chiral cylinder placed above it. TM excitation, L1 = Ly = 0.4\q,
d = 0.1y, w = 40Xy, €4 = 4eq, €. = 6€g, fte = 2410, € = 0.0005, ¢¢ = 90°.

The scatterer is placed close (d =0.1)\g) to the interface, which causes more
fluctuations in the induced currents, as shown in Fig. 3.55. Although the excitation
is a TM wave, the lateral perturbed electric current is larger than the longitudinal
one, and the cross-polar component of the back-scattered far-field is larger than

the co-polar component, shown in Fig. 3.56.
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Figure 3.56: Scattered far-fields due to a square chiral cylinder placed above a
dielectric half-space. The setup is shown in inset of Fig. 3.55.

To further investigate this, the chirality parameter (§) was varied to observe its
effect on the scattering. Results for the co- and cross-polarized bistatic scattering
width for the same problem with different chirality admittance values are presented
in Figs. 3.57 and 3.58, respectively. For the co-polar component it was observed
that the side lobes became deeper and well defined. However, this behaviour is

not predictable and will be completely different at some other admittance values.

Figure 3.58 shows how the cross-polar component dropped, from -8 dB (for
¢ = 0.001) to -15 dB (for £ = 0.0015) at 90°, by an increase of 0.0005 in the
chirality admittance and then jumped to -4 dB (for £ = 0.002) with another
increase of 0.0005. To verify this radical behavior, another study was performed
where the chirality was changed from 0.0015 to 0.002 in smaller steps. It was seen
(results not shown here) that the cross-polar component increased gradually and
matched the value for £ = 0.002. This phenomenon is unpredictable by simple
theory. Such comparisons are not present in the literature even for chiral cylinders

in free-space.
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Figure 3.57: Effect of £ variation on the bistatic scattering width (Co-polarized
component) of a square chiral cylinder placed above a dielectric half-space. TM
excitation, Ly = Ly = 0.4)\y, d = 0.1)\g, w = 40\, ¢4 = 4eg, €. = 6eg, fic
210, ¢ = 90°. Same setup is used as in Fig. 3.55.

opsw/ A, [4B]

—*— Chiral x-pol ¢ = 0.0005
¢=0.001

—¢=0.0015

----- ¢=0.002

— © —¢=0.0025

_30 I I xe- 3 100035 I

1 1 |

0 20 40 60 80 100 120 140 160 180
¢ [deg]

Figure 3.58: Effect of £ on the cross-polar component of the scattering width

of a square chiral cylinder placed above a dielectric half-space. Setup shown in
Fig. 3.55
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The study performed here shows that for the parameters used, the cross-polar
component of the scattered field in the backward direction (¢ = 90°) is comparable
to the co-polar component. This might not be the case for other geometries and
parameters. For instance, in case of the rectangular chiral cylinder, the cross-polar
component is much smaller than the co-polar component (see Sec. 3.7.1). It
should also be noted that a variation in the chirality admittance can drastically

change the scattering properties.

Figure 3.59 shows a comparison of the bistatic scattering width of a square
chiral cylinder with a dielectric and a PEC cylinder of the same dimensions. While
the back-scattered fields are similar for the dielectric and chiral cylinders, the side
lobes of the chiral cylinder are at least 6 dB lower at 30° and 160° relative to
those of the PEC and dielectric cylinders. Note that the cross-polar component of
the chiral cylinder is comparable to the co-polar component of the back-scattered
field. It is also interesting to see that the back-scattered field of the PEC is about
10 dB less than the field of the chiral and dielectric cylinders.

i
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Chiral, co-pol £ = 0.0005
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_20 1 1 1 1
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Figure 3.59: Bisatic scattering width comparison for PEC, dielectric, and chiral
square cylinders. Setup shown in the inset of Fig. 3.55.
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3.9 Scattering From Elliptical Cylinders

In this section, scattering properties for a homogeneous chiral elliptical cylinder is
investigated for TM and TE plane wave excitations. The system setup is shown
in Fig. 3.60. An elliptical chiral cylinder (e. = 3¢y, pe = o, £ = 0.001) of major
axis a = 0.2)\g and minor axis b = 0.1} is placed at a height d = 0.5)\y above a
dielectric half-space (€5 = 2¢€g, g = o). The dielectric half-space is represented
by a finite dielectric strip of width w = 40)y. This strip was chosen based on
numerical experimentation and observing the perturbed currents. It was made
sure that the currents on the strip decayed to zero as the distance from the cylinder

increased. The currents are not shown here.

Fig. 3.60 shows the bistatic scattering width in the upper half-space only
(0° < ¢ < 180°). It can be seen that the co-polar components of the TM and
TE excitations are comparable in the backward direction (¢=90°) but they are
completely different in other directions. The cross-polar components are exactly
the same in the backward direction and they follow an almost similar trend in

other directions.

Figure 3.61 shows the amplitude of the scattered far-field in the two half-
spaces, i.e., free-space (0° < ¢ < 180°) and the dielectric half-space (180° < ¢ <
360°). Figures 3.61a and 3.61b, respectively, show the co-polar and cross-polar
components for the TM and TE excitations. It can be observed that the co- and
cross-polar terms behave differently, except at ¢ = 90° in which case they are

comparable.

Next, the effect of chirality admittance is studied on the scattering width of a
lossy elliptical cylinder placed above a dielectric half-space. The setup is excited
by a TE plane wave as shown in the inset of Fig. 3.62a. Other parameters of
the setup are given in the figure caption. The co-polarized component of the
scattering width shows that, as the chirality increases the side lobes increase and
the back-scattered field decreases. The co- and cross-polar components of the

bistatic scattering width in the upper half-space are given in Fig. 3.62.

112



— TE: Co-pol —&— TM: Co-pol
----- TE: X-pol ~ --m--TM: X-pol

Ogsw/to [AB]

-35 T I T I T I T I T I T I T I T I T
0 20 40 60 80 100 120 140 160

¢ [ded]

Figure 3.60: Bistatic scattering width of a chiral elliptical cylinder placed above a
dielectric half-space. TM and TE excitation, a = 0.2Xg, b = 0.1)\g, d = 0.5\g, W
= 40)\0, €q — 260, €c — 360, g = 0001, Ma = He = Mo, (bl = 90°.
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Figure 3.61: Amplitude of the scattered far-field for a chiral elliptical cylinder
placed above a dielectric half-space. Same setup as in Fig. 3.60.
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Figure 3.62a also shows the scattering width of the same elliptical cylinder with
¢ = 0.0015 when it is placed in free-space. The effect of the half-space on the
scattering pattern is clearly visible. It can be seen that for this particular case,
the back-scattered field (¢ = 90°) has increased by about 7 dB. In free-space, the

scattered field is almost constant in all directions.

Figure 3.62b shows the corresponding cross-polar component for the same
problem. It was observed that the cross-polar components decrease with an
increase in the chirality admittance of the scatterer. Note also that the elliptical
cylinder in free-space, behaves almost similar (in the upper half-space) to the case

when it is placed above a dielectric half-space.

To observe the scattering properties of the same setup (inset of Fig. 3.62a) in
the upper and lower half-spaces, the scattered far-field is presented in Fig. 3.63.
It is clear from the scattering pattern of the co-polar component (Fig. 3.63a) that
with an increase in the chirality of the scatterer, the back-scattered field (¢ = 90°)
decreases and the transmitted field increases. However, for the cross-polar term of
the scattered field shown in Fig. 3.63b, the field in the free-space decreases with
an increase in chirality but the transmitted field is completely different for the
three chirality admittance values considered here. Note that for & = 0 there is no
cross-polar field in both Figs. 3.62 and 3.63 .
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Figure 3.62: Bistatic scattering width of an elliptical cylinder, for different chirality
admittance values, placed above a dielectric half-space. TE excitation, ¢* = 90°,
a=0.3\g, b =0.15)g, d = 0.3)\g, w = 40, €4 = 3€q, pa = 1.819, €. = deg, fie =
3o, tand. = 0.08, tand,, = 0.05.
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(b) cross-polar component
Figure 3.63: Scattered far-field amplitude of an elliptical cylinder, for different
chirality admittance values, placed above a dielectric half-space. TE excitation,
¢i = 9007 a = 0.3/\0, b = 015)\0, d= 0.3)\0, W = 40)\0, €d = 360, Mg = 1.8/110, €Ec =
5€g, [e = 3itp, tand, = 0.08, tand,, = 0.05.

117



3.9.1 Different Eccentric Elliptical Cylinders

In this section a comparison of the bistatic scattering width of a circular chiral
cylinder and an elliptical cylinder of three different major axes (a = 0.16Ag, 0.18),
and 0.2)) is presented. The minor axis remains fixed at b= 0.14),. In case of
the circular scatterer the radius is 0.15\g. The setup with an elliptical cylinder
placed above the half-space is shown in the inset of Fig. 3.64a. This figure also
shows the co-polar bistatic scattering width in the upper half-space. The system
is illuminated by a plane TM wave incident from ¢’ = 90°. For all cases, the
chiral scatterer and the dielectric half-space have the material properties shown
in the figure caption. The scatterers are considered to be lossy with tand, =
tand,, = 0.05. It is observed from Fig. 3.64 that, for low eccentricities (small
a/b values) of the elliptical cylinder, the co- and cross-polarized components of
the scattering width behaves similar to the fields of a circular chiral cylinder,
as expected. This study also serves as a validity check for the scattering from
elliptical cylinders, as the shape changes gradually from the elliptical cylinder
to a circular one. Furthermore, it is seen that the co-polar component of the
back-scattered field increase as the elliptical cylinder becomes narrower, i.e., the
ratio of a to b increases. For a = 0.20\g and b = 0.14)\, the co-polar component
of the back-scattered field (¢ = 90°) has increased and nulls are introduced at
around 60° and 120°. The behavior of the cross-polar component is completely

different for the three eccentricities as shown in Fig. 3.64b.

From these examples and the ones simulated in other sections, it is observed
that the chirality admittance, when added to a regular dielectric, changes the
scattering behavior in an unpredictable manner. In some cases the specular
direction of the co- and cross-polar fields are different as well. The reflected fields
might become stronger or might be absorbed, depending on the properties of the
scatterer. The scattering properties are completely unpredictable by a simple

theory.
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Figure 3.64: Comparing bistatic scattering width of circular and elliptical cylinders

of different sizes placed above a dielectric half-space. TM excitation, ¢* = 90°, d
= 0.3X\g, w = 40Xy, €4 = 3€0, g = o, €c = 3€0, fe = 2/, tand, =tand,, = 0.05.
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3.10 Scattering From Triangular Cylinders

As a final arbitrary shape, presented in this dissertation, a triangular (wedge)
cylinder is placed above a dielectric half-space. The setup is shown in Fig. 3.65. A
TM plane wave is incident on the setup from ¢ = 135°. The scatterer is assumed
to be lossless and homogeneous. It is characterized by €. = 5¢y, e = o, and & =
0.0015. Distance between the scatterer and the interface is d = 0.2Aq. The
dielectric half-space is represented by a finite strip of width w = 40\y which is
characterized by e; = 2.56¢p, (g = po. The perturbed currents on the interface
are shown in Fig. 3.65a and the scattered far-field is shown in Fig. 3.65b. The
currents on the interface are asymmetric due to the excitation and the shape of
the triangle. It is seen that they take longer to converge on shadowed side of the

strip relative to the lit side.

From the scattered fields in Fig. 3.65b, it is visible that the chiral wedge
scatters less fields, in all directions, than the PEC and dielectric wedge of the
same dimensions. The fields, in case of the dielectric wedge, penetrate the deepest
into the dielectric half-space (180° < ¢ < 360°). The strongest scattered fields are
produced by the PEC wedge in the upper half-space (0° < ¢ < 180°) on the lit side
(around 167° off of x-axis). The specular direction of the cross-polar component
is different from the co-polar component of the fields. This phenomenon was

observed in Fig. 3.23 as well.

Figure 3.66 shows the bistatic scattering width for a chiral, dielectric, and a
PEC wedge. It can be seen that the null in the co-polar component, at around
25°, are the same when the wedge is PEC or chiral. In case of the dielectric wedge,
no such null is observed. The scattered fields for the three cylinders are different
from each other in other directions. These results are completely random and
unpredictable by simple theory. Therefore, solutions by numerical methods such
as this work are vital to computing scattering from chiral objects of arbitrary

cross-sections.
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Figure 3.66: Bistatic scattering width of a chiral wedge placed above a dielectric
half-space. TM excitation, a = 0.5\g, b = 1A, d = 0.2)\g, w = 40, ¢4 =
2.56¢g, €. = beg, & = 0.0015, g = pte = po, ¢* = 135°.
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3.11 Advantages and Disadvantages of Surface

Formulation

The main problem discussed here can also be solved using volume equivalence
principle. In case of surface formulation (used in this work) the surface of the
cylinder is approximated by linear segments. For each segment, electric and
magnetic currents are assumed. Both these currents have longitudinal and lateral
components. Scattering from a chiral cylinder in free-space is solved using the
volume formulation in [28], where the cross-section of the cylinder is divided into
trapezoidal cells. Using pulses as expansion functions and point matching for
testing in the MoM solution (same as in this work), the cell size is less than 1/10™"
of the wavelength in the chiral medium. For each electric and magnetic volume

current on the cell, there are six components.

If N4 denotes the number of total segments which divide the circumference
of the cylinder in the surface formulation, there are a total of 4N,., unknowns.
Whereas for the same problem, 6., unknowns are to be solved when using the
volume formulation. Here, M., denotes the number of cells used to split the
cross-section of the cylinder. The relation between Ny, and M., depends on the
scatterer’s size and shape. This relation is given by M., = kN, 8269, k depends on
the shape of the scatterer. For instance, it is equal to 1/16 for square cylinders
and 1/4r for circular cylinders [49]. As an example, assume a square cylinder
with side length A. Dividing it into 12 segments per wavelength (as used in this
dissertation for majority of the simulations), results in 192 unknowns in the surface
formulation. The same problem, if solved by volume formulation, leads to 864
unknowns. This difference increases if high accuracy is required, which depends
on the number of segments per wavelength. If larger bodies are considered, the
surface formulation will lead to a much smaller moment matrix relative to the
volume formulation. Therefore, to reduce the demand for huge storage memory
and the need for extensive computation power, surface formulation is definitely
preferable over the volume formulation. However, the volume formulation can

solve for inhomogeneous chiral cylinders which the surface formulation fails to do.
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It is important to mention here that the EFIE formulation used in this disserta-
tion has some limitations. However, these limitation occur in a very narrow band
and most of the time at discrete frequencies. For instance, frequencies that corre-
spond to the cutoff frequencies of perfectly conducting waveguides [49]. At these
frequencies the EFIEs do not have a unique solution because the moment matrix is
singular and the method fails to provide a solution [72-74]. Therefore, to be sure
about our computed results, we had to monitor the behavior of the condition num-
ber of the moment matrix. One such example of an ill-conditioned moment matrix
due to spurious resonances is shown in Fig. 3.67. Consider a rectangular chiral
cylinder characterized by e.=4¢g, p.=po and £€=0.0005 placed above a dielectric
half-space. The dielectric half-space is characterized by €; = 3¢y, and g = pg-
Cross-section of the rectangular cylinder is (x;, X 0.5x1,)A\g and it is placed at a
height d = \g above the half-space. Note that when kX, =6.302, the moment
matrix becomes ill-conditioned (shown by the high condition number) and the
computed results cannot be trusted. For all the results presented here, the moment

matrix was well-conditioned.
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Figure 3.67: Condition number variation of the moment matrix with koXy, for a
rectangular chiral cylinder placed above a dielectric half-space.
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In addition to the above limitations the perturbation method, like any other
approximate method, has its own limitations. For example, when the scatterer is
assigned free-space properties (essentially removed from the problem space) then
the proposed method breaks down because the perturbed current is exactly equal
to zero. However, the algorithm still searches for a current, so whatever perturbed
current that is computed numerically’ contributes to the solution which ultimately
results in incorrect fields. Furthermore, the perturbation method results may
not be reliable, especially for angles close to the horizon, when the scatterer is
less dense (i.e., €., f., and £ are close to the free-space case). In this case, the
perturbed currents are not exactly zero but close to zero. Again, a small error
in perturbed current computations may result in a big error (percentage wise).
Experiments showed that €. < 1.1¢y caused ripples in the scattered field hence

this threshold should not be ignored.

It should also be noted that for grazing incident angles (close to 0° or 180°) a
very wide strip is required for the perturbed currents to decay properly. However,
making the strip too wide beats the purpose of the proposed method, hence
the method breaks down if a narrow strip is used. To obtain reliable results
from the proposed method, the above mentioned limitations must be taken into

consideration.
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Chapter 4

Conclusion

The problem of electromagnetic scattering from an isotropic homogeneous 2-D
chiral cylinder of arbitrary cross-section placed above a dielectric half-space is
solved using the method of moments and the perturbation method. The surface
equivalence principle was applied to divide the original problem into three simpler
problems. A set of vector coupled electric field integral equations was obtained.
Due to infinite nature of the problem at hand, the conventional MoM could not
be applied directly to the problem. The perturbation method was used to reduce
the original problem to an approximate one. This resulted in another set of vector
coupled electric field integral equations. These equations were solved, numerically,
using MoM. Pulse expansion functions and point matching method is used. First,
numerical results for a group of multi-body problems are solved to validate the
multi-body chiral algorithm. Followed by numerical results for scatterers of
arbitrary cross-sections, including circular, rectangular, square, elliptical, and
triangular chiral cylinders. Bistatic scattering width (in the upper half-space)
and the amplitude of the far-fields (in upper and lower half-spaces) are presented.
The currents on the cylinders and the perturbed currents on the interface are also
analyzed. The results are in excellent agreement with available numerical results

for limiting cases.

It was observed that the chirality admittance has a huge effect on the scattering
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properties of the scatterer. The results are not predictable by simple theory
alone. Parametric studies on the incident angle, chiral admittance, dimensions of
the scatterer, and the dielectric strip width are presented. Results for lossy and
lossless scatterers are compared. It was observed that the bistatic RCS reduces
in case of the lossy scatterers. Scatterers of various shapes were analyzed e.g.,

circular, rectangular, square, elliptical, and triangular.

Finally, the merits and demerits of the method used in this dissertation are dis-
cussed. Surface formulation out performs the volume formulation when analyzing

fat (large) cylinders.
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Appendix A

Scattering By A Circular Chiral
Cylinder: An Exact Solution

In order to verify our numerical solution for scattering by a chiral cylinder in free
space an eigenfunction solution is presented for the same problem. The chiral
cylinder is assumed to be homogeneous and infinitely long with its axis along the
z-direction. A normal plane TM/TE plane wave propagating in the z-direction
illuminates the cylinder. The problem setup is shown in Fig. A.1. The cylinder is
of radius a, characterized by (e, i, ), and denoted as medium 1. Equations (A.1)
and (A.2), respectively, gives the right hand and left hand wave numbers of the
decomposed waves in the chiral medium whereas the intrinsic impedance of the
medium is given by (A.3). The external free-space is characterized by (e, ti0),
wave number ky = w./€ollg, intrinsic impedance ny = \/,uo—/eg, and denoted as

medium 2. TM and TE cases are presented separately in the following sections.

hi = wpg + Vk? + (wpg)? (
hy = —wpé + /k* + (wpg)? (A.2)

1
1+ (n§)?

>
o

Ne =1
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Figure A.1: A circular chiral cylinder illuminated by TM/TE plane wave.

A.1 TM Incidence

First, TM wave incidence is presented. The wave is incident from ¢* = 180°. The

incident electric field (E™¢) and magnetic field (H™*) are given by the following

expressions,
Einc _ ZA,G—jkow _ § ]_nNS-ll)(kO) (A4)
HlnC — 4 ‘e_Jk'O-Z’ — 2 ]_NMEII) k A5
yn[)] = o E ( 0) ( )

n=—oo

where, M,, and N,, vector wave functions are solutions of the vector field equations
given in [75,76],

NP (k) = 26/ ZP) (kp) (A.6)
M (k) = e 20 (kp) — 60 2 (kp) (A7)
p

here, p and ngﬁ represent the unit vectors in the p and ¢ directions, respectively,
whereas the prime denotes the derivative with respect to the argument. ZT(Lp ) is
a Bessel function of type p, e.g., zM = I, 7 = Y,, 7 = H,Sl), zW = .
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Then (A.4) and (A.5) becomes,

E"C = 2 Z 5 3 u(kop) (A-8)
e~ L Z jmen [p—J (ko) — 8, (kop) (A.9)

Since the medium is chiral the scattered fields will have both TM and TE compo-

nents which are expressed as

Z ] —-n anN(4 k0>+b M (kO)) (AlOa)
Z el [zanH(z)(kop)+b ( k:b 722)(7470@—@3}[7(12),(]{500))}
(A.10D)
Z 77" (@M (ko) + b, NP (ko)) (A.11a)
Iy eﬂ"‘b{n(ﬁl‘j HE Fap) — GH (hap)) + 20, )
(A.11b)

where, a,, and b, are the unknown expansion coefficients of the scattered fields.
Similarly, following Bohren’s decomposition [26], the internal fields in the chiral
medium can be written as a combination of the right hand (Q;) and left hand

(Qz) circularly polarized fields when the chirality is positive.

E'=Q,+Q, (A.12)
H' = S (Q1+Q2) (A.13)

C

When expanded in terms of the vector functions, they can be written as

Z 57" (N (R1) + MP(h1)) (A.14)
Z §7"d, (NO(h2) — M (h2)) (A.15)
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where, ¢, and d,, are the unknown expansion coefficients of the internal fields, and
hi, ho are the right handed and left handed wave numbers, respectively. Using
(A.6), (A7), (A.12), (A.13), (A.14), and (A.15) explicit field expressions for the
internal fields can be obtained [77],

Z G (e dn(hip) — dpJy(hop)) €2 (A.16a)
By ==Y 5" (cadu(hup) + duf, (ap) ) & (A.16b)
1 J Z nj " (C w(hip) + dan(hgp)) eIme (A.16¢)
pn*—oo 1 h2
HY == 30 57 (aullng) + dudu(hop) (A.16d)
H = 7_7_] 57 (end(hap) = dud (hap) ) € (A.16e)
H, = — i nj~" e (h1p) — dan(hmO) en? (A.16f)
P Plc n——oo hl h2

The fields internal and external to the chiral cylinder must satisfy the boundary

conditions at p = a,

(52— B) »
(7 1) x

(A.17a)

0
0 (A.17Db)

b>
Il

here, p is the unit normal vector point outwards from the cylindrical surface, E*

and E? are the internal and external fields, respectively. We also know that,

E? = E™® 4 ES (A.18a)
H? = H™ + H" (A.18b)
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Solving (A.17a) for the z-component, i.e., E" + E¢ = E! we get the following

equation
a, HP (koa) — ¢, Jp(hia) + dyJo(hoa) = — J,(koa) (A.19)

similarly for the ¢-component, i.e., Eé”c + B = Eé, knowing that Eé”c =0, we
get the following simplified form,

by H (koa) — ¢, (hia) — dyJ,, (hoa) =0 (A.20)

Following the same process we get two more equations from (A.17b) for the z and

¢-components of H, as follows

Mo Te Nc

n ! n ! dn / _1 !
I /@ (koa) — 2T (ha) + 2T (hea) =—J. (koa) (A.22)
Mo Ne Ne Mo

Equations (A.19) - (A.22) can be written in matrix form as,

[ Hy(LQ)(k:Oa) 0 —Jp(hia)  Ju(hea) 1 [a,] _—Jn(k:oa)-
0 H? (ko) —J.(ha) —J.(ha) | |ba 0
0 L2 (koa) ZLJu(hia) ZLJa(haa)| |en - 0

| LHY (koa) 0 y(ha) - Tu(hea) | [da] [T, (koa) ]

Solving for Az = b gives us the unknown expansion coefficients for the internal

and external fields.

A.2 TE Incidence

In case of the TE plane wave incidence the incident electric field can not have a

z-component. The fields are expressed as

EC = jjebor = 3" 5 MY (ko) (A.23)

inc __ N ] . _ikox __ j - -—nN\g (1)
H™MC = — 2 je 7% = — g N,/ (k A.24
770] o n?ooj ( 0) ( )
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Following the same procedure of TM four equations are obtained for the TE

incidence. The matrix form is given below. Notice that only the right hand side

changed whic comes from the incident fields.

[ HP (koa) 0 —Jo(ha)  Ju(hea) ] [a] [ 0 ]
0 HY (koa) —J.(ha) —J,(hsa) | | by —J. (koa)
0 LA (koa) ZJu(ha) ZLJu(haa)| | e - =L T (koa)

| LHP (ko) 0 “L(ha) L (hea)] [d] | 0

A.3 Scattered Fields

Using the large argument approximation for the Hankel function, the far scattered

fields can be written as [77]

[ 25 . > :
E, = pﬂ—Jkoe_]kop Z a,,e’m? (A.25)
; 2j —jkop S Jjné

where a,, and b, have already are calculated above using the matrix inversion.

The scattered fields are given as follows [49],
|E°|”

o(¢) = lim {2ﬂp‘Einc|2}

pP—00

(A.27)

(A.28)




Equation (A.28) has been coded in Matlab to compute the co-polarized (E,)
component of the scattered field. Similar equation is used for the cross-polarized

(E4) component, where a, is replaced by b,,.

Figure A.2 shows scattering from a homogeneous and lossless circular chiral
cylinder when it is illuminated by a TM plane wave incident from 180°. The chiral
medium is characterized by € = 1.5¢p, u = 4p9, and & = 0.0005. T'and. = 0 and
Tand,, = 0 are the electric and magnetic losses, respectively. The problem setup
is shown in Fig. A.1. The exact solution is compared with the MoM code that
was developed using the surface equivalence formulation. The results are in very

good agreement.

Figure A.3 shows scattering from the same circular chiral cylinder when it
is illuminated by a TE plane wave incident from 180°. The results are in good

agreement with the MoM solution.
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Figure A.2: TM case: Bistatic scattering width of a circular chiral cylinder excited

from ¢' = 180°.
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Figure A.3: TE case: Bistatic scattering width of a circular chiral cylinder excited

from ¢* = 180°.
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Appendix B

The Moment Matrix and
Computation of Some Moment

Matrix Elements

In this appendix, some typical elements of the sub-matrices of the moment matrix
are discussed. In this dissertation we have followed the same procedure as in [49]
where scattering from a single chiral cylinder is solved. Here, we have explained
the matrix elements for multi-body problem and specifically when the chiral
cylinder is above a dielectric half-space. Consider two surfaces S, (chiral cylinder)
and Sy, (dielectric half-space) in a two body problem. S, and Sy, are shown
with discretization in Fig. B.1. The two surfaces S. and Sy, are divided into
N7 and N, segments, respectively. For the original problem (Fig. 3.4) and other
explanations, refer to Chapter 3. Using the surface equivalence principle, unknown

surface electric (J) and magnetic (M) currents are placed on these segments.

After applying the method of moments as discussed in Chapter 3, the following
moment matrix, as shown in (B.1), is obtained. This is the same matrix from

Chapter 3 presented here for easy reference.
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Figure B.1: Discretization of the cylinder (S;) and the S, region of the dielectric
interface.

M ZeJSext  ZoJdext  ZeJSext  ZcJlext  ZcMSext  ZcMfext  ZcMSext  ZcM{ext
ZaJSext  Zgliext ZqJSext ZgJlext ZqMgext ZqMgext ZqMfext ZqM{ext
LeJgext  Leddext  LeJSext  LeJlext  LeMGext  LeMgext  LeMSext  LeMext

LaJgext LqJdext LgJSext LgqJ@ext LgMgGext LgMgSext LgMfext LgMext

Z= ZcJginl 0 ZcJ¢inl 0 ZcMginl 0 ZcMS inl 0
LcJginl 0 LcJginl 0 LcMginl 0 LcM¢ inl 0
0 ZqJSin2 0 ZqJ¢in2 0 ZqMgin2 0 ZaM¢in2
0 LaJgin2 0 LqJ¢in2 0 LgMgin2 0 LqM{in2 |

(B.1)

The first capital letter shows the computed electric field component: ‘Z’ for the
z-component and ‘L’ for the lateral component. The subscript of this capital letter
shows the surface on which the field is computed: ‘¢’ for the chiral surface S, and
‘d’ for the dielectric strip Sg,. The second capital letter shows the source of the
computed field: ‘J” for the electric current and ‘M’ for the magnetic current. The
subscript of this capital letter shows the component of the current source: ‘Z’ for

z-direction and ‘L’ for lateral direction. The superscript of this letter shows where
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this source current is residing: ‘c’ for chiral surface S, and ‘d’ for the dielectric
strip Sgn,. The last three lowercase letters represent the unbounded region in
which the source current is radiating: ‘ext’ for external region (€, o), ‘inl’ for

the chiral region (e, tic, §), and ‘in2’ for the dielectric region (eg, ftq)-

Z.J ext :

" row and the n'* column of the sub-matrix Z.Jjext is

The element in the m!
the z-component of the electric field on the m!* segment of S,, produced by the
z-directed electric current Jy residing on the n'” segment of S,, when this Jz

radiates in the unbounded external medium (e, = €, pta = o). It is given by,
i akalmc / !
ZeSjext(m,n) = 4 [ HP 1|~ o) (B.2)

where, 1), is the intrinsic impedance of the external medium (e, o) and k, denotes
its wave number. C™ represents the n'” segment on S,, p™¢ is position vector
to the center of the m segment on S,, p  is a position vector to the center of
the n'* source segment (in this case on S.), and I,,. is the length of the m' field

segment on S.. Héz)(-) is the zeroth order Hankel function of the second kind.

The same equation (B.2) can be used to compute the element in the m' row
and n'" column of the sub-matrix Z.JSext if we replace C™ by C™?. Similarly,
ZqJ3ext can be computed, if we replace L., C™, pme BY bnd, C™, pma. In this
case, it is the z-component of the electric field produced on the the m** segment of
Syn (in Fig. B.1) when the z-directed electric current, residing on the n'* segment
of Sgn, radiates into the external medium. Likewise, the elements of Z4J%ext can
also be computed using the above equation. This is the field produced on the
dielectric interface by a source that resides on the surface of the chiral cylinder

and radiates in the external medium (e, po).

The sub-matrices Z.JSext, Z.Jlext, ZMSext, Z.Mgext, ZqJSext, ZgqJlext,
ZaMgext, and ZgMSext are identically zero. This can be easily figured out by using

the right hand rule for the magnetic field produced by an electric current, and
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the left hand rule for the electric field produced by a magnetic current. Similarly,
some of the sub-matrices containing the lateral component of the electric field are
zero as well, for instance, L.JSext, L Jgext, LaJSext, LaJSext, LoMS ext, L.M{ext,

LaM¢ext, and LgMdext are identically zero in the external medium (e, o).

Z.M¢ext :

The element in the m™ row and the n'® column of the block matrix Z.M¢ext is
z-component of the electric field produced on the m!" segment of S, by the lateral
magnetic current (M) residing on the n'* segment of S,. This current radiates
in the unbounded external medium (e, = €, i = o). In other words, Z.MSext
is the electric field due to M} tested with J7 when the lateral magnetic current

M7 radiates into the external medium and is given by,

ZMs ext(m, n) = (I35, Eeu(M7)) (B.3)
= / Ee.t(M}€) - J7¢dl = ELS(MYC) « Zle (B.4)

Em¢(M7) represents the electric field produced at the center of the m™ segment

of S, by the tangential magnetic current, located on the n'* segment of S., when

it radiates into the unbounded free-space. This can be written as,

mc
’

kalmc ~ —p
ZMjext(m,n) = —j / Ne+ p P)

WP HO (k| pme — p|)di
4 lpme—p| © | |

(B.5)

The unit normal vector to the n'* source segment ¢ on S, is given by,
Ne = lpe X 2

where ch is the unit vector tangential to the same n'* segment on S,, p™¢ and pl
are the position vectors to the field and source segments, respectively, and H 1(2)(~)
is the Hankel function of order one and type two. The sub-matrix Z.Mdext can be
computed by using (B.5) as well, however, now the source is residing on surface
S,. Likewise, typical elements of the sub-matrices ZqM¢ext, and ZqM{ext have a

similar form too.
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LcJiext :

The element (m,n) in the sub-matrix L.J{ext is the lateral component of the
electric field produced on the m'* segment of the chiral cylinder S. when a
tangential electric current located on the n'* segment of the cylinder radiates in
the unbounded external medium (e, o). It is given by the following symmetric

product,

LcJ§ext(m, n) = (I7¢, Eeu(J}°)) (B.6)

= / Eegi (J5°) - J0¢dL = EPS(I7) « el e (B.7)

E™¢(J7¢) is the electric field produced at the center of the m™ segment of S. by

ext

the tangential electric current, residing on the n'* segment of S, and radiating

into the unbounded free-space. This can be written as,

L.Jiext(m,n) = _ Kalta (ch . ch>lmc/ H(()Q)(ka|Pmc - p,|)dl/

4
— "la (2) me+ 4
Akl e [ /(Cnc_%+cnc+%) Hy” (ko|p p|)dl
- / HP (ka| ™™ = p')dll (B.8)
(Cncf%+cnc+%)

The charge associated with the lateral current of the m' segment is approxi-
mated by two displaced pulses as shown in Fig. B.2. Where, [cnc_% + C”CJ“%] shows
the domain of the two charge pulses (dotted lines) as in Fig. B.2. In (B.8), p™°"
and p™* respectively denote the beginning and the end of m!* segment on S,
as shown in Fig. B.2. A similar equation to (B.8) can be used to compute the

typical elements of the sub-matrices Lc.JSext, LqJS ext, and LgJdext.

148



Current Pulse Charge pulse doublet

>

> X

Figure B.2: The lateral current on the m'" segment of surface S, and the charge
associated with it.

L.M7ext :

The element (m,n) in the sub-matrix L.Mfext is the lateral component of the
electric field produced on the m!* segment of the chiral cylinder S, when a z-
directed magnetic current (My), located on the n'* segment of the cylinder radiates
in the unbounded external medium (€, 11). A typical element of the sub-matrix

is given by,

c .kalmc o Pmc - p, me / !
LMext(m,n) = j= / A w x HP (ko) p™ — p')dl' (B.9)

Here, ns is the unit vector normal to the field segment. Elements of the sub-
matrices L.MZext, LgMSext, and LqgMgext can be computed using an equation
similar to (B.9). For instance, in case of the sub-matrix LqMgext, the electric
field is produced on the m!” segment of the dielectric half-space when the current
My, resides on the n'® segment of S, and radiates into the unbounded external

medium (€, fip).
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The above equations are used to compute the fields when the sources on S,
and Sy radiate in the external medium (e, = €y, g = po). Now, the fields in
the internal medium of the chiral cylinder, characterized by (e., pe, &) will be

presented.

Rows five and six of (B.1) show the fields produced in the internal medium
(inl) of the chiral cylinder ((€., p., £)) and rows seven and eight represent the

fields in the internal medium of the dielectric half-space (€4, fiq).-

Z.JSinl :

The element (m,n) in the sub-matrix Z.Jginl is the z-component of the electric
field produced on the m'* segment of the chiral cylinder S, when a z-directed
electric current (Jz), located on the n'* segment of the cylinder radiates into the
unbounded internal medium characterized by (e., pe, &). A typical element is

given by,

/

ClmC
ZcJzinl(m,n) = 0 3

[hl HG (™ = p'|)dl

+ hy / H? (ho|p™ — p'dl'|  (B.10)

Here, 7. represents the intrinsic impedance of the chiral cylinder and is given by,

o= —tl (B.11)

V1402

where, 1 = \/lic€., h1 and hs, respectively, are the wave numbers of the right and

left hand circularly polarized waves in the chiral medium, given by,

by = wpeé + v/ (k)2 + (el (B.12)

h2 = _w,ucg + \/<kc)2 + (wﬂcg)Q (B13)

and
ke = wy/lc€e. (B.14)
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Z.J¢inl :

The element (m,n) in the sub-matrix Z.J{inl is the z-component of the electric
field produced on the m' segment of the chiral cylinder S. when the lateral
electric current (J,), located on the n'* segment of the cylinder radiates into the
unbounded internal medium characterized by (€., e, §). A typical element is

given by,

ZJ{inl(m,n) = ncémc [h1/ (ﬁc . (‘ch—:z,)> Hf)(hl’Pmc - Pl‘)dl/

—h2/ <n (p—_p,)> H{Q)(hg\pm—p’pdzl (B.15)

o —p

Z.MSin1 :

The element (m,n) in the sub-matrix Z.Mginl is the z-component of the electric
field produced on the m* segment of the chiral cylinder S, when a z-directed
magnetic current (My), located on the n* segment of the cylinder radiates into
the unbounded internal medium characterized by (€., fe, &). A typical element is

given by,

/

ZCMCZinl(m, n) = ‘% [hl / H(()Q) (h1|pmc . p/ )dl

—h2/ H? (ha|p™ — p'|)dl' | (B.16)

Z.Mjiinl :

The element (m,n) in the sub-matrix Z.M{inl is the z-component of the electric

field produced on the m'* segment of the chiral cylinder S, when the lateral
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magnetic current (My,), located on the n'" segment of the cylinder radiates into

the unbounded internal medium characterized by (€., fe, &). A typical element is

given by,
ZM{inl(m,n) = _ Ilme hl/ e » M H1(2) (| p™ — p )dl/
8 one ‘pmc —p
+ hz/ fle - M HP (ho|p™ — p'|)dl'| (B.17)
e ‘Pmc - P
L.Mjinl :

The element (m,n) in the sub-matrix L.Mfinl is the lateral component of the
electric field produced on the m! segment of the chiral cylinder S, when the lateral
magnetic current (M), located on the n'* segment of the cylinder radiates into
the unbounded internal medium characterized by (e, p., &). A typical element is

given by,

LM inl(m, ) = —2 lgc(im ne) [hl / HE (ha|p™ — p'|)dl

_ h2/ Hé2)(h2|pmc_ p”)dl’]

1

’

J

* 8lne

h_l/ H(Q) hilo™t — o' Ndl
1 (CM?%%M%) 0 ( 1‘P P|)

)dl']

a 827”6 [hll /( ne=} yenerd) H;” (halp™ = P,Ddl/

’

+h2_1/( ) +1) HSZ)(}Q}pmH— —p
T2 4

+h21/ L HS? (ho| p™e —p’\)dz’] (B.18)
(c”c 2+c"“+2)
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L.JSind :

The element (m,n) in the sub-matrix L.J5inl is the lateral component of the
electric field produced on the m'* segment of the chiral cylinder S, when a z-
directed electric current (Jz), located on the n'* segment of the cylinder radiates
into the unbounded internal medium characterized by (e., pe, &). A typical

element of the sub-matrix is given by,

. clmc N me _ g me / ’
LJginl(m,n) = 0 3 [hl/ (nf . H) H{Q)(hl}p —p|)dl

—hz/ (ﬁf-(p—_z,)>Hl(2)(h2|pmc—p/’)dl/] (B.19)

|me r_

L J¢inl :

The element (m,n) in the sub-matrix L.J{inl is the lateral component of the
electric field produced on the m*™ segment of the chiral cylinder S, when a lateral
electric current (J,), located on the n'® segment of the cylinder radiates into the

unbounded internal medium characterized by (e., p., ). A typical element of
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the sub-matrix is given by,

LoJSinl (m,n) = —"Cémc(im ne) [m / H? (h|p™ = p'|)dl

o [ Al |

/

— 87[7;; [hl_l/(m1 nc+%) Hé2) <h1|pmc+ _p/’)dl

2 4c

G [y B g ]
c “+c 7)

’

Tc

t e

)l

L.-M7inl :

The element (m,n) in the sub-matrix L.M$inl is the lateral component of the
electric field produced on the m!" segment of the chiral cylinder S. when a lateral
electric current (Jp,), located on the n'* segment of the cylinder radiates into the
unbounded internal medium characterized by (e., g, £). A typical element of

the sub-matrix is given by,

.lmc N me _ g me / i
LCM%inl(m,n):]S [hl/ (nf.H>H{2>(hlyp —p|)a

mc

e / <ﬁf ' H)Hl(z)(hzlpmc — p’])dl'] (B.21)

The last two rows of (B.1) denote the fields that are produced in the unbounded

internal medium of the dielectric half-space (€4, itq). These sub-matrices can be
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computed by using similar expressions as in (B.2) - (B.9). Note that the currents

radiate in the unbounded dielectric medium.

ZdJ%inZ .

As an example, the element (m,n) in the sub-matrix ZqJ$in2 is the z-component
of the electric field produced on the m' segment of the dielectric half-space Sg,
when a z-directed electric current (Jz), located on the n'™ segment of the dielectric
half-space, radiates into the unbounded internal medium characterized by (€4, fiq)-

A typical element of the sub-matrix is given by,

)dl' (B.22)

Zadgin2(m, m) = =580 [ (g p

Where, 74 is the intrinsic impedance of the dielectric half-space (€4, pq) and is

given by ng = \/pa/€q and kg = w./lq€q.
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Appendix C

Plane Waves in Chiral Media

General plane waves in chiral media are discussed in Sec. 2.3. Here, an example,
plane waves due to an infinite current sheet in a chiral medium is presented. The

source-free Maxwell’s Equations are given below.
V xE=—jwB (C.1)
V xH = jwD (C.2)
Post’s [44] constitutive parameters are:

D=¢E - j¢B (C.3)

H= %B — J¢E (C.4)

Substituting (C.3) and (C.4) in (C.1) and (C.2) yields the following set of Maxwell’s

Equations for chiral media.
V X E=w(uE — juH) (C.5)
V xH=wlj(e+ p&®)E + puéH| (C.6)

Researchers use different constitutive parameters in the literature. Therefore,

another way of writing the fields due to an infinite current sheet is presented in

156



Sec. C.2. A different set of constitutive parameters, proposed by Lindell [50], is
used. It is shown that both the sets of constitutive parameters yields the same

solution.

C.1 Plane Waves Produced by an Electric Cur-
rent Sheet in a Chiral Medium

Consider an infinite current sheet placed at z = —d plane in an unbounded chiral

medium (e, i, §), as shown in Fig. C.1. The current J is assumed to be,
J = —4Jyi (C.7)

Where Jj is a constant.

&M, &

z=-d z=10

Figure C.1: An infinite current sheet in an unbounded chiral medium.
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The field produced by this source, for z < —d is given by,

E-.(J) = ndof (& + jg)e™ +0 + (7 — e+ | (C8)

H_.(3) = Jo{ (=9 + ja)e™ ) + (= — ja)e™ 0L (C.9)

The subscript —z represents the field traveling in —z-direction. The terms in
(C.8) and (C.9) with wavenumber h; denote the right hand circularly polarized
(RHCP) waves and the terms with wavenumber hy represent the left hand circular

polarized (LHCP) waves. The two wavenumbers are given by,

hi = wpg + k2 + (wpk)? (C.10)
hy = —wpé + / k2 + (wpé)? (C.11)

and
n

T T ()

is the impedance of the chiral medium, where, k = w,/jz€ and n = \/ /e are the

(C.12)

wave number and the wave impedance in a regular dielectric medium.

Similarly, the field for z > —d is given by,

E,.(J)= ncJo{@ — jg)eMED 4 (3 4+ j@)e‘m(z*d)} (C.13)
Hoo(J) = Jof (5 + ji)e /G40 o (i — ji)e 00 ) (C.14)
The subscript 42z denotes the fields traveling in the +z-direction. Note that the

pairs (C.8) and (C.9), and (C.13) and (C.14) satisfy (C.5) and (C.6). Furthermore,
E..(J)=E_.(J)at z=—d,and 2 x [H;.(J) —H_.(J)] =J at z = —d.

C.2 Another Way of Writing The Fields

It is very well established that the fields (E, H) due to J and M currents in chiral
media (e, u,§) can be written as the sum of two fields (E*,H") and (E~,H").

The former are called the plus fields and the latter are called the minus fields.
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The plus fields (E*, H) are produced when the plus sources (J*, M™) radiate
in a regular dielectric medium characterized by (e*, u*). Similarly, when the
minus currents (J~,M™) radiate in the regular dielectric medium (e, u~), they
produce the minus fields (E~,H™). For derivation of these quantities and the
relative Maxwell’s Equations based on the new parameters, refer to an elegant
derivation in [78,79]. Here, the constitutive parameters (Lindell, [45]) and the

derived Maxewell’s Equations are presented for completeness.

The subscript L reminds us that these are Lindell’s constitutive parameters.
Replacing (C.15) and (C.16) in the source free Maxwell’s Equations result in the

following equations for chiral media.
V x E=wéE — juuH (C.17)

V xH= jWELE + waH (C18)

The + fields, currents, and media parameters are given below [78].

B — % (C.19)
B — % (C.20)
E=E"+E~ (C.21)
= DI +§E/” (C.22)
H — H_TJE/” (C.23)
H=H"+H (C.24)
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_J—jiM/n

Jt =
2
J,_J+J’M/n
a 2
J=J"+J"
M* — M + j3dn
2
M- = M —jdn
2
M=M"+M"
€+:6L—|—f/77
€ =e—E&/n
pwt=pn+&n
po o= —&n

(C.25)

(C.26)
(C.27)

Then the Maxwell’s Equations for the plus and minus regular dielectric medium

can be rewritten as follows:

V x Et = —jup ™ T

V x HY = jwetE™"

VXE =—jwp H”

V xH = jwe E”

(C.35)
(C.36)
(C.37)

(C.38)

Using the above decomposition, the problem in Fig. C.1 can be divided into

the following two problems shown in Fig. C.2.

It can be shown that the RHCP wave in the chiral medium, first part of (C.8)
and (C.13), can be produced by a (J*,M™) radiating in a regular dielectric

medium characterized by (et, u™), where,
Jt = —22J,

160
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(b)
Figure C.2: Equivalent problem for Fig. C.1. (a) Setup for the plus medium and
(b) Setup for the minus medium.
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and
M = —252nJy (C.40)

The fields produced due to M™ for z < —d are
ET (M") = gjnJoe’* =9 (C.41)

Ht (M*) = @jJye’™ G+ (C.42)

Here, the superscript ‘+’ shows that the fields are produced in the (e*, u™) regular
dielectric, and the subscript —z shows that the fields are propagating to the left
of the current sheet, i.e., in the -z-direction. The wavenumber in the plus medium
is given by [79],

kt =w(\/prer + &L) = wy/putet (C.43)

Similarly, the fields produced due to J* for z < —d are

HY(J) = —§Joe?™ =+ (C.44)
E* (J%) = n[H(J") x (-2)] (C.45)

then
E*,(J7) = dnJoe’™" =+ (C.46)

The total field for z < —d is,
E* (JT, M) = nJo(& + jij)e/* =T (C.47)

HY (JF, M) = Jo(—§ + ji)e/ =+ (C.48)

Similarly, the total field for z > —d can be written as,
EL(JT,M") = (@ — jj)e ¥ =+ (C.49)

HE(JT,M") = Jo(j + ji)e ¥ =+ (C.50)

The subscript +2 shows that the fields are propagating to the right of the current

sheet, i.e., in the +2z-direction.
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Equations (C.47) and (C.48) are the RHCP waves traveling in the -z-direction
whereas (C.49) and (C.50) are the RHCP waves traveling in the +z-direction.
Note that these fields are similar to RHCP waves in (C.8) and (C.13).

The transformation between (e, p, £) in Post’s parameters and (e, pr, &)

in Lindell’s parameters are as follows [79]:

€ = €+ p&? (C.51)
Bp = [ (C.52)
§o = p€ (C.53)
This means,

2
€=¢€r + & <C54)

1293
H =ML (C.55)
= 132 (C.56)

1227

Substituting (C.54) - (C.56) in Post’s constitutive parameters ((C.3) and (C.4))
one can easily get Lindell’s constitutive relations ((C.15) and (C.16)). Furthermore,
the wavenumbers for the RHCP /LHCP waves, hq » and k™, can be equated using

the above transformations.

In a similar fashion, using Fig. C.2b, it can be shown that when the currents
(J7, M),

J =—-22J (C.57)

M~ = zj52nJy (C.58)

radiate in the regular dielectric medium (e~, ™), they produce the minus fields
(E~,H") given below.

E,(J7,M") = nJo(@ — jg)e/* =+ (C.59)
H™,(J7,M") = Jo(—j) — j&)e/* =+ (C.60)
EL.(J7,M") = nJo(@ + jge 7" &+ (C.61)
H (37, M) = Jo(jj — ji)e /¥ &9 (C.62)
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with

k™ =w(\/prer + &) = w\/ e (C.63)

Equations (C.59) and (C.60) are left hand circularly polarized (LHCP) waves
traveling in the —z-direction (denoted by the subscript —z). Similarly, (C.61) and
(C.62) are LHCP waves traveling in the +z-direction (denoted by the subscript
+2). Note that ET + E~ = E and H" + H™ = H which are the same fields as in

the original problem of Fig. C.1. The fields are written again for completeness.
The field produced by this source, for z < —d is given by,
E_.(J)= ncJo{@ + ) D 4 (3 — j@)eﬂ"”“@} (C.64)

H_.(J3) = Jo{ (=3 + @)™ 0 4 (= — ja)e” ¢+ | (C.65)

Similarly, the field for z > —d is given by,

E+(3) = nedo{ (& = j9)e 4D 4 (3 4 e+ ) (C.66)

H,.(J) = Jo{@ + ji)e F D 4 (j — jfc)e*f"“”d)} (C.67)
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