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ÖZET

KÜÇÜK NESNELERIN TESPİTİ ÜZERİNE DETAYLI
İNCELEME

Melik Ahmet Daye
Elektrik-Elektronik Mühendisliği ve Siber Sistemler, Yüksek Lisans

Tez Danışmanı: Prof. Dr. Bahadır K. GÜNTÜRK
Şubat, 2021

Yapay zeka ve bilgisayarlı görü sistemlerindeki gelişmeler nesne tanıma teknolo-
jisini bilgisyarlı sistemler için kolaylaştırmaktadır. Nesne tanıma teknolojisi yüz
tanıma, güvenlik sistemlerinde, robotik sistemlerde, sürücüsüz arabalarda ve ben-
zeri sistemlerde kapsamlı bir şekilde kullanılmaktadır. Nesne tanıma teknolojisi
üzerinde yapılan çalışmalar görüntülerden nesneyi tanımlayan özelliklerin topla-
masını geliştirerek, nesnelerin sınıflandırmasını ve görüntedeki yerlerinin belir-
lenmesinin doğruluğunu artırmayı hedeflemektedir. Geleneksel metotlar manuel
olarak belirlenen tanımlayıcı özellikler ve filtrelemeler ile nesneleri tespit algo-
ritmaları ile bulmaktadır. Grafik işleme üniteleri ile evrişimli sinirsel ağların
gelişiminde sonra, nesneyi tanımlayan özelliklerin çıkartılması hangi özelliklerin
daha önemli olduğunun algoritma tarafından otomatik bir biçimde öğrenilme-
siyle nesne tespiti sistemlerinin başarım oranı artmıştır. Büyük veri kümeleri
ve derin öğrenme ağları ile nesne tanımanın başarı oranı artmakta ama buna
rağmen bu sistemlerin nesne tanıma üzerinde eksikleri bulunmaktadır. Bu eksik-
lerde bir tanesi küçük sayılan nesnelerin bulunmasındaki zorluktur. Bu zorluğa
sebep olan nedenlerin tespiti ve bunlara karşılık gelebilecek çözümler üzerine bir
çok araştırma yapılmaktadır. Bu çalışmamızda küçük sayılan objelerin tespitini
zorlaştıran etmenleri ve bunlara uygun çözümleri bugüne kadar yapılan önemli
çalışmalar üzerinden detatylı bir şekilde sunacağız. Bu çalışmalardaki kullanılan
çözümlerin metodolojisi ve birbirlerine göre mukayesesini de boşarım oranı ve
verimliliği üzerinden yorumlayacağız.

Anahtar sözcükler : Derin öğrenme, nesne tespiti, küçük objeler, inceleme,
karşılaştırma, algı alanı, nesne özelliklerinin gösteriminin geliştirilmesi, veri
artırımı, görüntü parçalarını kullanma, çoklu ölçekte nesne özellikleri, hiper
parametre optimizasyonu, bağlamsal özellik kullanımı, süper çözünürlük.
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A COMPREHENSIVE SURVEY ON SMALL OBJECT
DETECTION

Melik Ahmet Daye
M.S. in Electrical, Electronics Engineering and Cyber Systems

Advisor: Prof. Dr. Bahadır K. GÜNTÜRK
February, 2021

The advancement in artificial intelligence and computer vision facilitates ob-
ject detection for computer-based systems. Object detection is used in a wide
spectrum of applications such as face detection, enforcement application, robotic
vision, autonomous cars, etc. The studies on object detection aim to improve
feature extraction from images and improve the classification and localization of
objects in an image. The traditional methods achieve object detection via hand-
crafted features or filters with prediction algorithms. After the improvement of
convolutional neural networks and stronger processing units such as Graphics
Processing Units (GPU), the features extracted in a way of that which features
are important to predict object information more precisely. The huge datasets
and deeper networks are used to increase accuracy in object detection but every
system has some drawbacks. One of the drawbacks of object detection has the
difficulty to detect small objects in images. Many types of research were con-
ducted on the reasons for the challenge in small object detection and important
approaches are developed the solve this problem. In our thesis, we explain the
drawbacks and solutions in the light of prominent studies comprehensively. Also,
we discuss the methodology of solutions and compare them in terms of accuracy
and efficiency.

Keywords: Deep learning, object detection, small objects, survey, comparison,
receptive field, feature enhancement, augmentation, image tiling, multi-scale fea-
tures, optimizing hyper-parameters, contextual reasoning, super-resolution.
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Chapter 1

Introduction

The computer vision field has been developed through the years for computers
to perceive the world similar to human vision systems. The human vision sys-
tem consists of eyes and a complex neural brain system to interpret the signals
from the eyes. In parallel to the human vision system, the researchers have been
developing several types of sensors similar to the eyes and algorithms similar to
the human brain. Object detection is crucial technology in the computer vision
field because recognizing and locating objects is an essential ability to interpret
the world for various applications such as reading license plates, interpret the
situations from images, face detection, and recognition, autonomous cars, facil-
itating enforcement activities, etc. Early object detection systems are made by
hand-crafted features from images and prediction algorithms. After the advance-
ment in GPU, Convolutional Neural Network (CNN) based algorithms have been
developing to converge the human neural systems. In recent years, CNN based
object detectors achieve remarkable success to classify and localize objects which
have different visual appearances in various environment

Despite progress in object detection, object detectors have some weaknesses
against some challenging cases such as small objects. Small objects are hard to
detect in images because of their inadequate visual appearances. They can be af-
fected by occlusion, low-resolution imaging, and imbalance between other classes.
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In our work, we examine the reasons for challenges in small object detection and
gather the proposed techniques that present novel ideas to overcome challenges.
Each technique is explained in detail and supported with relevant studies. A
comparison is also provided to show the effectiveness of approaches.

In Chapter 2, the general object detection techniques are explained in detail.
In Chapter 3, we describe the small objects and explain reasons which cause a
challenge in small object detection. In Chapter 4, we explain the approaches that
improve small object detection with their example proposed methods and make
connections between reasons of challenge and proposed solutions. The evaluation
results of methods that are explained in Chapter 4 are shown in Chapter 5 and
we compare the methods in detail in terms of accuracy and efficiency. In Chapter
6, we conclude our work and mention future work.
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Chapter 2

Object Detection

Object detection is a technology field of computer vision and image processing
that wants to achieve human-like recognizing and identification of objects in im-
ages. The main goal of this technology is localizing objects and making decisions
about their classes using visual features from digital images. Object detection has
a huge impact on developing text recognition, image annotation, activity recogni-
tion, face detection and recognition, robotic vision, autonomous cars, surveillance
and reconnaissance applications, etc. The general approaches for this task are
divided into two main categories; traditional approaches and deep learning ap-
proaches.

2.1 Traditional object detection

Traditional approaches are based on manually designed and extracted features
and more simple machine learning techniques which are Support Vector Machine
(SVM), decision trees, random forest, etc. The common architecture of tradi-
tional techniques can be separated into three stages: proposal generation, feature
extraction, and classification [9]. The proposal generation is based on searching
regions of interest that contain objects, this search can be accomplished with the

3



sliding windows method [12, 13]. The feature extraction stage is responsible for
obtaining feature vectors and encoded by feature descriptors such as Histogram
of Oriented Gradients (HOG) [14], Haar [15], Scale-invariant Feature Transform
(SIFT) [16] or Speeded Up Robust Features (SURF) [17]. The last stage, classifi-
cation, learns to match labels of object classes to the regions which are proposed
and encoded with feature descriptors.

2.1.1 Viola-Jones detectors

P. Viola and M. Jones developed the first real-time object detection method which
specialized in face detection [18, 19]. Viola-Jones (VJ) detector is a combination
of different methods which are Haar [15] features, integral image, Adaboost [20]
algorithm and detection cascades. VJ detector uses a sliding window approach
to find faces in an image with the help of Haar features and Adaboost algorithm
which is used for feature selection. The real-time performance comes with an
integral image, feature selection, and detection cascades methods [10].

2.1.2 HOG detector

N.Dalal and B.Triggs made significant improvements on SIFT [16] and proposed
a new feature descriptor named HOG [14]. It uses different scales of images for
detection without changing detection windows size and overlapping local contrast
normalization blocks to make a robust detector for feature in-variance(translation,
scaling, illumination, etc.) and the non-linearity [10]. It is used primarily for
pedestrian detection.

2.1.3 Deformable part-based model

Deformable Part-based Model (DPM) was developed on top of the HOG detector
by P.Felzenszwalb in 2008 [21], and R.Girschick made important contributions

4



to the DPM detector. The DPM detector detects objects with Markov random
fields which use the “divide and conquer” technique to produce mixture graphical
models of objects from different parts of objects as deformable parts. The DPM
contains three major parts: root filter, part filters, and spatial model. Root filter
extracts more shallow features from the whole object, part filters learns features
from smaller parts of the object more extensively than root filter and spatial
model makes decisions about locations of the part filter for the root. The filters
can learn their configurations with a manner of weakly supervised learning as
latent variables. R.Girshick developed some important techniques for improv-
ing the accuracy of DPM detectors such as hard negative mining, bounding box
regression, and context priming. Later on, these methods are used by modern
object detection techniques with new improvements for many years. The DPM
detector was the winner of Visual Object Classes (VOC)-07, -08, and -09 detec-
tion challenges, P. Felzenszwalb and R. Girshick also were awarded the “lifetime
achievement” by PASCAL VOC [10].

2.2 Object detection with based on deep learning

Deep learning approaches are based on feature extraction backbones which mostly
consist of convolutional layers that have the capability of learning high-level rep-
resentation of important image features and modern object detector parts. Most
deep learning-based object detection techniques are composed of three common
stages: an input layer, backbone, and prediction part. Also, some network archi-
tectures contain neck parts that collect feature maps from different stages of the
network. Furthermore, object detection techniques are divided into two groups
with respect to their prediction parts: one-stage detectors and two-stage detec-
tor. The common pipeline of both one-stage and two-stage detectors is shown in
Figure 2.2.1. The pipeline begins with feeding input into a backbone network,
then the output of the backbone network is named as feature maps. The neck
part follows the output backbone but it is optional and is used to increase the
quality of features in features maps. The last stage is the prediction stage and
it differs between one-stage and two-stage detectors. In the next section, we will
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describe the backbone and introduce some of the preeminent backbone networks
which are used commonly in deep learning. Then, we will describe the meaning
of one-stage and two-stage detector and examine them. Finally, we will review
some important deep learning-based object detection techniques chronologically.
The neck parts of object detectors are not explained in this section but we will
give some examples and we will mention them in the next sections when we will
address the solutions for small object detection.

Figure 2.2.1: The common pipeline of deep learning based object detector [1].

2.3 Backbone networks

Backbone networks act as hand-crafted features of traditional methods but the
main difference is they can learn and extract features from training data and
generate a high-level representation of images, which are called feature maps.
The carefully selected backbone network can directly affect the memory, speed,
and performance of the detector [22]. The convolutional layers perform as feature
extractors by applying a filter to the input image and they are critical layers of
the backbone network. The backbone networks usually are trained on ImageNet
[23] or OpenImage [24] dataset.The design of the backbone network should meet
the trade-off between accuracy and speed. The real-time applications may require
more efficient and shallow backbone networks. On the other hand, if accuracy is
more important deeper and more complex backbone networks can be preferred.
The most famous backbone networks can be named as : AlexNet [25], VGG [26],
GoogLeNet [27], ResNet [28], Darknet19 [29], Darknet53 [30] , ResNeXt [31],
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Xception [32] and etc.

2.3.1 AlexNet

AlexNet [25] was the winner of the ImageNet ILSVRC-2012 competition and
outperformed the traditional methods. The network that has eight layers was
considered the first large scale CNN.

2.3.2 VGG

The Visual Geometry Group (VGG) [26], a famous backbone network, was in-
troduced by Oxford VGG in 2014 and has two most common types VGG-16 and
VGG-19. The VGG network is deeper than AlexNet [25] and uses smaller con-
volution filters than AlexNet. It still has been used widely in detection networks
since proposed.

2.3.3 GoogLeNet(Inception)

Google Inc. proposed this deeper architecture at first in 2014, then some enhance-
ment has come through the years and Inception has 4 versions. The factoring
convolution and batch normalization techniques were introduced by Inception
[27] network.

2.3.4 ResNet

The Deep Residual Networks [28] was introduced as a very deep network by
K.He et al. in 2015 and it may have up to 152 layers. The most known
types are ResNet50,ResNet101 and ResNet152. The contribution of ResNet
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to CNN is residual layers which can feed by previous layers feature and mak-
ing easier the training of networks. ResNet was the winner of ImageNet [23]
detection-localization and Microsoft Common Objects in Context (MS-COCO)
[33] detection-segmentation when introduced in 2015.

2.3.5 Darknet-19

Darknet-19 was proposed with YOLOv2 [29] by Joseph Redmon and Ali Farhadi
in 2016. The design of the network was inspired by GoogLeNet [27]. The design
of convolutional layers filters are similar to VGG [26] networks, smaller filters
such as 3x3 and 1x1 were used. Also, batch normalization is used to stabilize and
accelerate training. Darknet-19 has 19 convolutional layers and 5 max-pooling
layers. It achieved 72.9% top-1 accuracy and 91.2% top-5 accuracy on ImageNet
[23]. It has real-time performance with 5.58 billion operations for inferencing to
an image.

2.3.6 Darknet-53

Darknet-53 was introduced as a backbone for the YOLOv3 [30] object detec-
tion network in 2018. The important differences between Darknet-53 and its
predecessor Darknet-19 [29] are usage of residual connections like ResNet [28]
networks.Also, Darknet-53 is deeper than DarkNet-19 with 53 layers and it still
has real-time inference with successive performance in utilizing GPU.

2.3.7 ResNeXt

The ResNeXt [31] was introduced by Facebook AI Research (FAIR) as the next
generation of ResNet [28] architecture in 2017. The ResNeXt has aggregated
transformations, group convolutions, and cardinality dimensions which makes
the network wider and more complex than ResNet.
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2.3.8 Xception

The lighter version of Inception [27] network with the usage of depthwise separable
convolutional layers. It was introduced in 2017 by Google Inc. It is the backbone
of many object detectors such as MobileNet [34] and LightHead Regions with
CNN (R-CNN) [35]. It is very suitable for deep learning tasks that operate in
embedded systems because of requiring low power and computation cost.

2.4 Two-stage detectors

The two-stage detectors have to produce a set of proposals which are potential
regions of interest that may contain objects. In the first stage, region proposals
are generated to further refining of class and localization information in the second
stage. In the second stage, features and pre-prediction information are used to
obtain final prediction results. The first examples of deep learning-based object
detection techniques are designed as two-stage detectors. The performance of
traditional object detection techniques and handcrafted features has reached a
plateau after 2010 [10]. When CNNs became popular after 2012 , R. Girschick et
al., the developer of DPM [21], proposed a new detector: R-CNN [36] for object
detection [10]. The R-CNN is the first object detector based on deep learning and
a two-stage detector. The first two-stage detectors use sliding windows techniques
such as Selective Search [37]. The first detectors have trainable and untrainable
parts. Thus, the two-stage detectors do not work in an end-to-end fashion and
they are slow because of searching algorithms. Then neural network-based region
proposal networks are used to generate proposals and they become an end to
end trainable and faster. Moreover, most two-stage detectors make predictions
on a single feature map that degrade the performance of the detector because
detectors are not sensitive to objects in different scales. The Feature Pyramid
Network (FPN) was proposed to solve single-scale issues with multi-scale feature
pyramid and path aggregation.Figure 2.4.1 illustrates the common structure of
two-stage detectors.
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Figure 2.4.1: The common structure of two-stage object detectors [2].

2.4.1 R-CNN

R-CNN [36] is one of the two-stage object detector methods that has improved
the performance of object detection. This proposed method has three significant
parts which are proposal generation, feature extraction, and region classification.
By using Selective Search [37], R-CNN is able to create a sparse set of proposi-
tions which is intended to dismiss regions that can undoubtedly be recognized as
background regions for every image. Each proposition is cropped and resized for
the same size in order to be encoded into a feature vector. By these extracted
features, bounding box regression is able to learn the unique proposals of the
object. R-CNN uses a transfer learning method which uses pre-trained weights
of ImageNet [23] except for the last fully connected layer so the R-CNN archi-
tecture is fine-tuned on the pre-trained model and by this way the performance
of the model is increased significantly. Using this proposed method produces
more robust and discriminative features for classification when it is compared to
traditional methods.
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2.4.2 SPP-Net

Spatial Pyramid Pooling (SPP)-Net [38] aims to extract more descriptive fea-
tures using the Spatial Pyramid Matching (SPM). The special layer called spa-
tial pooling layer computes the feature map from the entire picture utilizing the
extractable same size feature vectors. In this way, there are no cropping proposal
regions to feed into the CNN model like in R-CNN so there is no information
loss and it can obtain more information from different scales. Thus, extracted
features are given to bounding box regression and SVM classifier. SPP-Net is not
only getting more descriptive features, it is also faster compared to R-CNN [36].

2.4.3 Fast R-CNN

Fast R-CNN [39] focuses on the two negative sides of SPP-Net [38] which are
needs for extra cache memory to store extracted features and limiting the learning
capability of backbone architecture of SPP-Net. However, Fast R-CNN computes
the feature map like SPP-Net but uses an Region of Interest (ROI) pooling layer
to extract regional features by taking a single scale partition of the proposals into
the same number of divisions and this crucially affects the backbone of SPP-Net’s
learning capability and memory caching. Hence, all the steps are optimized end-
to-end and achieve better performance and inference speed compared to R-CNN
and SPP-Net.

2.4.4 Faster R-CNN

Faster R-CNN’s [40] one of the unique ideas was using a proposal generator which
is named as Region Proposal Network (RPN). This newly developed network can
learn a high level of visual information and be able to create new information
about the region in a data-driven manner. Even though Faster R-CNN corrects
the speed bottleneck of Fast R-CNN [39], the issue of detecting small objects at
different scales was still difficult with Faster R-CNN because of the single deep

11



layer feature map in order to predict the last results.

2.4.5 FPN

FPN [41] tries to increase the low performance of Faster R-CNN when detecting
objects at different scales. The proposed network is designed on top of Faster R-
CNN [40] with FPN block. FPN block uses hierarchical feature maps instead of
using a single feature map and it merges the deep layer features with a less deep
layer to be able to detect objects at different scales. The semantic-rich features are
shared to shallow feature maps from deeper maps via lateral connections. The
feature pyramid networks achieve great performance with respect to Faster R-
CNN. The FPN module has been used by many recent detectors and the classical
structure of FPN has developed and modified for better performance through the
years.

2.5 One-stage detectors

The one-stage detectors are designed to eliminate the region proposal phase of
two-stage detectors and offer much faster detectors to meet up requirements of
a real-time application without sacrificing accuracy too much. The one-stage
detectors treat an image as a whole potential area contains an object and try
to predict coordinates of bounding box and class of object concurrently. The
precision of early one-stage detectors can be lower than two-stage detectors but
they have an advantage of higher inference speed. The first single-stage detectors,
OverFeat [42] and YOLO [43] predict bounding box and class of objects with
regression on a single feature map and they do not use any priors such as anchor
boxes. Then, multi-scale feature maps and anchor boxes are used to boost the
performance of one-stage detectors and their performance becomes comparable
with two-stage detectors. With further developments, one-stage detectors have
become more popular, robust, and outperform two-stage detectors in terms of
accuracy and inference speed. Figure 2.5.1 illustrates the common structure of

12



one-stage detectors.

Figure 2.5.1: The common structure of one-stage object detectors [2].

2.5.1 OverFeat

OverFeat [42] is considered the first successful one-stage detector that was pro-
posed by Sermanet et al. The OverFeat handles object detection as a multi-
region classification problem. The classifier part uses features from the output
of Deep Convolutional Neural Network (DCNN) to detect potential objects and
their classes in regions. The bounding-box regressor part uses these predicted
regions and the same features from DCNN to calculate the localization of objects
precisely. The image pyramid paradigm is used to achieve robust multi-scale de-
tection. Images at different scales are fed into the network and results are merged
to show refined detections.

2.5.2 YOLO

The YOLO series has been developed over the years as a one-stage detector. The
root detector of the series, YOLO, was developed by Redmon et al [43] as a real-
time detector. YOLO is not designed to produce proposals like RPNs and use
fixed proposals which are each region of an image when divided into a 7x7 grid.
The network is configured to detect two objects for each grid using regression.
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The regression predicts the location and class of objects. The inference speed of
YOLO is very high when compared to other object detectors in the same era and
reach 45-155 Frames Per Second (FPS) with different backbones. However, YOLO
has some drawbacks despite high-speed inference. First, there is a limitation on
the number of objects that can be detected for each grid so the network cannot
achieve dense predictions. The second disadvantage is the lack of support for
multi-scale features because of the single feature map. Thus, it produces poor
detection performance for objects at different scales and sizes.

2.5.3 SSD

After the publication of YOLO [43], Liu et al developed a one-stage detector
named Single Shot Detector (SSD) [5] which tries to fix the inadequacies of
YOLO. The first remarkable change of SSD over YOLO is predictions are done
on multi-scale feature maps. The feature maps at different scales are collected
from different layers of the network to detect objects in different scales and aspect
ratios. The shallow layers have rich spatial information to facilitate the detection
of small objects. The grid system of SSD is similar to YOLO but each grid is
associated with predefined anchor boxes that generalize the scale and aspect ratio
of the given dataset. The location of objects is predicted by regression with ob-
taining offsets for each bounding box from predefined anchor boxes. The weighted
summation loss is used and loss is a summation of localization loss and classifi-
cation loss. Moreover, hard negative mining [44] and extreme data augmentation
techniques are used to advance the detection accuracy. After SSD achieving state
of art results against YOLO and Faster R-CNN [40], YOLOv2 [29] was proposed
by Redmont et al. YOLOv2 has similar anchor mechanisms like SSD and outper-
forms the SSD with a more powerful backbone, batch normalization layers [45]
and multi-scale training techniques.
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2.5.4 Corner-Net

The one-stage detectors use prior information or regression techniques to localize
and categorize objects without generating proposals. The first YOLO [43] de-
tector approaches the localization problem as a regression problem. Then, SSD
[5] proposed default boxes or anchor boxes which are derived from data set as
prior information and have some hyper-parameters for involvement in the net-
work. Also, YOLOv2 [29] followed the same way and brought the anchor boxes
concept which is pre-computed before training with k-means clustering. Later,
several studies have emerged on anchor-free detectors that predict localization
information of objects without being associated with anchor anything but they
tried to approximate the bounding box by predicting key points of them. Cornet-
Net [46] was proposed as an anchor-free detector and pairs of corners are used to
detect objects. The detection module of pair corners is responsible to calculate
class heatmaps, pair embeddings, and corners offsets. The heat maps are used to
detect corners as a group of same class objects. The top-left and bottom-right
corners are extracted with a novel concept as a corner pooling which takes a
maximum of row and column of pixels and gets a maximum point of intersection
of column and row. The corner offsets are included in the regression problem and
corner points of bounding boxes are refined. The Corner-Net achieves significant
improvement among one-stage detectors on MS-COCO [33] data-set
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Chapter 3

Small Object Detection

The object detection contains several challenges even though the modern object
detectors achieve state of art results. One of the important challenges of object
detection is detecting small objects. Small objects suffer insufficient strong visual
information and bias of background or other larger objects make detection of the
more difficult. A small object can be small in real world measurements or can
be a normal object in the real world but it appears small in an image because
of camera perspective Figure 3.0.1. The occlusion and overlapping between ob-
jects may increase the level of challenge in small object detection. The various
object detectors have been proposed to advance object detection but the object
detectors focus on the detection of objects that are categorized as medium or
large, the small objects are still suffering in terms of low precision and recall.
The feature maps of various detectors tend to miss the small objects because of
their weak feature representation. The advance in object detectors proves that
object detectors are becoming play a part in the real world and are widely used
in various fields such as autonomous cars, authentications and security systems,
medical imaging, robotics, etc. Then, these fields require the detection of small
objects to achieve finding small faces, flinders, pedestrians, vehicles for military,
surveillance, and robotic systems. This need occurs enhancement in small object
studies and various studies have been proposed to deal with this challenge. In
light of studies, we are going to examine approaches to overcome small object

16



challenges and introduce comprehensive comparisons and commentaries over the
methods. In the next chapters, we will describe the definition of small object and
introduce some of the preeminent datasets which are used commonly to train and
evaluate the performance of object detectors and their formula of evaluation met-
rics. Then, we will represent approaches to overcome the small object detection
challenge and compare the results. Finally, a comprehensive evaluation will be
made.

(a) (b)

Figure 3.0.1. The objects(a) may have small appearance in the image on the
contrary they can be considered as large, (b) objects appear small in the images
as same as in the real life. The image in the first row of first column is taken
from [3], the remained images are taken from [4].
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3.1 The definitions of small objects

The definition of a small object is not a clear topic in the objection detection
field. Visual representation of small objects can be described by both qualita-
tive and quantitative properties. The qualitative description of small objects are
hard to define in metrics because qualitative descriptions are relative. All ob-
jects can be negatively affected by occlusion, truncation, and overlapping with
other objects or backgrounds in terms of object detection. The relativity occurs
when these negatives factors effect the small objects more than other objects be-
cause of low pixel occupation. The low pixel occupation generate weak texture
information when is combined with these negatives factors. The resulted weak
texture may have insufficient sharpness, blurred regions, unrecognizable object
appearance or indistinguishable pixels from another objects and backgrounds.
Adding these characteristic of small objects to definition of them, they have to
be measured for converting to metrics and determining generalized thresholds
for further evaluation purposes. There are several measurements for intensity,
sharpness, resolution, etc., but these metrics are not included to annotation of
objects in datasets. Also, occlusion and truncation are taken into account for
evaluation in some annotation of datasets but they are general properties for all
objects. In short, there are some qualitative properties can be describe small
objects but they are not specified in terms of measurements and this field is open
for further research to contribute these properties in definition of small objects.
On the other hand, the quantitative properties of small objects can have more
clear metrics than qualitative properties and they are more about the size and
scales of small objects that have to be defined in annotations of datasets. In spite
of clearity in metrics, the quantitative properties have controversial side in terms
of threshold because the size of input images are various and the ratio between
object and image may differ. For example, if an object has a bounding box, has a
size of 100x100, this bounding box is considered as a small object in a 2000x2000
image but for a 500x500 vice versa. The size ratio between object and image
or directly size of image can specify the threshold but there is not a generalized
definition for it yet. For instance, Zhu et al. [47] describe the small object as
20% of the size of an image. This definition uses size ratio between image and
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object as threshold. On the other hand, Torralba et al. [48] mentioned another
definition for small objects and they state that if an object has 32x32 or fewer
pixels, it can be considered as a small object. This definition describes small
objects in terms of their sizes and does not need to make correlation with image
size. In the MS-COCO [33] dataset, they followed same definition of [48] and a
small object is defined as the object that has equal or smaller than 32x32 pixels
area. To sum up, quantitative properties can be used to make definitions of small
objects more effectively and uncomplicatedly despite of difficulty to determine
the threshold. In our study, we follow same convention that was used by previous
studies commonly and we used definitions are derived from quantitative proper-
ties. Two different datasets are used to measure the accuracy of object detectors
for small objects in our study. The MS-COCO and VisDrone-DET [8] datasets
are used to train and test object detectors. Thus, we use two different small ob-
ject criterion. For MS-COCO, we used same definition which is specified in the
dataset and according to the dataset, every object have instance segmentation
annotation, so if mask area of an object is smaller than 32x32 pixel area, it is
considered as small object. On the other hand, we analyzed ratio between image
and object size of VisDrone-DET and we do not specify threshold for the small
objects because VisDrone-DET can be considered as custom dataset for small
object detection. The VisDrone-DET mostly consists of small objects. The ratio
of training objects that has bounding box area smaller than the 1% of the area of
image is 97.5% and same ratio for validation objects is 97.7% for VisDrone-DET
dataset. According to these statistics, we do not have to make distinct small ob-
ject separation for VisDrone-DET dataset and all objects are considered as small
objects in evaluation part.

3.2 The challenges in small object detection

The properties of small objects and the unsuitable architecture of object detectors
causes challenges in small object detection. The reasons for the challenges can be
grouped into four main topics: low pixel occupancy, weak feature representation,
unoptimized parameters, and class imbalance.
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The low pixel occupancy is one of the main drawbacks of small objects. The
small objects compose the little part of pixels in an image, hence low spatial
information decreases the learning capability of object detectors because of con-
volutional filters and pooling layers. The convolutional filters and pooling layers
process the image to extract important parts of the image like a summarization.
If building analogy between small object area and short sentences in a book, short
sentences do not appear in summary as well as features of small objects can be
already vanished before appearing in feature maps for detection. On the other
hand, the architectural design of object detectors may cause an increase in this
drawback. The small input size of object detectors makes the image resize to the
lower resolution and degrade the pixel area of objects Furthermore, the usage of
a single feature map in deeper networks may cause vanishing features of objects
that occupy a small area in the image.

The weak feature representation is related to low pixel occupancy of small
objects but the architectural design of networks is more responsible for emerging
this drawback because many detectors are not designed for small objects. The
relation between low pixel occupancy and weak feature representation addresses
the disadvantage of usage of a single map once again. Besides that, backbone
networks can be deep and cannot preserve the features of small objects against
the enlarging in a receptive field which is caused by convolutional layers. The
different layers contain different kinds of information about objects that have
various scales, sizes, and aspect ratios. The features of these layers can be used
to enhance the weak features with fusion techniques instead of straight flow in the
process. The smaller receptive fields are descriptive for small objects so obtaining
suitable receptive fields can solve weak feature representation.

The unoptimized parameters are directly related to the settings of object de-
tectors. In the training phase, initializer weights of layers can affect the learning
capability of object detectors. Also, hyperparameters of the network have to be
suitable for training the dataset to improve training for better accuracy.

The distribution and characteristics datasets can be very challenging for object
detectors and lead to inferior performance in detection especially for classes that

20



are hard to detect because of several drawbacks. The imbalance between classes
or types of objects causes that ignoring some objects such as small objects. Bal-
ancing training data is one of the solutions for that problem. Also, giving more
importance to small objects in the training phase with custom loss functions that
can prevent bias of classes which are the majority and easy to detect.

The reasons for challenges in small object detection with their relevant solu-
tions are shown in Figure 3.2.1 The associated approaches to solution in Figure
3.2.1 are explained in detail with their examples in Section 4.

Figure 3.2.1: The reasons of challenges in small object detection and related
solutions for them.
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3.3 The datasets and evaluation metrics

The popular datasets which are used for benchmarking object detectors are com-
monly developed for general purposes such as segmentation, instance annotation,
keypoints detection, etc. The general-purpose datasets contain various objects of
different sizes. The most popular and challenging examples of the datasets are
MS-COCO [33] and PASCAL VOC [49, 50]. Also, there are some datasets de-
signed for the challenge of small object detection. These datasets aim to help for
developing object detection networks that are customized for small objects. In
this chapter, we will introduce both general-purpose datasets and custom datasets
for small object detection.

3.4 The general evaluation terms

3.4.1 Intersection over union

The classic object detectors predict class and bounding box information of ob-
jects. The predicted bounding box of an object has to meet the criterion for the
ground truth bounding box of the same object during training. The criterion con-
cept consists of a measure and threshold to determine the success of the training
process. Intersection Over Union (IOU) uses the Jaccard Index as a measurement
and computes the IOU between ground truth and predicted bounding boxes. The
IOU is computed as an intersection area divided by union area of ground truth
and predicted bounding boxes. Then, IOU is compared with the threshold to
determine whether the detection is correct or wrong. In other terms, true pos-
itive(correct detection) or false positive(wrong detection) are determined. The
mathematical expression of IOU shown below in the equation (3.1).

IoU(A,B) =
A ∩B
A ∪B

(3.1)
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3.4.2 Precision and recall

Precision is the measure of the correctness of predictions. In other terms, the
ratio of true positive samples overall detections is the sum of true positive and
false positives (3.2).

Precision =
TP

TP + FP
=

TP

all detections
(3.2)

Recall measures the detection ability of an object detector with only counting
correct detections(true positives) and compares with all ground truths. The true
positive detections divided by all ground truths gives recall performance (3.3).

Recall =
TP

TP + FN
=

TP

all ground truths
(3.3)

3.4.3 Precision-recall curve

The IOU, precision, and recall are important metrics to determine some part
of object detectors’ performance but they are not enough when they are alone
to evaluate the overall performance of the detectors. Thus, the precision-recall
curve is used to evaluate performance and detect bottlenecks of detectors. The
performed-well detector draws a curve that precision increases with recall remain
high or vice versa. Moreover, if the count of false positives and false negatives are
close or equal to zero, we can consider that the object detector is fine to detect
all ground truths with correct identification.

3.4.4 Mean average precision

The average precision is derived from the area under the precision-recall curve.
The idea behind average precision is that presenting a scalar metric which helps
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to compare different detectors easily because the average precision curves do not
follow specific patterns and tend to generate zigzag plots. The mathematically
average precision is the averaged all precision values between recall intervals as 0
and 1. The average precision is calculated per category or class, if we want to ob-
tain mean average precision, we simply average the overall precision of categories.
Furthermore, the recall intervals may be chosen differently to calculate the area
under the curve. The PASCAL VOC [49, 50] and MS-COCO [33] challenges have
different ways to calculate Mean Average Precision (mAP).

3.4.4.1 PASCAL VOC method

Before 2010, PASCAL VOC [49, 50] challenge used the 11-point interpolation
calculation. The 11-point interpolation divides recall levels between 0 and 1 to
equally 11 points as [0,0.1,0.2. . . ,1]. The interpolation function takes each point
and gets a maximum precision score between the current point and endpoint (1.0).
Then, all maximums of 11 points are averaged to obtain average precision. After
2010, all points interpolation calculation is used to get average precision. The all-
points interpolation takes maximum precision points on the precision-recall curve
and calculates the area between these points to average them. The final mean
average precision is obtained from the average of calculated average precisions. In
PASCAL VOC, the IOU threshold is taken as IOU>0.5 and all levels of IOU have
equal contribution to the calculation of precision. The mathematical expression
of calculation of average precision from 11-point interpolation is shown below in
the equation (3.4).

AP =
1

11

∑
r∈(0,0.1,...,1)

max
r̃:r̃≥r

p(r) (3.4)
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3.4.5 Precision-Recall Curve

3.4.5.1 MS-COCO method

MS-COCO [33] method differs from PASCAL VOC [49, 50] in terms of IOU
thresholding and sampling of recall points. It uses a range of IOU for thresholding
that ranges with a step size of 0.05 from 0.5 to 0.95. Also, recall sampling points
are arranged to 101 points represented as [0:.01:1]. If the threshold is specified as
single points, it is represented as AP50 or AP75 that means the IOU threshold
is 0.5 and 0.75 respectively. The mAP at each IOU point in the range [.5:.05:.95]
is calculated and averaged to obtain the final mAP (3.5).

mAPCOCO =
mAP0.50 +mAP0.55 + ...+mAP0.95

10
(3.5)

3.5 The general purpose datasets

3.5.1 PASCAL VOC

The PASCAL VOC datasets are divided into two main versions as VOC2007 [49]
and VOC 2012 [50]. Each version of the dataset could be considered as a mid-
level dataset and contains objects from 20 different classes. Both versions are
annotated for evaluation of several tasks in computer vision fields: object and
action detection, segmentation. The dataset splits consist of training, validation,
and test. The VOC2007 contains 2501, 2510, 5011 and VOC2012 contains 5717,
5823, 10991 images in order of training,validation and test.
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3.5.2 MS-COCO

MS-COCO [33] has become one of the most famous and challenging datasets
since it was published in 2015. It has 80 classes and 897k annotated objects
from 164k images (MS-COCO-2017). Each object has an instance segmentation.
The MS-COCO-2017 splits into three sub-datasets: training (118,287), validation
(5000) and test (40,670) images. We used MS-COCO in our comparison section
for techniques that will be explained in further sections because MS-COCO is
used for benchmarking nearly all papers and contains a considerable amount of
small objects in the dataset. Furthermore, the criterion of being considered a
small object is determined and accepted as objects have instance masks smaller
than 32x32 pixels. The small objects present 41.43% of all objects and appear
51.82% of all images in the MS-COCO-2017 dataset. However, if we look at the
pixel occupation of small objects, it becomes challenging because small objects
occupy only 1.23% area of images pixels.

3.6 The small objects datasets

3.6.1 TinyPerson

TinyPerson [51] was introduced as a challenge for detecting people in images
where they are far away from the camera and occupy little portions of images
that have huge backgrounds. The new terms which are absolute and relative
size of objects are used for benchmarking. The dataset aims to help detection of
people that present near the sea for quick maritime rescue and defense around
the sea. The images contain over 200 persons densely. The average precision
and miss rate are used for performance evaluation. The objects are divided into
3 sizes: tiny (2,20) ,small (20,32) and all (2,inf). Furthermore, tiny objects are
divided into three sub-sizes : (2,8), (13,20) and (13,20). 0.5 and 0.25 are used as
the IOU threshold for performance evaluation. The IOU criterion is modified for
the ignored regions in the dataset and named as Insertion of Detection (IOD).
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3.6.2 DOTA

Dataset for Object Detection Aerial Images (DOTA) [52] is introduced to enhance
object detection for remote sensing, satellite or aerial imaging. It has 14 main
classes of objects in different orientations in the 2806 images which vary their
sizes between 800x800 to 4000x4000. The total number of instances is 188,282
and 67.10 instances are annotated for each image averagely. The aspect ratio
and size of objects have huge variation and extreme objects can be found such
as bridges which have extreme aspect ratio. The extreme differences between
objects make the dataset more challenging. In terms of small objects, aerial
images contain huge amounts of small objects with massive backgrounds. The
DOTA contains objects which have horizontal bounding boxes [53] smaller than
300 pixels in a ratio of 98% and nearly half of small objects have less than 50-pixel
horizontal bounding box.

3.6.3 VisDrone-DET

The VisDrone [8] dataset contains several challenges for computer vision fields,
that are image object detection (DET) , video object detection (VID) , Single
Object Tracking (SOT) and Multiple Object Tracking (MOT). In this survey, the
image object detection part is considered for investigating small object detection.
The dataset is a collection of images and videos from drones and contains objects
in different sizes and aspect ratios densely. VisDrone-DET contains 10,209 images
which are annotated for 10 categories. The dataset is divided into training (6,471),
validation (548), test-challenge (1,580) and test-dev (1,610).

3.6.4 WIDER FACE

The WIDER FACE [53] is developed as a dataset to advance face detection chal-
lenges with 393,703 annotated faces in 32,203 images. The dataset have a huge
variation in terms of facial expression, occlusion, size, illumination, etc.
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Chapter 4

The Approaches for Small Object

Detection Challenge

In recent years, many kinds of research have been conducted on object detection
networks and some of them put effort into increasing the performance of small
object detection. We grouped the proposed ideas into three main categories:
pre-post processing techniques, network architecture solutions or modifications,
and regularizing hyperparameters or priors of the network. In this research,
the evaluation and comparison of approaches into four main groups which we
introduce for fairness: intra-comparison, intercomparison, global comparison, and
a group of exclusion from the comparison. The intra-comparisons are done for
mostly pre-post processing and regularizing hyperparameters or priors on object
detection networks. In this type of comparison base network which produces
results are considered as base scores for benchmarking, and a regulated base
network has almost identical network architecture. The intercomparison is used
for network modifications such as Deconvolutional Single Shot Detector (DSSD)
[54] and Feature Fusion Single Shot Detector (FSSD) [55] which are derived from
SSD [5] network. In global comparison, some of the approaches may not be
compared directly with other networks because they may be not related to other
networks in terms of architecture so we compared them in a global comparison
table. Finally, some approaches are dedicated to very specific parts of small
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object detection such as tiny face detection, the contributions of these approaches
are valuable for the detection of small object challenge but we cannot directly
compare them with other works.

4.1 The pre and post processing techniques

4.1.1 Data augmentation

Data augmentation is one of the effective techniques to improve training accu-
racy. The capability of the generalization object detection model is increased by
augmenting data by applying different image processing transforms on training
data. The over-fitting, most undesirable problem in training object detection
networks, can be overcome with data augmentation. The over-fitting means that
the network generalizes training data well because of the curse of dimension but
produces bad predictions on validation or test data. The most common reasons
for over-fitting are lack of training data to fit the network and using very deep
networks for training. The data augmentation deals with lack of training data
intend that more information can be gathered from the original dataset through
augmentations such as data warping or oversampling [56]. The data augmentation
includes applying transforms such as geometric transformation, color-based trans-
formation, mixing images, frequency domain transformations, and deep learning
approaches. The result of data augmentation is increasing training data and
trying to increase the learning capability of networks with augmented features.

The data augmentation becomes a crucial method for state of art object detec-
tion networks. For example , SSD [5] networks benefit from data augmentation
and increased average precision on PASCAL VOC [49, 50] and MS-COCO [33]
datasets. Figure 4.1.1 shown below shows the amount of improvement in the
mAP for the VOC 2007 test with or without data augmentation. According
to the study, SSD achieved +8.8% mAP from baseline with their augmentation
strategy on the VOC 2007 test set.
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Figure 4.1.1: The figure shows the effect of data augmentation for testing accuracy
with other anchor and convolution layer settings [5].

If we focus on improvement for small object detection, there some dedicated
data augmentation techniques have been proposed. Kisantal et al. [6] studied sev-
eral data augmentation methods for small objects. Their augmentation method is
based on two different strategies: oversampling images that contain small objects
and copy-paste small objects to images synthetically with different ratios. They
used the MS-COCO dataset and Mask R-CNN network. In their evaluations on
different pasting augmentation strategies, they achieved 9.7% relative improve-
ment on the instance segmentation and 7.1% on the object detection of small
objects. Their main goals are increasing the representation of small objects in
training data and matching anchors with small objects in training. They stated
that the best combination for data augmentation is that using the original im-
ages with small objects and their copy with copy-pasted small objects are used
for training. The difference between baseline and proposed is shown in Figure
4.1.2 below in terms of average precision.

Figure 4.1.2: The figure shows the effect of proposed data augmentation on av-
erage precision of small objects [6].
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As a result, the main advantage of data augmentation achieves improvement
for small object detection accuracy without changing the network. On the other
hand, the method of data augmentation produces two drawbacks: computation
time which is increased by online augmentation because of image processing in the
training phase, or amount of storage which is increased by offline augmentation
because of producing new training data. These drawbacks can be negligible beside
the improving accuracy.

4.1.2 Input size of network and image tiling

The input sizes of object detection networks vary with the objective of the net-
work. The sacrifice between performance and precision determines the input size
of the network because the size of the whole network is shaped by the input size.
When the input size of a network, memory consumption and inference time in-
creases. Therefore, the network is getting to fall down on real-time requirements
and memory constraints, this situation is not suitable for embedded systems. On
the other hand, the precision of the network can be higher and predictions be-
come more accurate because high-level feature maps represent more details of
objects from data under the assumption of overfitting does not occur in training.
The large input sizes also affect the accuracy of small object detection positively
because the convolution layers and max-pooling layers remove the weak features
which are mostly small objects.For example, small object,image and network have
input sizes respectively; 32x32, 1024x1024 and 256x256. For this network, the
image has to be resized with a factor of 0.25 to fit the network. So, the size
of a small object becomes 8x8 with the same ratio. Moreover, if we apply a
pooling operation to this object more than 3 times, the feature representation of
the object becomes under 1 pixel and we consider that the object vanishes for
prediction. layers [4].

The image tilling means that instead of resizing the image to network size, the
image is divided into overlap or non-overlap patches, and each patch is fed to
the network. The image can preserve the original quality and details of features
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concerning the ratio between the patch and network size. Therefore, the image
cannot be affected by high ratio scaling and small objects preserve their sizes. On
the other hand, the image tilling can increase the inference time and bring extra
post-processing overhead for merging and refining predictions. In this research
[7], PeleeNet [57] is used with image tiling for detecting objects in the VisDrone
[8] dataset which consists of pictures that are taken from drones. The process
flow diagram of the method is shown in Figure 4.1.3.

Figure 4.1.3: The proposed tiling process flow diagram for training and testing
[7].

The different sizes of image tiling grids have been experimented with for both
training and evaluation phases. Also, the real-time performance of image tiling
configurations was considered for embedded systems platforms such as Nvidia Tx1
and Tx2. The authors tried to accomplish better accuracy and admissible frame of
rate with a lightweight detector and image tiling. They used two configurations
of PeleeNet: the modified version which used the 38x38 feature map and the
default version. The images are resized to 1920x1080 for equal patch sizes and
tilled with 25% overlap for keeping continuity of objects at boundaries. The
original resized image and patches of image fed into the network for training
and testing phases. In the test phase, the detections of both the original image
and patches are merged with the proposed merging technique. The criterion of
merging was stated by authors that if the intersection of duplicate detections is
above 25%, then the one with a higher score is accepted as a better choice and the
other one is removed from the detection list. The results of best tiling setups are
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compared with their baselines in Figure 4.1.4 and the evaluation results which
changes according to different tiling setting in both training testing shown at
Figure 4.1.5.

Figure 4.1.4: The results of best tiling settings for different version of Pelee
Network and Vino on Nvidia Tx1 and Tx2 with VisDrone [8] dataset [7].

Figure 4.1.5: The changes in average precision when tiling settings are changed
in both inference and training stage [7].

4.1.3 Pretrained model

The accuracy of the object detection model is affected by the training dataset.
More and better data increases the generalization capability of a model. However,
training a model with specific data from scratch is very difficult because the
generation of an adequate specific dataset is costly. The insufficient dataset leads
to overfitting of models. The pre-trained models prevent this problem and make it
easier to train specific datasets. The general convention for this technique is that
an extra dataset that is more general and bigger than a specific dataset is trained
on a model. Then, this pre-trained model is fine-tuned with the specific dataset
to achieve the desired task [51]. The extra dataset improves the generalization
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capability of the model and leads to the enhanced performance of the fine-tuned
model. This approach can be used for dealing with small object challenges in
terms of imbalance class problems and data sufficiency. However, according to
research [51], this improvement is limited because extra data and main data are
very different in terms of the distribution of scales and sizes of objects. The
authors of the research proposed a scale matching technique to achieve more
improvement from pre-trained based detectors for detecting small objects. The
scale matching uses an analogy of histogram matching between two images and
it generates a derived dataset that has the same distribution of scales and sizes of
objects as the main dataset which has mostly small objects. Thus, the new pre-
trained network which is trained by the derived dataset can have more information
about small objects and the result of fine-tuning on the main dataset is boosted.
In the research, MS-COCO [33] was used as an extra dataset and was processed
with proposed scale matching to resemble the distribution of TinyPerson dataset
in terms of scales and sizes of objects. The Faster R-CNN-FPN [41] network is
pre-trained with a scaled MS-COCO dataset then fine-tuned with the TinyPerson
dataset. As a result of this experiment, the performance of Faster R-CNN-FPN
was improved 5% over the baseline.

4.2 Network architecture solutions

4.2.1 Backbone networks

The backbone networks are the core of the object detectors. They extract features
from input images and generate feature maps which are high-level representations
of images. The backbone networks can affect the accuracy of small object detec-
tion. The number of layers, kernel sizes of convolution filters, the flow of features
between layers, normalization layers are the keys to performance and accuracy.
However, more deeper or complex backbones do not always lead to top accuracy
because insufficient training data or low visual representation of objects like small
objects cannot give enough information to the network for updating their large
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parameters and thus over-fitting occurs. Also, the complexity of networks does
not mean low inference speed, the inference speed depends on the capability of
hardware utilization. The backbone networks have to be chosen carefully with
respect to the characteristics of the training dataset. The features of small ob-
jects can vanish in deeper networks because every feature extraction step tends to
extract the strongest features in images and small objects are staying out of the
learning process. The residual blocks, shortcut connections, and different sizes of
convolution kernels can enhance the accuracy of small object detection.

4.2.2 Multi-scale detection

One of the important challenges in the object detection field is developing scale
and aspect ratio invariant object detectors. Multi-scale detection has been come
into use as a conception to overcome this challenge. Also, this concept has proved
itself for dealing with the detection of small objects within years. The researchers
have begun with sliding windows techniques on feature pyramids, especially tra-
ditional methods such as HOG [14], DPM [21] and Overfeat detector [42] used
this technique to accomplish multi-scale detection. The more complex dataset
and appearance of objects bring new ideas to the multi-scale detection field.
The mixture models and exemplar-based detection techniques were developed to
deal with complex datasets before the beginning of the deep learning-based ob-
ject detectors. At the beginning of deep learning-based object detectors, object
proposals were developed for deciding the regions of interest which areas have
high potential to contain objects in an image. The object proposals deliver low
computation time with a high recall rate and localization accuracy than ances-
tor techniques. However, the generation of object proposals as an extra step,
the evolution of GPUs, and the need for real-time object detectors pushed the
researchers to search for different techniques such as deep regression and multi-
reference or resolution detection techniques. The deep regression technique aims
to predict the bounding boxes of objects by making regression on extracted fea-
tures. The YOLO [43] detector, the pioneer of one stage detectors, uses a deep
regression method. However, this method suffers from inaccurate localization
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especially for small objects [10]. The most advanced and recent approach for
multi-scale detection is multi-scale feature learning which is used from prominent
object detectors. The idea behind multi-scale feature learning is combining multi-
reference and multi-resolution techniques to gain power in both reference/anchor
boxes and different resolutions of feature maps. The anchor or reference boxes
which are explained in 4.3, is the important concept of multi-reference detection.
The optimization methods and importance of anchor/reference boxes are out of
scope for this section, they will be introduced in the next sections. The idea be-
hind the multi-scale feature learning can be explained with the understanding of
both feature maps and input sizes in CNNs. We examined high-resolution inputs
that are more suitable for small object detection because they can contain more
spatial-rich information in deeper layers. Multi-scale learning aims to gain power
for detecting more objects by using different resolutions of input images and fea-
ture maps in the network. The single feature map can be insufficient because
layers of the network become deeper, relative resolution becomes more coarse
than input size and convolutional filters remain bigger receptive fields which are
more suitable for large objects. Thus, the small objects are more detectable with
high-resolution feature maps with smaller receptive fields in shallow layers of the
network.

Multi-scale detection can be divided into several main process flows and the
numbers and naming of paradigms may change because of the interpretation of
authors and they are not split crisply. For example, according to Wu et al. [9],
multi-scale feature learning can be divided into four main paradigms: Image
Pyramid, Feature Pyramid, Integrated Features, and Prediction Pyramid. In our
study, we categorize the multi-scale detection into two main paradigms: Image
Pyramid and Feature Pyramid and we divide feature pyramid paradigm to pre-
diction pyramid and integrated prediction pyramid are special sub paradigms of
feature pyramid. The diagrams of image pyramid and types of feature pyramid
are shown below in Figure 4.2.1 and Figure 4.2.2.
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Figure 4.2.1: The diagram of image pyramid [9].

(a) (b)

Figure 4.2.2. The types of feature pyramid: (a) Prediction pyramid, (b)
Integrated prediction pyramid [9].

4.2.2.1 Image pyramid

The simple CNN based object detector makes predictions on a single feature map.
The image pyramid aims to train multiple detectors with different input sizes and
these detectors produce different sizes of feature maps. Then, predictions on fea-
ture maps are combined to obtain a refined prediction of the image. The image
pyramid advances the detection of small objects by producing high-resolution fea-
ture maps from high-resolution images of the image pyramid. However, training
and inference of multiple detectors increase computation time and memory us-
age. Image pyramid usually does not meet real-time requirements for utilization
of hardware in terms of parallelism and memory. There is significant research on
the image pyramid technique to improve object detection accuracy.

Liu et al. [58] proposed a face detection network that uses current scale ap-
proximation and scale-forecast network modules to build scale aware network.
The scale-forecast network was used for determining an appropriate scaling fac-
tor for the image pyramid. Current scale approximation was used for learning
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feature maps on different scales in the manner of smaller ones from larger ones.
in light of scale-forecast network.

Singh et al. [59] investigated the small object detection problem extensively
and proposed an object detector which was called Scale Normalization for Image
Pyramids (SNIP) based on the image pyramid paradigm. They stated that fea-
ture pyramids or integrated features are not the best solutions for improving the
detection of small objects. The SNIP uses image pyramids with region proposal
network and recursive cortical networks to refine region proposals at each scale of
the image and predict correspondence objects for each scale. The different object
detectors were trained for each scale of the image to handle scale invariance and
improve small object detection. They use the sub imaging technique to avoid
using too much memory for high-resolution images. Furthermore, this research
was extended with Scale Normalization for Image Pyramids Efficient Resampling
(SNIPER) [60] to reduce training time and memory consumption and benefit
from larger batch sizes. The SNIPER extends the SNIP with efficient resampling
and proposes a new sub imaging technique. The new sub imaging technique was
referred to as chip mining and divided into two parts as negative and positive
chip mining. The positive chip mining was used for generating sub-images that
contain ground truth boxes. On the other hand, negative chip mining prevents
false positive detections that came out from background parts of the image. The
region proposal network is used for generating negative chips before the training
then they are used in the training phase for speeding up learning by processing
fewer pixels. Also, the larger batch sizes which are the result of chip mining and
batch normalization technique increase the accuracy of the detector.

Meng et al. [61] researched the detection of small traffic signs from large images
and proposed an object detector, Small Object Sensitive (SOS)-CNN, which is
based on an SSD [5] using an image pyramid. The SOS-CNN splits the images
at each scale into patches and patches are fed to the network. The detections
which came from each patch are merged by non-maximum suppression. Multi-
patch detection preserves real-time inference speed because large images split
into fixed-size batches and batch inference is used for process patches. The top-
most feature map is used for prediction because the network is designed for small
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objects and the top-most feature map has spatial-rich information to reveal small
objects but the detection performance of larger objects is reduced. The larger
objects are handled as small objects with help of small scales of the original image
by image pyramid.

Another SSD [5] based network was proposed by Pang et al. [62] to exploit the
effectiveness of the image pyramid paradigm. Their design uses different scales
of an original image to enrich the multiple feature maps in the SSD network
with a special fusion module. Each level of the pyramid fed into a convolutional
block to extract features and feature attention modules are used to combine these
features with corresponding feature maps that come from SSD layers. Also, each
combined feature map is fused again with a forward consecutive feature map.
This network also can be considered as an example of feature aggregation.

IPG-Net [63] which is based on FPN [41], is a specialized network for small
object detection. The proposed network combines the FPN structure with the
image pyramid paradigm. The network consists of special IPG transformation
and fusion modules instead of identical branches for each image in the pyramid.
The spatial information of shallow layers is transferred precisely without loss
to deeper layers and provide enough spatial information for small objects to be
detected in prediction layers. The semantic-rich information is combined with
spatial information at each level of the image pyramid. IPG-Net achieved good
performance to eliminate an imbalance of spatial and semantic information for
feature maps.

4.2.2.2 Prediction pyramid

Instead of using multiple detectors with different input resolutions, the predic-
tion pyramid gathers features from shallow and deeper layers of the network to
produce multiple feature maps from a single network. The predictions are made
on hierarchical feature maps. The feature maps have different resolutions and
receptive fields to detect distinct objects with different scales. Therefore, detec-
tion of small objects is improved with the feature maps which are produced from
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shallow layers of the network.

SSD [5] is a famous object detector that uses a prediction pyramid system.
The detector combines spatial and semantic features from different points of
the network and makes predictions on multiple feature maps at different scales.
SSD variant detectors are similar but feature aggregation techniques change the
paradigm of the detector to an integrated prediction pyramid with fusion modules
or neck parts.

YOLOV3 [30] is the first user of the prediction pyramid system in the YOLO
family. It makes predictions with YOLO layers at three different scales of feature
maps. It uses a well-designed new backbone as Darknet-53 which is deeper and
includes more shortcut connections. The larger networks facilitate the collecting
semantic-information and shortcut connections prevent the vanishing of gradients
of shallow features in deeper layers. The YOLOV3 has a significant accuracy
difference in small object detection performance than previous YOLO detectors
[43, 29] which use a single scale feature map for detection.

TridentNet [64] is the scale-aware object detector that is based on multi-branch
object detection. TridentNet combines image pyramid with prediction pyramid
paradigm but rather than using multi-input with single or multi-branch networks,
it uses single input images with parallel branches. The parallel branches are
architecturally identical but using dilated convolution within a range of stride
makes difference. Each branch produces feature maps in different scales and
receptive fields with help of dilated convolutions. Furthermore, parallel branches
share weights between them to make training easier and stronger. The network
can learn which objects more suitable to one of the hierarchical branches according
to their scales.
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4.2.2.3 Integrated prediction pyramid

The integrated features technique is similar to prediction pyramids but it differs
in a manner of collection of feature maps. The feature maps from multiple lay-
ers are fused into a single feature map or share features to construct multi-scale
feature maps and predictions are made on the combinatorial feature maps. Shal-
low layers of the network have rich spatial information and deep layers contain
semantic-rich features thus, the combination of shallow and deep features boosts
the object detection at different scales because integrated features map can give
more information about objects and improve detection accuracy and recall [9].
The small objects vanish in deeper layers because of insufficient spatial informa-
tion and large receptive fields. The shallow features in the integrated feature map
protect the spatial information of small objects with small receptive fields. The
networks that use the integrated features paradigm will be described in section
Feature Aggregation and Enrichment comprehensively.

4.2.3 Feature aggregation and enrichment

The recent advances in deep learning-based object detectors develop more com-
plex modules for exploiting the quality of extracted features. In the multi-scale
feature learning, integrated features and feature pyramid approaches aim to fuse
features from different feature maps. The fusion modules between layers or maps
can be simple connections like in the FPN [41] modules or they can be more com-
plex for improving feature aggregation and enrichment. These modules, named
the neck, are usually inserted between backbone and prediction or head mod-
ule of the network [1]. The neck modules can be extra modules that extract
and/or fuse features from different layers of the network to enrich feature maps
or can be path aggregation modules that connect and fuse feature maps. The
path aggregation modules usually are used in FPN-like networks in the man-
ner of bottom-up and top-down connected layers to generate final feature maps.
The extra modules can be simple fusion blocks such as deconvolution layers with
concatenating layers or more complex modules such as Multi Scale Contextual
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Features (MSCF) with Feature Guided Refinement Module (FGRM) in EFGR-
Net [65] network. The neck modules can increase the computation time but a
suitable fusing design improves the accuracy of object detection. Furthermore,
the feature enrichment is achieved without adding extra modules to the network
by modifying the characteristic of existing layers or developing new layers to col-
lect more features or preserve them. The dilated max pooling and convolution
layers are some examples of this approach. In the perspective of small object
detection, feature aggregation and enrichment are very important concepts to
improve detection because small objects suffer a lack of feature representation
and artifact of growing receptive fields in deeper layers of the network. These
modules and modifications behave like amplifiers, feedbacks, or more sensitive
filters in the processing flow of the network. They amplify the features of small
objects with upsampling layers. They behave like feedback with skip connection
and fusing techniques and bring features that are lost in the flow, to final feature
maps.

4.2.3.1 SSD variants

This section explains networks that are derived from SSD [5] and their feature
aggregation or enrichment techniques.

DSSD [54] extends the SSD [5] network with deconvolutional blocks. Instead
of VGG-16 [26] which is the default backbone of SSD, DSSD uses ResNet-101
[28]. The deconvolutional blocks increase the resolution of the feature map and
their features are supported with skip connections from SSD layers. The fea-
tures at different scales are combined and amplified with deconvolutional blocks.
This feature enhancement technique performs better for small object detection
than SSD as a baseline but deconvolutional blocks bring extra computation and
decrease frame per second.

Jeong et al. [66] proposed a feature fusion module between SSD [5] layers.
The proposed network aims to increase the number of channels in SSD layers for
generating better feature maps. The features from shallow and deeper layers are
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combined with rainbow fusion which is the naming of concatenation that consists
of both pooling and deconvolution layers. In the aspect of small objects, the
proposed network unifies the features between feature maps at each scale and
prevents imbalance in features especially for small objects.

Cao et al. [67] designed a feature fusion module for SSD [5] layers to increase
the accuracy of small object detection without losing inference speed too much.
The new network is named as Feature-Fused SSD. The proposed feature fusion
combines a shallow conv4_3 layer with conv5_3 as a deeper one. This fusion
enhanced the feature map which has the highest resolution in SSD in terms of
both semantic and spatial information. The lightweight fusion module has two
different types in terms of the feature fusion layer. These are concatenation and
element-sum modules. The element-sum module slightly performs better than
concatenation. The accuracy of Feature-Fused SSD comparable to DSSD [54] for
small object detection and inference speed outperforms the DSSD.

FSSD [55] advanced the SSD [5] network with a lightweight feature fusion
module for being more sensitive to small objects. The idea behind the fusion
module is that collecting semantic information from deeper layers and creating
contextual information for small objects for layer conv4_3 of SSD. It aggregates
features of feature_map (con4_3) with subsequent layers as fc7 and conv7_2.
The accuracy of FSSD outperforms DSSD [54] andSSD for small objects detection
but it falls behind in terms of inference speed when compared with SSD as the
baseline.

Zhao et al. [68] proposed Comprehensive Feature Enhancement (CFE) module
for SSD [5] network to improve object detection accuracy. They designed two dif-
ferent networks with different orientations of CFE modules in the SSD network.
CFE-SSDv1 and CFE-SSDv2 are designed to enrich semantic information of shal-
low layers for better classification of small objects and to increase the accuracy of
bounding box regression for deeper feature maps. The architecture of the CFE
module is similar to the ResNeXt [31] building block. It contains residual skip
connection, group convolutions, and concatenation layer. The proposed networks
perform better than SSD as the baseline in terms of object detection accuracy
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especially for small objects with a few amount of increase in inference time.

The effectiveness of feature pyramid on objection detection has been proved
with FPN [41] variants object detectors. Zhao et al. [69] proposed a network
based on SSD [5] with the inspiration of the effectiveness of feature pyramid.
They named their work as a Multi-Level Feature Pyramid Network/M2Det. This
network combines SSD architecture with Thinned U-shape Feature Aggregation
Module (TUM)s. Also, the feature fusion modules are used to enrich feature
maps from both SSD layers and TUMs. The base features, extracted from the
backbone, are equally scaled and concatenated into a channel with Feature Fusion
Module (FFM)v1, then they are fed into TUMs to enrich semantic information
of feature maps at each scale. Therefore, another fusion block name as FFMv2
which helps to share features between TUM modules. The generated multi-scale
features are aggregated with the Scale-wise Feature Aggregated Module (SFAM)
to generate final feature maps for prediction. The TUMs make the network
deeper to gather more semantic and representative features. On the other hand,
the disadvantage of a deeper network is elevated with feature fusion modules
across the feature maps and layers from different scales. The feature maps can
be more distinctive for objects with different scales. Thus, the accuracy of small
object detection is enhanced.

EFGRNet [65] was introduced as a significant improvement on SSD [5]. The de-
sign of the network aims to solve a lack of contextual information and foreground-
background class imbalance in SSD. The MSCF module was designed to gather
multi-scale contextual features from downsampled input image whose resolution
matches with conv4_3. These features are used to enrich feature maps at each
scale and refine bounding box and classification results with help of FGRM.
MSCF module works like multi-branch modules in ResNeXT architecture with di-
lated group convolutions. MSCF modules at each level of the feature map are cas-
caded from the output MSCF module so contextual information passes through all
feature maps. The small objects suffer a lack of foreground-background discrim-
ination because of their low visual information and inappropriate anchor boxes.
The proposed network enhanced the discrimination ability of SSD between ob-
jects and background. Thus, small objection detection performance increases
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significantly.

4.2.3.2 YOLO variants

This section explains networks that are derived from different versions of YOLO
and their feature aggregation or enrichment techniques.

Du et al. [70] enhanced the YOLOv2 [29] network and proposed a new net-
work as Expanding Receptive Field (ERF)-YOLO which uses deconvolutional
and multi-branch dilated convolution to improve both semantic and spatial infor-
mation gathered from different layers at depth. The spatial rich information from
the shallow layer is processed by the ERF block to increase receptive fields and
enrich semantic features of the feature map. On the other hand, semantic-rich in-
formation from the deeper layer is upsampled with a deconvolution block to gain
spatial information for the feature map. Then, two feature maps are fused into a
single feature map for making predictions. These transformations aim to provide
precise location information for small objects by increasing semantic information
and boost the weak feature representation of small objects by upsampling.

Unmanned Aerial Vehicle (UAV)-YOLO [71] was proposed to solve the low
performance of small object detection in UAV imaging. The network aims to
increase receptive fields of feature maps and gather semantic information for
feature maps which are generated from shallow layers. The residual blocks in
Darknet-53 [30] backbone are increased with new residual blocks that have more
skip connections from previous layers to improve the receptive field of the network.
The semantic-rich feature maps are upsampled and concatenated with consecutive
shallow maps to increase descriptive features in spatial-rich feature maps. The
increase in receptive areas and descriptive features enhance the detection accuracy
of small objects when comparing YOLOv3 which is a based network for UAV-
YOLO.

YOLOv4 [1] was designed on top of the YOLOv3 [30] detector with significant
modifications on backbone and connection between the backbone and detector
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part which we called the neck in previous sections. The backbone that is named
CSPDarknet53 is a modified version of Darknet53. The CSPDarknet53 was in-
spired by the novel skip connection technique in CSPNet [72] backbone. Besides
backbone modification, SPP [38] is used to increase receptive fields in the net-
work and Path Aggregation Network (PAN) [73] is used for gathering multi-scale
information from different layers of the network to achieve feature aggregation.
The SPP module provides a group of pooling operations on feature maps. This
pooling operation contains pooling layers with different strides to produce fixed-
length feature vectors that represent objects at different scales. Thus, receptive
fields of feature maps are increased and detection cannot be affected by the varia-
tion of scale. The PAN is used for sharing features between feature maps at each
scale. Therefore, shallow layers benefit semantic-rich information from deeper
layers and deeper layers are fed with spatial-rich information from shallow ones.
These modifications redound small objection detection performance in terms of
more sensitive receptive fields and descriptive feature maps.

4.2.3.3 FPN based detectors

In the prediction pyramid technique, the feature maps do not share any features
between them. The feature pyramid networks take the prediction pyramid tech-
nique and combine it with an integrated feature style. The multiple feature maps
share features between them and improve their spatial and semantic informa-
tion. The predictions are the same as the prediction pyramid but the difference
is every feature map contains information from different feature maps at differ-
ent scales. The feature pyramid approach improves small object detection with
multiple feature maps that have rich spatial or semantic information at different
scales. The first example of an object detector that is based on a feature pyra-
mid, is the FPN that was proposed by Lin et al. [41] on top of Faster R-CNN
[40] network. The general convention, the semantic-rich feature maps are used to
enhance spatial-rich feature maps with top-down connected hierarchy. The clas-
sical feature pyramid networks have been developed through the years and many
different improvements are applied to propose robust and accurate detectors such
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as [74, 75, 76] that follow the feature pyramid paradigm.

MatrixNets [74] was proposed as a multi-scale and ratio aware network that is
based on FPN [41] architecture. The classical feature pyramid layers are repeated
to left and down to create a matrix network with height and width downsam-
pling. The repeated feature maps are derived from diagonal feature maps which
have different spatial and semantic information. Also, repeated feature maps
have different aspect ratios because their resolutions in specific dimensions are
downsampled for row and column of a matrix. The proposed feature-matrix is
capable of dealing with extreme aspect ratios with off-diagonal layers that have
rectangular shapes. The feature maps with different aspect ratios significantly
improve the classical FPN and detection of small objects can be improved by
different receptive fields. The novel feature pyramid module of MatrixNets can
be used with any type of object detector such as anchor-based or anchor free,
one-stage, or two-stage.

HawkNet [75] was proposed to enhance object detection in aerial images based
on FPN [41]. The conventional FPN has a top-down pathway between feature
maps with lateral connections. The HawkNet removes the lateral connections and
up-scale each feature map to equal resolution for concatenating them to construct
a top-down feature pyramid system. The up-scaling and concatenation achieve
to share more balanced features for each level of feature maps. The semantic-rich
feature maps are upsampled to equal size of shallow feature maps and improve
their features to increase the performance of small object detection. Moreover, the
novel up-sampling method is used rather than the classical interpolation methods
such as bilinear or un-pooling and learning-based deconvolution because of their
lack of extraction information and corruption on features by checkerboard arti-
facts respectively. The novel up-scaling module is developed based on sub-pixel
convolution and channel unification. The up-scale feature aggregated feature
pyramid and efficient up-sample methods significantly improve object detection
for aerial imaging which contains many objects that are small in proportion to
images.

EfficientDet [76] was proposed as a scalable network with regards to width,
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depth, and resolution due to the purpose of usage. It uses EfficientNet which was
developed by the same authors as the backbone. The scalability feature facilitates
the usage of the network in different domains while preserving performance/ac-
curacy balance. Apart from the scalability of the network, EfficientDet adopts
the classical FPN [41] and presents a new FPN module as bidirectional FPN.
The bidirectional FPN proposes cross-scale connections similar to NAS-FPN [77]
but a much optimized and efficient version to achieve more robust feature fusion
and improve the feature layer that has less contribution. Therefore, skip connec-
tions are provided between the original feature layer to the fused counterpart to
obtain more strong features for final feature maps. The classical FPN fuses fea-
ture maps from different resolutions equally but the contribution of features can
create imbalance features because the importance of fused features are unknown
and degrade the performance of the network. Hence, EfficentDet uses weighted
feature fusion methods while features are fused so the network can learn weight
parameters and decide which features are more important for detection accuracy.
In short, EfficientDet achieves state of art results without losing efficiency in
terms of speed and memory with proposed components.

4.2.3.4 Other detectors

MR-CNN[78] was proposed as a region proposal network with integrated multi-
scale features. The different layers in depth from VGG-16[26] as backbone are
upscaled with deconvolutional layers for concatenation. The fused feature map
is processed from the region proposal network to obtain proposals of objects.
The final prediction proceeds on features of proposals. The fused feature map
is leveraged by semantic and spatial information from different layers. Also, the
leveraged feature map enhances multi-scale contextual information and quality
of features of object proposals which affect detection performance directly. MR-
CNN achieved the state of results on Tsinghua-Tencent 100K [47] dataset.

Liu et al. [79] proposed a two-stage detector which based on Faster R-CNN
[40] to improve small vehicle detection. The key idea of research is enhancing
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the quality of generated proposals in the RPN network. Thus, Backward Fea-
ture Enhancement Network (BFEN) module is designed to advance the feature
maps. The BFEN module fused features from layers with different resolutions
to generate multi-scale fused feature maps. The shallow layers are supported
by deeper layers with semantic information and become more suitable to detect
small objects. The multi-scale features maps are used to generate proposals that
are passed through a novel Spatial Layout Preserving Network (SLPN) module
to refine them for better localization accuracy.

4.2.4 Deformable convolution and pooling

The variable scales and shapes of objects may cause problems that trained ob-
ject detectors cannot make accurate predictions because generalization capability
cannot cover all possible visual appearances. The object detectors are trained to
overcome this problem with large data with a variety of data which is supported
with augmentation. Deformable convolution and pooling layers are designed to
solve this problem from different perspectives that aim to increase the general-
ization capability of object detectors with adaptive filters and sampling, by Dai
et al. [80]. The conventional convolution and pooling operation process fixed
grids on images with specified kernel size. Thus, the produced receptive field
is limited and static. The static behavior causes to miss semantic information
from the image especially for non-rigid or obscure objects. The authors enhanced
the conventional convolution and pooling layers that can learn offsets of fixed
grid points for adjusting dynamic receptive fields. In other words, a kernel of
filters or sampling layers selects the candidate pixels for processing when training
continues. The dynamic receptive fields increase the accuracy of localization of
objects and produce more descriptive features. In the aspect of small objects,
adaptive receptive fields are beneficial to determine them despite their noisy and
weak spatial information. The implementation of deformable layers brings neg-
ligible overhead because of extra computation that occurs for learnable offsets.
Furthermore, deformable layers can be easily replaced with their conventional
counterparts in object detectors.
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4.2.5 Contextual information

Contextual information, also named contextual reasoning or context priming,
helps to increase the detection accuracy of objects in specific environments. In
real life, humans perceive objects by their shapes, colors, texture, etc. Also, the
human vision system processes the scene and makes connections between objects.
The brain of a human learns that some objects inhesion with specific environ-
ments or other objects. For example, an airplane usually exists in the sky or
airport. The object detection techniques which are especially neural network-
based mimics the functionality of the human brain such as a neuron, activations,
etc. The researchers have continued to develop this mimicry and have proposed
that object detection techniques can be used for contextual information like hu-
mans to improve detection. Through the years, three common approaches are
developed to describe the contextual relationship of objects: global context, local
context, and interactivity in context [10] (Figure 4.2.3). The global context be-
haves as the external source of the scene and gives information about the scene.
It takes to learn context information from looking at the whole image and it
classifies the regions of interest which have the potential to comprise objects.
The deep learning-based object detectors can achieve global contexting with in-
creasing receptive fields [81], using global pooling operation [82] and recurrent
neural networks [83]. The local context aims to use the surrounding area of the
object in the scene for achieving detection of it. The first example of using local
context was the research of Sinha and Torralba [84] was proposed that local con-
textual regions of a facial area can increase face detection performance. The big
receptive fields and object proposals reveal the local context information for deep
learning-based object detectors [10]. The interactivity in context focuses on the
interaction of objects in the scene. The related studies [85, 86, 87, 88] have tried
to make connections between objects and scenes and determine the constraints
and dependencies between them.
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Figure 4.2.3: The different types of contextual priming [10].

In the sight of small object detection, contextual reasoning or information pro-
duce a positive effect on detection performance. The small objects can appear in
specific environments or other objects because of relationships and dependencies.
The detection of small objects with large receptive fields or object proposals is
so difficult because of insufficient presence. However, the disadvantage of this
situation can be reversed by using contextual relationships. The large objects or
specific environments are used to point small objects with developing specialized
context-aware modules for deep learning models. In recent years, context-aware
deep learning-based object detectors have been developed and achieved decent
performance to elevate the detection accuracy of small objects. For instance,
authors of this work [89], used the power of contextual information and obtained
state of art result for the detection of tiny faces on FDDB [90] and WIDER FACE
[53].

Chen et al. [91] proposed an augmented R-CNN to gain the power of contex-
tual information for enhancing small object detection. The context region and
proposal region are extracted with parallel networks. The region proposal net-
work is used to extract context regions to encode contextual information from
regions that contain small objects. The small objects are extracted with another
region proposal network with scalable anchor sizes as a proposal region. The
center of context regions is determined from the center of the proposal region of
small objects. The extracted regions are processed through convolution layers
and extracted same length feature vectors which are concatenated before feeding
into the detection network. Augmented R-CNN achieved good results on small
object detection when compared with original R-CNN [36] as a baseline.
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Inside-Outside Net (ION) [83] was designed to use recurrent neural network
blocks for revealing contextual information around objects. The Fast R-CNN is
used as a baseline detector and expanded with directional IRNN blocks. The
multi-scale features are gathered from the backbone of the baseline detector and
concatenated together after normalization is applied. The contextual feature map
is obtained through the cascaded IRNN modules and combined with concatenated
multi-scale features. The IRNN modules are stacked as pairs and cover all direc-
tions of pixels at four dimensionalities which are left, right, up, and down. The
produced feature map from IRNNs contains contextual information around ob-
jects in those four directions. Each cell on the feature map contains local context
information and the output of cells are dependent on other input with help of
recurrent blocks.

VSSA-Net [92] was developed to improve the detection of small objects with
contextual priming and multi-scale feature enhancement. The study aimed to
enhance traffic sign detection as a small object. The VSSA-Net uses MobileNet
[34] as a backbone which is a lightweight and fast network with multi-scale input.
On the top of MobileNet, a deconvolutional block is deployed with skip connec-
tions. The skip connections are used to prevent gradient vanishing and preserve
features that are produced by shallow layers. The deconvolutional block amplifies
the multi-scale features map and improves semantic-information spatially. Also,
it makes the network deeper in a way of obtaining semantic-rich features. The
multi-scale and amplified feature maps are fed into the Vertical Spatial Sequence
Attention (VSSA) model to extract contextual information. The VSSA model
processes feature maps column by column to capture contextual attention verti-
cally and with the use of Long Short-Term Memory (LSTM) module encoding
and decoding are applied to these vertical sequences.

[93, 94, 87, 95, 96, 97] are other examples which use context information to
improve small object detection.
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4.2.6 Super-resolution

Super-resolution refers to generating high-resolution images from low-resolution
ones. The generated high-resolution images contain more detailed and strong
features. Explained as before, the reason behind the challenge in the detection
of small objects is mostly caused by their low-resolution appearance in the scene.
The researchers have applied super-resolution techniques to object detection sys-
tems and examined that small objects can benefit from super-resolution because
of their low-resolution appearance. In recent years, several super-resolution tech-
niques that are based on deep learning have been developed. The Generative
Adversarial Network (GAN) become popular for image to image style transfer-
ring [98], generating unique images, state learning [99], modification on image
[100] and especially for generating super-resolution images [101]. The GAN based
super-resolution techniques bring a new dimension to the object detection field
and proposed GAN super-resolution and object detection combinations boost the
object detection performance exclusively for small objects. The common flow of
GAN based super-resolution networks is composed of two networks: discrimina-
tor and generator. The generator has to learn to generate super-resolution images
from low-resolution counterparts and produce high-resolution images. The dis-
criminator network distinguishes real high-resolution images from high-resolution
images which are generated by a generator network. The objective of the GAN
algorithm is that the generator learns to produce high-resolution images that are
generated for discriminator indiscernible from real ones.

Li et al. [102] proposed GAN based object detector, Perceptual GAN, that
aims to increase the detection accuracy of small objects. As a typical GAN
network, the proposed network has discriminator and generator parts. The gen-
erator which uses a residual neural network is responsible for generating high-
resolution features of small objects. The discriminator has two branches: adver-
sarial and perceptual. The adversarial branch discriminates between generated
high-resolution small objects features and original large objects features. This dis-
crimination enhances the generation quality of the generator for high-resolution
small object features because the generator has to fools the discriminator that the
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quality of generated small object features will be very close to the original large
ones. The perceptual branch is the classic head part of an object detector and
is responsible for object localization and classification. The small objects’ fea-
tures are enhanced to the quality of large objects’ features so their weak feature
representation and imbalance between large objects are eliminated.

Small Object Detection via Multi-Task Generative Adversarial Network (SOD-
MTGAN) was proposed as a specialized object detector for small objects by Bai
et al. [103]. The SOD-MTGAN consists of a baseline detector, generator, and dis-
criminator network. The type of baseline detector can be any type such as Faster
R-CNN [40] or SSD [5]. The baseline detector is used for generating regions of
interest and distinguishing foreground/background objects for the generator and
discriminator. The generator takes the low resolution of the original input image
and up samples foreground/background small objects to their original resolution.
The discriminator discriminates between generated high-resolution objects and
original objects. Also, the discriminator predicts the class of objects and the lo-
cation of objects. As a result of training, the network learns super-resolution and
object detection capability. The super-resolved patches boost the small object
detection with enhanced spatial information and strengthened feature represen-
tation.

There are several other GANs [104, 105, 106] and super-resolution network
[107, 108] based object detectors that are specialized for small objects through
the use of the power of generating super-resolution images.

4.3 Anchor boxes and loss function

4.3.1 Anchor boxes

The anchor boxes which are also called different names: default boxes, prior boxes,
or grid cells, are used in object detection systems to generate predicted bounding
boxes and their classes. The design and amount of anchor boxes are important
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issues because they have to be chosen to generalize position, size, aspect ratio,
and categorization of training data for better regression of predicted bounding
boxes and object classes. The classical form of loss function for regression object
localization and classification can be formulated as (Figure 4.3.1):

Figure 4.3.1: The total loss function is a summation of cross-entropy loss for
classification and regression loss for object localization [10].

Total loss is a weighted sum of localization and classification loss of predicted
objects for ground truth objects. p and p∗ are donated for class probabilities of
predicted and ground truth objects, t and t∗ represent their bounding box infor-
mation. The localization loss has a condition to related prior boxes as IOU(a, a∗)
which means that the anchor box and ground truth box have to match over a
threshold that is donated as n. If the IOU of candidate matches does not meet
the threshold, the localization of loss has zero multipliers and does not include
total loss. In short, unsuitable anchor boxes affect loss function and degrade the
learning of object detection models.

The studies on designing anchor boxes proposed several ideas to generate better
anchor boxes. The earlier anchor boxes are hand-crafted [5, 109, 40], their sizes
and aspect ratios are manually determined. Then, the cluster-based methods
[29, 30] are merged, the cluster-based method clusters training data with chosen
numbers of anchors according to the input size. The manually chosen and cluster-
based predefined anchor boxes are static and require many hyper-parameters.
These issues may lead to difficulty in determining parameters and decrease the
performance and accuracy of the detector. Recent researches develop anchor-free
object detectors and detectors that dynamically learn and refine anchor boxes.

In the aspect of small objects, the manually or cluster-based methods may
achieve good results when the large part of the data consists of small objects.
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However, the imbalanced data contains a wide range of size, scale, and aspect
ratios of objects and static anchor boxes may not cover all objects especially for
small objects that are unlikely to match with priors because of their properties.
The anchor-free method and dynamic anchor optimization method may lead to
boost the performance of small object detection.

4.3.2 Anchor-free detectors

The idea of anchor-free detectors is developed because of several drawbacks of
anchor-based detectors. First, predefined or pre-calculated anchor boxes need too
many hyper-parameters that have to be fine-tuned or set. The optimized hyper-
parameters can make a significant difference in accuracy. For example, different
hyper-parameters change the RetinaNet [11] performance in the range of 4% for
MS-COCO [33] benchmark in terms of average precision. Thus, taking care of
tuning is extra overhead for anchor-based detectors. Secondly, the anchor boxes
are chosen to generalize the training dataset and some objects may be affected
negatively because of variety in their sizes, scales, or aspect ratios, small objects
are one of the examples of these types. Third, to overcome the generalization
problem, excessive amounts of anchor boxes are deployed in object detectors
but this method leads to an imbalance that focal loss aims to solve, between
negative and positive samples. The last drawback is the increasing computational
overhead because of matching algorithms that use IOU calculation. The anchor-
free detectors try to achieve object detection without anchor boxes such as corner-
based [46], center-based [43, 10] or key-points based [110] detectors.Also, hybrid
methods are developed as Feature Selective Anchor Free (FSAF) [111] that use
the anchor-free module in anchor-based detectors.

FSAF [111] module was designed to achieve anchor-free behavior for one-stage
detectors and add dynamic behavior for predefined assignment between anchor
boxes and feature maps. The anchor-based detectors that have multiple feature
maps in different scales are designed to learn each level of the feature map and
learn specific objects that are related to the size of the feature map. To achieve
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this, the size of anchor boxes for each level are constrained by hand-crafted rules.
The limitation of setting this constraint is that some objects may not be suitable
for detection in feature level which is assigned as a prior. FSAF solves this
limitation with a feature selection method that allows objects to learn the best
feature level in the training phase. FSAF uses regression to produce 4 offset
maps to obtain bounding box locations in an anchor-free way. FSAF is applied
as a module to any one-stage detectors that have a feature pyramid or detection
pyramid. Also, FSAF can work independently or with anchor-based modules
jointly.

FCOS [112] was proposed as an anchor-free object detector which is similar
to RetiaNet [11] and detection operates analogously to a segmentation. The per-
pixel classification is adapted to predicting bounding boxes of objects. Each pixel
location on feature maps is projected to ground-truths in the input image and
ground-truth boxes are used like anchor-boxes. If the projected location is near
to the center of the receptive area and this point is included in the ground truth
box, the point is taken as a reference point to make a regression to corners of
ground truth boxes. The regression process tries to estimate four distances from
the reference point and calculate the minimum bounding box that covers objects.
The anchor-free object localization works on multi-level prediction with FPN [41]
with some constraints to avoid compute regression of negative samples.

4.3.3 Anchor optimization

Apart from anchor-free methods, several optimization methods are developed for
anchor-based object detectors. The methods aim to generate anchor boxes bet-
ter than manually driven and naive clustering methods. The studies on anchor
optimization have several types such as novel optimization methods [113], anchor
refining modules [114] or self-learning anchors modules [115]. The optimization
methods facilitate the training phase in the aspect of hyper-parameters can be
chosen more dynamically and efficiently than traditional greedy methods such as
grid search. The anchor refining modules work together with predefined anchors
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and generate dynamic anchor functions to obtain custom anchors for better de-
tection. The self-learning anchor modules learn anchor shapes during training
and optimize the anchor sizes dynamically. The advantage of anchor optimiza-
tion modules is that most of them integrate into state of art detectors easily
because of plug-in structure and their computation cost can be negligible besides
improvement in accuracy.

4.3.4 Loss function

The loss function is a very important concept in deep learning-based applications.
The deep learning models do forward and backward calculations on their layers to
calculate estimated outputs and optimal parameters for the layers. The forward
calculation means that elements of the network process the input and produce
actual output in one pass. The actual output is desired to be close to the ground
truth value of the training set. The criterion of closeness is measured by the loss
function which calculates the error between desired and predicted value. In other
terms, the loss function is the function that is desired to minimize through the
learning process because when the ground-truth value matches with the predicted
one, the closeness is maximized and error becomes zero. In the learning process,
the loss function guides the back-propagation(backward calculations) from start-
ing calculation of error’s derivative and each layer of network calculates derivative
itself in a manner of differential functions. The derivatives of layers show how
much changes have to be done for the parameters of layers. For each forward and
backward pass, the loss function shows the performance of current parameters
and gives information to the back-propagation phase. Also, the loss function is
mentioned as an objective function that has to be maximized in contrast to the
loss function. Furthermore, the selection of loss function has a place in network
performance because an unsuitable loss function produces poor results. There
are several loss functions used in deep learning for both regression and classifi-
cation algorithms. Mean squared error, mean absolute error, root mean squared
error, and quantile loss are some examples of regression problems. Log loss(cross-
entropy loss), hinge loss, exponential loss, and focal loss [11] are considered as
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examples of classification problems. In the perspective of a small object challenge,
the focal loss achieves good performance to increase the detection accuracy.

4.3.5 Focal loss

The foreground/background class imbalance is one of the challenges in object
detection that has to be solved. The object detectors suffer from this imbal-
ance during the training phase. The two-stage detectors are more robust to this
problem because they generate region proposals and these proposals are used
in classifiers sparsely. The region proposals are selected candidate regions of
interests and filtered out negative candidates and pass through the candidates
into the second stage which classifies regions as foreground/background objects.
The region proposal generators such as Selective Search [37], DeepMask [116],
EdgeBoxes [117] and RPN [40] eliminate the most of negative samples. More-
over, online hard example mining [44] and some generalized functions like fixed
foreground/background ratios decrease the imbalance between foreground/back-
ground classes.

However, one-stage detectors are designed to classify objects on the image
directly with a dense sampling method. The dense sampling method leads to
generating excessive negative samples which are regions that do not include any
objects. The imbalance between negative and positive samples causes several
problems in training especially and affects the accuracy of the final model. The
quality of training may have fallen because the high contribution of negative
samples could not boost the learning rate of object detectors. In contrast, useless
information slows the training and decreases the accuracy like a noise. Hence,
some one-stage detectors use hard negative mining [44] and bootstrapping [118]
to obviate the imbalance but these methods bring inefficiency in terms of com-
putation while their weak contribution to solve the imbalance.
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Figure 4.3.2: The relationship between cross entropy and focal loss with respect
to γ. The loss of well-classified examples can dominate the total loss when classic
cross entropy loss is used. The γ factor reduces the contribution of easy negatives
and gives more weight to hard negatives to balance the training [11].

RetinaNet [11] was proposed as a one-stage detector with a novel loss function
that was named Focal Loss. The focal loss was designed to solve foreground/back-
ground class imbalance with a dynamically weighted loss function which reduces
the contagion of negative samples. The focal loss is derived from cross-entropy
loss for classification. The mathematical formulation of cross-entropy loss for
binary classification is expressed in Figure 4.3.3

Figure 4.3.3: The mathematical formulation of cross entropy loss for binary clas-
sification [11].

y is donated for ground-truth class and p is for estimation probability of when
y = 1. When simply define pt as 4.3.4 and replace with (p, y) we obtain a new
version of cross entropy loss as Figure 4.3.5:
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Figure 4.3.4: The expression of pt [11].

Figure 4.3.5: The cross entropy loss when we define pt as Figure 4.3.4 [11].

As shown as Figure 4.3.2 easy classified examples (pt >> .5) may overwhelm
the less frequent classes with their large quantities which cause a huge accumu-
lation of small errors. To solve this imbalance, α weight factor can be assigned
to the formula and it can be related to the class frequency or can be a hyper-
parameter that has to be determined before actual training (Figure 4.3.6).

Figure 4.3.6: The α-balanced cross entropy loss [11].

However, α only deals with a balance of positive/negative examples and does
not care about easy/hard examples. Easy classified examples can easily ruin
the cross-entropy loss because they dominate the loss and gradients with their
quantities and they are treated as the same as hard examples. The focal loss is
designed to focus on training hard negatives so the cross-entropy is modified with
(1− pt)γ and γ is the tunable parameter and bigger than zero. The focal loss is
represented as 4.3.7:

Figure 4.3.7: The focal loss[11].

When we look at the formulation of focal loss, we can observe that when an
object is misclassified and has low pt, the loss does not change so much but when
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pt close to 1 and a well-classified object has a lower weight and easy examples
can be differentiated in the loss function. γ is the rate of down-weighted and the
authors state that γ = 2 is the best value in their experiments.

In conclusion, the performance of small object detection suffers class imbalance
because they are hard to differentiate from the background and their numbers
can be lower than medium and large objects. Thus, the focal loss can improve
the accuracy of small object detection in a way to penalize the hard negatives
which include the small objects because small objects are hard to detect and their
misclassification has to affect loss other than easy negatives.
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Chapter 5

Results and Discussions

In this research, the evaluation and comparison of approaches into four main
groups which we introduce for fairness: intra-comparison, intercomparison, global
comparison, and a group of exclusion from the comparison.

The intra-comparisons are done for pre-post processing, the effect of back-
bone networks, and regularizing hyperparameters or priors on object detection
networks. In this type of comparison base network which produces results are
considered as base scores for benchmarking, and regulated base networks have al-
most identical network architecture. Also, intra-comparisons are presented within
sections that explain the methodology of approaches.

The intercomparison is used for network modifications such as DSSD [54] and
FSSD [55] which are derived from SSD [5] as baseline detector. The intercompar-
ison serves to show the effect of modifications on the baseline detector and make
the trade-off analysis.

In global comparison, the approaches which share the same or similar version
of training and test dataset, are compared with respect to their average precision
on small objects with their inference speed.

Finally, some approaches are dedicated to very specific parts of small object
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detection such as tiny face detection, traffic sign detection, etc or they do not share
common datasets that are used for comparison in this study. The contributions
of these approaches are valuable for the detection of small object challenges but
we cannot directly compare them with other works. Hence, this type of approach
is not evaluated and compared with other works.

5.1 Comparison on MS-COCO

The MS-COCO [33] dataset is used for comparisons. The evaluation results of
MS-COCO are obtained from other researches or surveys. To obtain fair com-
parison the versions of training and test dataset are specified for MS-COCO.
Furthermore, the inference speed of detectors are given as frame per second and
the specifications of GPUs are provided for accurate comparison (Table 5.1). The
multiplier property is given in Table 5.1 to compare inference speed of detectors
that are evaluated in different GPUs and the multiplier ratios are approximate.
The real-time requirement is specified as 30 FPS with a batch size of 1. The
general evaluation criteria of MS-COCO is given in Figure 5.1.1 and we only in-
dicate the AP@0.5 : 0.95(S) in the comparison table (5.2, 5.3, 5.4) because the
main focus on improvement in small object detection but the other metrics are
added to Table A.1, A.2 and A.3 in Appendix A for supplementary information.
The APs is used instead of AP@0.5 : 0.95(S) for simplicity in our comparison
sections.

Table 5.1: Comparative GPU Specifications

GPU Model CUDA Cores FP32(float) Multiplier
(K)Nvidia K40 2880 5.046 TFLOPS X

(M)Nvidia Titan X 3072 6.691 TFLOPS 3.5X
(M)Nvidia M40 3072 6.844 TFLOPS 3.5X

(P)Nvidia 1080 Ti 3584 11.34 TFLOPS 6X
(P)Nvidia Titan X 3584 10.97 TFLOPS 6X
(V)Nvidia V100 5120 14.13 TFLOPS 10X
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Figure 5.1.1: The MS-COCO explanation of evaluation metrics [9].

5.1.1 Comparison table

Each method in Table 5.2, 5.3 and 5.4 has a citation reference number of corre-
sponding original paper and evaluation results are taken from the corresponding
paper except for methods which have two citation reference number. The result
of these methods is taken from the second citation reference number and the first
number indicates the original paper. Moreover, some methods have some indi-
cators that are (D) and (MS). The (D) indicates that the proposed method uses
deformable convolution layers. The (MS) indicates that the proposed method
uses an image pyramid paradigm with the default one.
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5.1.2 Comparison of backbones(intra-comparison)

The effects of backbones are changed by the architectural design of object detec-
tors and themselves. The features of small objects are preserved in shallow layers
mostly. The backbone detectors can be strengthened with group convolution,
deformable convolution, and pooling layer and skip connections. If the detector
produces a single feature map without feature fusion or has a prediction pyra-
mid system, the detector may produce less accurate results with deeper simpler
backbones for small objects. For example, Faster R-CNN [40] with VGG-16 [26]
performs better than ResNet-101 [28] which is deeper than VGG-16. The same
behavior repeats between VGG-16 and Resnet-101 for SSD [5]. The features of
small objects vanish in deeper feature maps and shallow feature maps are pro-
duced in deeper layers without any feature aggregation from shallow layers. On
the other hand, the feature aggregation, more advanced backbones, and improved
loss functions increase the effectiveness of deeper networks and leverage the accu-
racy in the detection of small objects. The shallow layers can be supported with
semantic information or deeper layers are powered with spatial-rich information.
For example, CFE-SSDv2 [68] performs better with Resnet-101 than VGG-16 be-
cause feature aggregation modules are used in architecture. The same behavior
can be observed between ResNet-50 and Resnet-101 for RetinaNet [11] or VGG-
16 and Resnet-101 for M2Det [69]. In short, we could not specify a certain rule
to choose the backbone to obtain better accuracy, we may consider interactions
of components in the detector.

5.1.3 Inter-comparison

5.1.3.1 Yolo variants

If YOLOv2 [29] is considered a base network, YOLOv3 [30] outperforms YOLOv2
with a prediction pyramid paradigm and stronger backbone. The lowest resolu-
tion configuration of YOLOv3 doubles the accuracy of small object detection
without sacrificing inference speed. YOLOv4 [1] has a SPP module that adds an

69



extra APS to YOLOv3 without an increase in inference speed. The YOLOv4 in-
creases APS about 30% with slightly better inference time. The better backbone
and neck modules highlight the YOLOv4 with real-time inference speed in the
YOLO family.

5.1.3.2 SSD variants

There are many object detectors developed on top of SSD [5]. DSSD [54] uses
deconvolutional blocks to increase accuracy in the detection of small objects but
if we consider SSD-512 with VGG-16 [26] as a baseline, DSSD only puts an extra
2,1% APS with a quarter of inference speed. The complex deconvolutional system
cannot achieve a balanced trade-off between accuracy and speed. If FSSD [55] is
evaluated with the same baseline, FSSD achieves a much better accuracy/speed
trade-off than DSSD and outperforms the SSD with extra 3,3% precision and a
slight decrease in inference speed. CFE-SSDv1 and CFE-SSDv2 [68] with VGG-16
backbone increase APS 5,3% and 6,6% respectively with achieving the same in-
ference speed. CFE-SSDv2 with ResNet-101 [28] backbone outperforms the same
baseline with nearly doubling APS but inference speed halves. If Nvidia Titan
X (Pascal) gives nearly 1.7x more frame per second than Nvidia M40(Maxwell),
M2Det-512 [69] with Resnet-101 backbone nearly doubles the APS but fall be-
hind CFE-SSDv2 with ResNet-101 backbone in terms of precision as 0,7% and
inference speed as 18%. EFGRNet-512 [65] with VGG-16 backbone could not
outperform CFE-SSDv2 with VGG-16 backbone because of a slight improvement
in the precision of small objects but a huge difference in inference time negatively.
The winner of SSD variants is an object detector proposed by Pang et al. [62] with
the best trade-off between accuracy and inference time. The proposed network
by Pang et al. with VGG-16 backbone and 512x512 input resolution, achieves
18,3% APS with a slight decrease in inference when comparing to baseline. The
best average precision in small objects is achieved by M2Det-800 with VGG-16
backbone as 22,1% but inference speed decreases drastically.
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5.1.3.3 FPN variants

The first feature pyramid network was the modification of Faster R-CNN [40]
with a feature pyramid module. As a baseline, Faster R-CNN with VGG-16
[26] and ResNet-101 [28] backbone achieve 6,6% and 7,7% APS and their FPS
measured as 7 and 2 respectively. After improvement with FPN, Faster R-CNN
via ResNet-101 backbone triples the mean average precision for small objects
with a slight decrease in inference speed. Moreover, Faster R-CNN via ResNet-
50 and FPN achieve more than three times than baseline without losing any
inference speed. The CornetNet [46] is another object detector built with the
FPN module and uses the Hourglass-104 backbone. The CornerNet ,anchor-
free one-stage detector, has 19,1% APS with 4,4 FPS inference speed. When we
compare with Faster R-CNN-FPN-ResNet-50 [41], we expect much more inference
speed because of the one-stage property but it falls behind in comparison. The
RetinaNet [11], owner of focal loss, uses FPN with ResNet-50 and ResNet-101
and achieves 18,9% and 20,2% APS , 6,5 and 5,1 FPS as inference speed. The
results of RetinaNet are better than CornerNet and compete head to head with
Faster R-CNN-FPN. The other one-stage detector, MatrixNets [74], uses FPN
with ResNet-152 and very high input resolution as 900x900 pixels. The results of
MatrixNets for APS are 25,9% (without image pyramid) and 29,7% (with image
pyramid). The results outperform Faster R-CNN-FPN as baseline and RetinaNet
but inference speed decreases drastically. The EfficientDet [76] and FCOS [112]
are one-stage detectors that use different versions of FPN as bidirectional FPN.
The FCOS is an anchor-free detector and achieves 31% APS with ResNet-101
backbone and has 38 FPS which were reported when using ResNet-50. The
ResNeXt-32x8d-101 [31] version of FCOS also has 32% APS and the same version
that uses deformable convolution has 33,2%, the highest average precision for
small objects in our comparison. The expected inference speed for ResNet-101
and ResNeXt-32x8d-101 are 17 , 10 FPS respectively. The inference speed does
not meet the real-time requirements but outperforms the FPN category with high
average precision. On the other hand, EfficientDet is a scalable network and the
trade-off between inference speed and accuracy can be set for requirements. The
accuracy of EfficentDet is a bit behind the FCOS in contrast to inference speed.
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5.1.4 The global comparison

The YOLOv4 [1], Pang et al. [62], EfficientDet [76], and FCOS [112] outperform
their counterparts in terms of small object detection accuracy and inference per-
formance with respect to the output of our inter-comparisons for the MS-COCO
dataset. These detectors are named as leading detectors for simplicity in this sec-
tion. Several object detectors are not included in inter-comparisons, compared in
this section. The ION uses contextual priming with the fashion of Faster R-CNN
[40] produces 14,5% APS and 1 FPS. This result is far away from Faster R-CNN-
FPN [41] and the leading detectors. The TridentNet [64] which has a different
prediction pyramid system with branching achieves good results for detecting
small objects and 23,9% APS without using deformable convolutional layers and
28% with using deformable convolutional layers. Also, TridentNet can achieve
31,8% APS by using the image pyramid extra. However, all three results are
higher than average, even close to top results, the inference speed of the detec-
tor is so slow, about 1-3 frames per second. The similar results repeated with
FSAF [111], hybrid anchor-free object detector, achieve accuracy above the av-
erage but suffer in terms of inference speed. The image pyramid system proves
the effectiveness of detecting small objects with higher average precision scores
like SNIPER [60] which has 30,9% APS but the inference speed falls behind the
real-time requirements. In conclusion, FCOS, SNIPER, TridentNet, FSAF, and
MatrixNets [74] are prominent detectors with regards to APS but they require
too much power of computation. The YOLOv4, Pang et al. [62] and EfficientDet
has a very satisfactory balance of accuracy/performance trade-off and they can
be used in real world scenarios. Deformable convolutional layers, feature aggre-
gation modules, and feature pyramid modules can play a very significant role in
small object detection challenges without sacrificing computational power.
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5.2 Comparison on VisDrone-DET

The VisDrone-DET [8] dataset is used for comparison to observe results of custom
dataset that consist mostly of small objects and has limited training data. The
evaluation results that are not indicated with ’∗’ are obtained from our simula-
tions. Source codes and trained models can be seen in this repository 1. The other
results that are indicated with ’∗’ are obtained by other studies. The difference
between other studies and our experiments is the dataset that used for testing.
We use validation datasets and other studies use testing dataset for testing phase.
Furthermore, the all object detectors that are covered in our study could not in-
cluded in this comparison because of our limited time and resources for training
every object detector. Also, the VisDrone-DET dataset can be considered as a
recent dataset and the amount of usage in studies are low. The results are sim-
ulations can be incomplete in terms of training procedure and experiments with
different hyper-parameters may generate more accurate results. The goal of these
experiments is showing the performance of object detectors when trained with
custom dataset that small objects have a majority in distribution of dataset and
has limited training data. The general evaluation criteria of VisDrone-DET is
similar to MS-COCO [33] but it does not use average precision metrics for cat-
egorized objects by sizes. Hence, we only indicate the AP@0.5 : 0.95, AP@0.5,
AP@0.75 in the comparison table (5.6, 5.7) because we mentioned the reason
before in Section 3.1 that almost all objects are considered as small objects in
VisDrone-DET dataset. The AP is used instead of AP@0.5 : 0.95 for simplicity
in our comparison sections. We use GPUs from Google Colaboratory and local
system that has Nvidia RTX 2080 Ti as aGPU and Intel i9-9900k as a Central
Processing Unit (CPU) for our experiments. The inference speed of object detec-
tors that are trained by Nvidia RTX 2080 Ti, are stated in comparison tables. On
the other side, the inference speed of our experiments that are trained by Google
Colaboratory, are not stated. The comparison tables of MS-COCO (5.2, 5.3, 5.4)
can be referred for inference speed of experiments are not stated in Table 5.6.
The comparison of MS-COCO are divided into three category as intra,inter and
global comparison but we do only global comparison for VisDrone-DET because

1https://github.com/melikdaye/MSThesis_small_objects_visdrone
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the number of results are not sufficient and large as in Tables (5.2, 5.3, 5.4).

5.2.1 Comparison table

Each method in Table 5.6 and 5.7 has a citation reference number of correspond-
ing original paper. The evaluation results of method that indicated with ’∗’, are
taken from the corresponding paper except for methods which have two citation
reference number. The result of these methods is taken from the second cita-
tion reference number and the first number indicates the original paper. Other
methods that are not indicated with ’∗’, have only citation reference number of
corresponding original paper and the evaluation results are obtained from our
simulations. Object detectors that have inference speed values and trained by
us, are tested with Nvidia RTX 2080 Ti and Intel i9-9900k. Object detectors
that indicated with ’∗’ and have inference speed values, have specification Table
5.5 to indicate properties of computer that used for training and testing. The
specifications as shown int Table 5.5 are obtained from [120, 121].

Table 5.5: System Specifications of Cited Results

Method GPU CPU FPS
TridentNet* [64][121] RTX 2080Ti Intel E5-2620v4@2.10GHz 0.2
CFE-SSDv2* [68][120] GTX Titan XP - 1

Faster R-CNN* [40][120] GTX Titan X - 7
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5.2.2 The global comparison

We have three different metrics in comparison table (5.6, 5.7) : AP , AP@0.5,
AP@0.75. The AP is taken as reference metric for comparing methods. If we
start from bottom and go trough the method in terms of accuracy and inference
speed. Faster R-CNN [40] has worst accuracy. Also, when accuracy is low, we ex-
cept better trade-off between accuracy and inference speed but the Faster R-CNN
has only 7 FPS, hence it also produce bad trade-off ratio. When we look at sec-
ond worst method in terms of accuracy, YOLO-Tiny has slightly better accuracy
than Faster R-CNN but it has very high inference speed so it produces reason-
able accuracy in terms of trade-off between accuracy and inference speed. SSD [5]
variants produce unsatisfactory results except CFE-SSDv2 [68] and EFGR-Net
[65]. CFE-SSDv2 has high accuracy but it uses very high resolution image so
inference speed is very low. The result of CFE-SSDv2 does not show the real
power of method because it is boosted by size of input and inference speed is
not practical. Faster R-CNN-FPN [41], EFGR-Net, FSAF [111], RetinaNet [11],
MatrixNets [74], CornerNet [46] produce moderate results because they produce
average accuracy but the drastic decrease in inference speed makes the methods
inefficient. TridentNet [64] has two results in the table. The higher result in terms
of accuracy is obtained from external paper. We show both results to criticise
an our insufficient training. Thus, the higher result is taken into consideration
for comparison. Result of TridentNet is similar to CFE-SSDv2, hence it is also
impractical method. Variants of YOLOv3 [30] and YOLOv4 [1] have reason-
able trade-off between accuracy and inference speed. The variants of YOLOv3
that use ResNet family produce slightly worse results than their counterparts
which use Darknet53 as a backbone. When we compare YOLOv3 and YOLOv4,
YOLOv4 has a top accuracy and real time inference when input size is 608x608
but YOLOv3 with Darknet-53 can be also chosen with different input settings to
get higher inference speed and above the average accuracy within the scope of
the comparison table.
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Chapter 6

Conclusion and Future Work

In this thesis, small object detection is examined comprehensively in terms of
drawbacks, datasets, and methods. The methods are categorized into general
approaches that are addressed to drawbacks. We aggregate proposed approaches
from recent studies and review them in detail. We try to cover each part of
object detection that leads to solving this challenge. The approaches which in-
crease the accuracy of small object detection for deep learning methods focus on
three stages of object detector. First, we examine pre/post-processing techniques
that are not directly related to the architecture of the detector. The augmenta-
tion and pre-trained models improve the training stage and image tiling increases
the spatial resolution of small objects by making them not affected by image
resizing. Second, the architectural modification or design for object detectors
elevates the accuracy of the detector significantly. The design of the backbone,
neck, and prediction module changes the feature representation of small objects
and facilitates the learning process of the network. The deeper backbones pro-
duce better results in the general convention but for small objects, this can be
the opposite because of the enlarged receptive field. The more complex back-
bones may resolve this problem with skip connections, group convolution, and
deformable convolution/pooling layers. The neck parts or feature enhancement
modules gather different feature types to fuse them for more descriptive features.
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Moreover, contextual reasoning and super-resolution techniques also are consid-
ered architectural approaches. The contextual reasoning exploits the relationship
between features of small objects and their environments to increase the accuracy
of their detection. The super-resolution techniques use up-sampling method such
as general adversarial networks to increase spatial information of small objects to
improve detection. In last, optimizing hyper-parameters and loss function may
huge difference in detection accuracy for small objects. The focal loss aims to
solve class imbalance which is one of the reasons for drawbacks for small objects
with tuning training loss on behalf of objects that hard to learn by the network.
The anchor boxes are an important concept for object detectors and their op-
timization before training improves the accuracy as well. Furthermore, anchor
boxes can be learned dynamically in the training phase or they are not used in
total such as anchor-free detectors.

In our comparison, we try to prove the effectiveness of all method that men-
tioned in the previous paragraph and we discuss their effectiveness because each
method has some advantages and disadvantages. The general look of view ad-
vantage of each method is simply increasing in small object detection accuracy.
On the other side, disadvantages are more about computation cost in terms of
inference speed and memory. In our thesis, we only focus on inference speed.
Therefore, we compare methods for their accuracy/performance trade-off. The
methods that increase accuracy slightly but decrease performance significantly
may be categorized as unsuitable for real-world scenarios. The methods which
are more suitable for real-world scenarios have well-balanced accuracy/perfor-
mance trade-off with above the average accuracy and real-time inference speed.
Also, some methods improve accuracy significantly but they operate in low in-
ference speed. These methods can be used for applications that require high
accuracy with high-performance computing devices.

For future work, this survey can be extended with experiments that combine
explained approaches differently to show the effectiveness of combinations on a
custom dataset. Each combination will be evaluated and compared in terms
of accuracy, inference speed, memory consumption, and utilizing a computing
device.
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