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OZET

DERIN OGRENME KULLANILARAK YUKSEKLIK
HARITALARINDAN YOL KAYBI TAHMINI

Mustafa Bal
Elektrik-Elektronik Miihendisligi ve Siber Sistemler, Yiiksek Lisans
Tez Damismani: Prof. Dr. Bahadir K. GUNTURK
Subat, 2021

Basarili bir ag planlamasinin yapilabilmesi i¢in hedeflenen kapsama alaninin kanal
parametreleri hakkinda detayl bilgiler gerektirmektedir. Isin izleme simiilasy-
onlariyla elde edilen kanal parametreleri yeterli bilgi vermektedir. Bu islemde
belirlenen alanin 3-boyutlu modeli simiilasyona verilerek yol kaybi hesaplamasi
yapilmaktadir. Fakat 1sin izleme simiilasyonlar: yiiksek hesaplama karmagikligi ve
zaman gerektirmektedir. Bu tezde genellikle yol kayb1 veya parametreleri tahmini
i¢in cesitli derin 6grenme yontemleri 6nerilmistir. Yol kaybi veya parametrelerini
tahmin etmek icin iki ¢oziim vermekteyiz. Ilk olarak, uydu ya da yiikseklik
haritas1 goriintiileri ile derin 6grenme yontemleri kullanilarak yol kaybi kuvveti
ve biiylik 6lgekli golgeleme faktorii degerini tahmin etmek i¢in regresyon mod-
ellemesi gosterilmigtir. Derin agin egitimi icin gerekli veri kiimesi 151n izleme
simiilasyonlar1 ile iiretilmis, uydu ve ya yiikseklik haritalari derin sinir agina
verilip, ¢ikt1 olarak da istenilen kanal parametrelerinin kestirimi regresyon yon-
temiyle elde edilmistir. Yol kaybi, kablosuz iletisimdeki parametrelerinin yani
sira kritik bir deger oldugu i¢in, ikinci sorunumuz kogullu genel diigmanca agi
kullanarak bir bolgenin noktasal agir1 yol kaybi degerlerini tahmin etmektir.
Veri seti, caligmalarimizin ilk probleminde oldugu gibi gereklidir, bu nedenle 151n
izleme simiilasyonlar1 da bu sorunun gercek degeri olarak tiretilmigtir. Bu yon-
temle, alicimin yol kaybi degerini her noktada dogrudan bulmayr hedeflenmek-
tedir. Bu metodumuz noktasal tahmin i¢in miikemmel bir model olmasa kon-
voliisyonlu aglara nazara bélgeler icin daha giivenilir bilgiler vermektedir. Elde
edilen sonuglar ayrintili olarak noktasal ve olasilik dagilimlar: olarak gosterilmis

ve analiz edilmistir.

Anahtar sozciikler: Derin 6grenme, yiikseklik haritalari, kanal parametrelerinin
kestrimi, regresyon, yol kayb1 kuvveti, gblgeleme faktorii, asir1 yol kaybi, insansiz
hava araci, havadan karaya iletisim sistemi.
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ABSTRACT

PATH LOSS PREDICTION FROM HEIGHT MAP
USING DEEP LEARNING

Mustafa Bal
M.S. in Electrical, Electronics Engineering and Cyber Systems
Advisor: Prof. Dr. Bahadir K. GUNTURK
February, 2021

Wireless channel parameters of a region are required for a successful network plan-
ning. Sufficient information about those parameters can be obtained by either
actual measurements or ray-tracing simulations that use 3D model of the target
area. However, measurements are costly and time consuming, and ray-tracing
simulations have high computational cost. This thesis recommends various meth-
ods of estimating path loss or its parameters using deep learning. We give two
solutions for estimating path loss or path loss parameters. Firstly, regression
modeling is shown for estimating path loss exponent and shadowing factor of the
wireless channel by using deep learning methods with satellite images or height
map. Path loss dataset that is needed for training the deep neural network is
produced by ray-tracing simulations. The deep network takes satellite image or
height map as input and applies regression to estimate the desired channel param-
eters. Since the path loss is a critical value as well as its parameters in wireless
communication, our second problem is to estimate the point-wise excessive path
loss values of a region using the conditional general adversarial network. Ray-
tracing simulations are also taken as the ground truth for this problem. With
this method, we aim to find the path loss value of the receiver directly at each
region. Even though it is not a perfect model for point-wise prediction but it can
give us more reliable general information for the region than the convolutional
networks. The results obtained are shown and analyzed as point-wisely for each
region and probability distributions in detail.

Keywords: Deep learning, height maps, channel parameter estimation, regression,
path loss factor, shadowing factor, excessive path loss, unmanned aerial vehicle,

air-to-ground communication system.
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Chapter 1

Introduction

Channel parameter estimation such as path loss and its parameters are crucial for
wireless communication systems because wireless operators plan networks accord-
ing to these parameters. Detailed and accurate channel parameter information
is required to make the best network planning, such parameters are estimated
with detailed measurements. The closest results to these measurements are the
ray-tracing [2| simulations, but these simulations have high computational cost

and therefore have ceased to be a very preferred method.

Besides to ray-tracing simulations, empirical models such as Okumura-Hata
[10] and COST-231 Hata [11] can be used in path loss predictions and it can
give different results depending on the type of area, such as urban, suburban,
rural areas [12]. As observed in [13|, modeling is sometimes required to obtain
additional information such as building density between Transmitter (Tx) and
Receiver (Rx). Even if the models are established correctly, the performance of

these models does not always give satisfactory results.

Machine learning based approaches are used to predict path loss and delay
spread [3] and the results show that empirical models produce much worse re-
sults for Air-To-Ground (ATG) wireless channel parameters than machine learn-

ing methods. Recently with the widely usage of computer vision methods 8, 14|



and deep convolutional architectures [15] that can use to obtain structural infor-
mation from the image, deep learning methods have shown to work quite well
when it is compared to machine learning methods. Therefore, applications that
can give meaningful solutions to communication problems are discussed using
deep convolutional architectures. These applications were mostly used on the es-
timation of path loss in the ATG communication systems. In [5], satellite images
were used to predict the path loss of a specific Rx in the region. Also, in [16]
that deep learning is used for 2D satellite image-based path loss parameters with
deep learning, but compared to the technique in this article, a classification-based
technique is used instead of a regression. Recently in [4], deep learning with the

usage of 2D satellite images have been applied for path loss histogram prediction.

In this thesis, we’ve worked on two problems using deep learning techniques for
communication channel modelling and estimation. We propose a deep learning-
based approach on the idea presented [16]| for channel parameters estimation as
first problem. We aim to analyze the path loss exponent, shadowing factor and
their relationships with the 3D model or the height map of a certain region. The

contribution that has been done for the first problem can be briefly explained:

e We design a regression network which produces more accurate parameters

than using a classification network for channel parameter estimation in [16].

e We prove the ability of deep architectures to learn the complex relationship
between wireless network parameters and the height map of a region by
using regression method. Therefore, this paper extends the work in [16]
by testing height maps as input to deep regression networks for channel

parameter estimation.

e We show that better regression performance is achieved when height maps

are used compared to use of satellite images.

e We compare two network architectures: a well-known deep network, VGG-
16 [8], and a simpler network. Transfer learning [17, 18| is used successfully

to fine-tune VGG-16 using a relatively small dataset. The simple network



is trained from scratch. We discuss the performance of these two networks

in estimating the channel parameters.

The second problem that we’ve worked on in this thesis is estimating the excessive
path loss point-wise by using deep learning techniques which we think can help
more for better network planning. We use a Conditional Generative Adversarial
Network (¢cGAN) to estimate the excessive path loss as point-wise. In [4], fitting
a model for path loss histogram prediction was more of a model-based method
so our method which is the cGAN usage is more data-based. The novelty of the

idea and effective usages are explained as well:

e We used a modified cGAN architecture that has not been used for estimat-

ing path loss.

e We show that even if it is not a perfect point-wise path loss prediction but

it gives helpful information of the region as a whole.

e We demonstrate point-wise prediction and probability distribution predic-

tion with a high-resolution.

e cGANs can be used to benefit from height maps better than convolutional

networks.

A dataset has been created for both of this problems to train the deep network by
using 3D models of targeted areas and running ray-tracing simulations to obtain

path loss values and statistical channel parameters.

In this study, we’ve mentioned that our main goal is to get the wireless channel
parameters in the most optimized way for the region and instantaneous needs
when it comes to it. In order to do network planning, it is normally necessary
to either extract the 3D model of that region and obtain the network parameters
through a ray-tracing process, or with actual field measurements. However, with
our proposed methods, we aim to make a model that can give the most optimized

wireless communication parameters, and this model can be used on a drone or



similar vehicle in the region that has no measurement or simulation knowledge
for the targeted area and it can carry out a dynamic network planning. This kind

of a scenario is demonstrated in Figure 1.0.1.

(b) Extracted 3D map from UAV.

Figure 1.0.1: A drone captures a large number of high-resolution photos over an

area that contains elevation/height information [1].

If we go through the scenarios in which this work can be used, it is possible
to distribute the density and ensure uninterrupted communication in emergency
disaster areas, which can be topographic map of this region by obtaining the
heights of the buildings in the settlements by having photogrammetry camera on
the drone or similar cameras such as Lidar. With this 3D modeling information
obtained from this cameras, height map can be generated and the most optimized
channel parameter can be calculated by giving height map information for the

region to our model as input. So, with these proposed methods even in the kind
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of a scenario that we did not have any knowledge before for the region, we can
provide the more optimized communication to users and by this way network
optimization can be achieved in a way that can be brought closer to real time

processing.

With these approaches of estimating the path loss exponent and shadowing
factor, and point-wise excessive path loss with contional GAN using deep learning
in our work is relevant to several important issues in communications such as
localization, energy-efficient routing, and channel access [19]. By this solutions,

we give accurate estimations for the study and design of wireless system.

We present the outdoor propagation models to give a general knowledge about
the work that has been done for wireless communications parameter estimation
so far in Chapter 2. The first problem, our regression method addressed for
estimating path loss component and shadowing factor of the targeted region,
dataset generation, and network architecture are explained in Chapter 3. Our
second problem that we worked on which is the point-wise excessive path loss
prediction with cGAN is also explained in detail in Chapter 4. The simulations
and discussions of both of this problems are given in Chapter 5. In Chapter 6,

we conclude the thesis.



Chapter 2

Literature Review for Path Loss
Prediction Methods

2.1 Empirical methods

Important information about path loss estimation methods for outdoor propaga-
tion is presented in this chapter starting with empirical methods. As mentioned
before those outdoor propagation models are separated into two which are em-
pirical and deterministic models at first. Okumura model is one of the empirical
models that can work between 150-1920 MHz frequencies in urban areas. Since
our measurements are done in 900 MHz and 300 meters which is capable of esti-
mating the outdoor path loss with the Okumura model. As well as the frequency,
the height of the transmitter needs to be taking into account for the Okumura
model and transmitter altitudes should be between 30-1000 meters. To use the

Okumura model [20] for path loss calculation, the median path loss is calculated:

PLqp = Ly + Apu(f,d) — G(he) — G(hye) — G arEA (2.1)

In this equation where Ly stands for free-space path loss, transmitter altitude

gain as G(h), the Rx altitude gain as G/(h,.) and environmental gain as Garga

6



such as urban, rural, etc. Furthermore, the equations below are important to

calculate the Okumura model’s path loss for that environment.

Pie
G(he) = 2010g(260) for1000m > hy. > 30m (2.2)

Equation (2.2) is used to get the transmitter altitude gain where the transmitter
height is between 30 and 1000 meters. If the receiver is placed on less than 3

meters, the equation below has to be used.

G(he) = 10log(h;e)b}"orhfe <3m (2.3)

Also, there is an specific equation where the receiver height is between 3 and 10

meters to get the receiver altitude gain.

G(hye) = 20 log(h?:e)forlom > hpe > 3m (2.4)

The Hata model is also an empirical model that depends on the localized
features in the area under study. Hata model is similar to the Okumura model
infrequency wise because it works on 150-1500 MHz and transmitter altitude
range at 30-300 meters. Since the Hata model is based on the same formulation
of Okumura model, we can compare it with our proposed method and other
empirical models. The Hata model equation to estimate path loss for urban

areas is provided [12].
PLgp = 69.55+26.16log f. — 13.82hy. — a(h,.) + (44.9 — 6.55 log ) logd (2.5)

where f. indicates the frequency (in MHz), hy and h,. stands for transmitter
altitude and receiver altitude in meters respectively, the distance between trans-
mitter and receiver as d, and a(h,.) depends on the size of the coverage area for
the effective height of the receiver so it changes the environmental basis. Since
the receiver is set to 1.5m height the correction factor can be taken as 0 (zero)
if the calculations want to be done. For a small and medium cities, a(h,.) is as

follow:
a(hye) = (1.1(log f.) — 0.7)h, — (1.56(log f.) — 0.8) (2.6)
7



while for the large cities:
a(hye) = 3.2(log 11.75h,.)* — 4.97 for f. > 300M H = (2.7)

if the carrier frequency is less than 300 MHz, in order to get proper values of

coverage area for effective height of the receiver for large cities:

a(hye) = 8.29(log 1.54h,.)* — 1.1forf. < 300M H =z (2.8)

As explained in detail in the paper [10] that the Okumura-Hata model can also
be modified for suburban and rural areas, and the equations of them will look
like below:

P Lauburban = P Lurpan — 2[log(f./28)]> — 5.4 (2.9)

PLyurai = PLupan — 4.78(log(f.)?) — 18.33(log f.) — 40.98 (2.10)

Cost-231 Hata [21] model is an extended version of the Okumura model to get
more effective results which means that the cover frequency band range extended
from Okumura-Hata 150-1500 MHz to 1500-2000 MHz and the formulation of
COST-231 Hata is given below:

PLap = 46.3+33.91og f.—13.82h, —a(h,.) +(44.9—6.551og hye) log d+C' (2.11)

where C' is equals to 0 (zero) for suburban areas and 3 for metropolitan areas.

Another widely used model which is free-space path loss model is also given
below:
FSPLys = 20log(f.) + 20log(d) + 20log(4r/.) (2.12)

where the parameter ¢ stands for speed of light in vacuum (m/s). If the values
of ¢ and 47 is used in the equation, it will give us a constant value which will be
-147.55.

FSPLug = 20log(f.) + 20log(d) — 147.55 (2.13)

Also, in order to convert d in km and f. in GHz to meters and MHz, the constant
becomes -27.55.

FSPLug = 20log(f.) + 20log(d) — 27.55 (2.14)

8



This types of empirical models can give different results depending on the type
of area, such as urban, suburban, rural areas when it is correctly configured with

their priority parameters.

2.2 Deterministic methods

The way of predicting the outdoor propagation modeling with the determinis-
tic models are more accurate when it is compared with empirical models. Also,
empirical models are simpler and getting low prediction accuracy so that em-
pirical models have low performance in the different propagation conditions and
frequencies. Ray-tracing modeling is one of the deterministic models that is used
for outdoor propagation modeling. Ray-tracing simulation takes a 3D model of
the targeted area as input and calculates the receiver signals’ propagation char-
acteristics such as delay spread, power, distance to the transmitter, etc. Since
the simulations are based on 3D models, if the desired targeted region has no 3D
models, we will not be able to use this deterministic model. Unless generating
3D models is an option by using 2D images with photogrammetric measuring
method. Wireless InSite (WI) is one of the ray-tracing simulator programs that
can calculate the wireless channel parameters from the 3D models. Even if the
simulation of wireless channel parameters is very accurate, the usage of this sim-
ulation is a time-consuming process. The high performance of predicting the
wireless channel parameters from ray-tracing simulations are accurate enough

when it is compared to measured ones and can be seen in |2, 22, 23|.

The research shows [2] a comparison of practical measuring of wireless chan-
nel parameters with relevant simulations of the same area. With the usage of
Rohde&Schwarz FSH spectrum analyzer, TS-EMF antenna system, and RFEX
software package, with the measurements that are taken in the city of Bosnia
and Herzegovina, Banja Luka town. Also, the 3D model of Banja Luka is given
into WI ray-tracing software to simulate the same area. The measurements and
simulations are made for 900 MHz and 1800 MHz. While the Rx points have been
created in a grid of (5m x bm) at 1.5m height that have 11,500 in the ray-tracing

9



simulation, in the measurements 80 receivers taken into account that matches
with the simulation. Electromagnetic Field Strength (E-FS) is calculated from
the measurements for each receiver and results are compared with the simulation
from WI software. 50 receivers comparison with measured and simulated results
are given in Figure 2.2.1. It can be seen that ray-tracing simulations of a tar-
geted area are able to give satisfactory results when compared with the practical

measurements.

—&— Measurerments Warhy

Vahues
35 b ¥ —— ] Pradicied Valyes

in
"L T & [ 3

RMS [V
[
°

26
Index (Fix Mumiber)

Figure 2.2.1. Comparison of measurement results and software predicted

values [2].

2.3 Machine learning methods

Machine learning is also a widely used method in path loss predictions. One of
these methods is discussed in paper [3], where the authors estimate path loss and
delay spread for ATG communication through machine learning methods such as
random forest and K-Nearest-Neighbor (KNN). As is known, machine-learning
methods are divided into two categories classification and regression technique.
In this machine learning approach, a supervised regression technique was used.
A main part of the random forest is a decision tree. Each leaf node in the
decision tree represents a category and each inner node represents a test on the

feature. Since the learning process of the single decision tree is not effective than

10



the random forest method because the random forest uses multiple decision trees.
Thus, random forests work in two processes; the training examples of each decision
tree are selected by bootstrap sampling, meaning that one instance consists of
output and corresponding inputs, while the other process is taken from the first
set of the feature before the node division of each decision tree, and then selected
from the node division property subset. In KNN, predictive samples are compared
with ray-tracing samples, and the most similar parent K instances are selected.
It is then calculated by the average of observations of upper K samples of path
loss and delay spread propagation pre-revaluation values. Since KNN parameters
are few, it is a low-cost learning method, but the disadvantage of having a few
parameters is that small changes in the parameter lead to large errors. The
propagation environment of this ATG communication urban area of the city of
Canada, in Ottowa, was taken into consideration to generate the dataset. This
dataset generation is made with some little changes compared to other datasets
in path loss prediction. The transmitter is placed on a fixed position of 2m above
the ground and the receiver is chosen as a UAV device such as a drone to move
along the main roads at different heights from 10 to 150m and the position of the
UAV recorded every 5m at each. The generated data made for frequencies at 2.4,
5.8, 28 and 37 GHz, and the performances are evaluated for the cases. One of
the evaluations of this paper is demonstrated at 2.4 GHz Tx and Rx altitude at
50m in Figure 2.3.1. As it can be seen that empirical models are also compared

with the machine learning methods in this case.
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Figure 2.3.1. Machine learning method result for path loss prediction [3].

2.4 Deep learning methods

By the increase of the performance in the Graphical Processing Units (GPU) lead
to the use of more artificial intelligent systems. The systems made large usage of
deep learning models. Since deep learning models are based on artificial neural
networks, we can say that it works like a biological brain, and every information
that needs to be processed gets distributed to nodes and it can produce results
that can surpass human expert performance. So, the given task to the deep learn-
ing model can be done at a sufficient time. In [12], the authors introduced a deep
learning model to classify the wireless channel parameters from ATG system us-
ing images and implementation steps are similar to our first problem’s proposed
deep learning model which will be explained in detail. With the usage of ray-
tracing simulation from WI at 900 MHz frequency and transmitter height at 300

12



meters, a dataset is generated. This dataset contains satellite images, correspond-
ing 3D models, and wireless channel parameter values that are computed from
the widely used large-scale path loss model formula for each satellite image by
using the simulation values. Then, satellite images are given to the deep learning
model that is established to classify the wireless channel parameters (n,0). By
this method, the classification performance stated as %86 for n and %76 for o

which is accurate enough for the targeted regions.

In one of the recent works in [4], the authors provided a reliable approach of
deep learning method to predict the histogram of path loss distribution for the
targeted area at different frequencies such as 900 MHz, 3.5 GHz, and transmitter
heights at 40, 80, 300 meters. This approach is used with bin-wise histogram
path loss prediction, meaning that using 8-bin clustered for path loss in dB to
predict it using satellite images with implemented deep learning model. There-
fore, 8-bin representation and one of the sample results with the targeted area is
given in Figure 2.4.1. The performance of this method is evaluated by using a
Mean Squared Error (MSE) histogram-wise. The targeted area’s MSE between
predicted path loss histogram and true path loss histogram is shown as well in

the Figure below (c).

13



PL{dy) = 63.44 dB

A PL — PL{dy) < 20
B | 20 =< PL — PL(dy) < 30
C | 30=< PL—FPL(dy) < 40
D | 40 = PL — PL(dy) < 50
E | 50 < PL — PL{dp) < 60

F | 60 < PL— PL{dy) < 70

G | T0< PL — PL(dy) < 80

H | 80 < PL — PL{dp)

(a) 8-bin representation (b) Targeted area

. True A Histogram
BN Predicted P, Hetogram
— passine Fy Mstogram

Histogram
[=]
w

[3

D E
Path loss (dB)

MSE = 9.82¢ 6

(c) Histogram path loss prediction of targeted area

Figure 2.4.1: 8-bin, satellite image, and result of histogram path loss predic-
tion [4].

Another method used after recently the usage of satellite images to predict path
loss or parameters using deep learning models is given in the [5]. The proposed
deep learning model has a simple Deep Neural Network (DNN) architecture that
is combined with a Convolutional Neural Network (CNN) and Neural Network
(NN) layers. The general demonstration of the proposed architecture is shown
in Figure 2.4.2. It can be seen that not only the deep learning model is getting
trained, also the path loss model that is defined as L(d) is used for assisting the
learning process. L(d)= PL(d)+Gy,, where Gy, is the estimated transmission
power and related gain. Thus, the authors claim that the proposed simple DNN

model is capable of improving path loss prediction at unseen locations for 811
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MHz with 1 dB and 4.7 dB for 2630 MHz. The effectiveness of this work is shown
with the targeted and predicted results for 811 MHz and 2630 MHz is given in
Figure 2.4.3.

Deep Neural Network

j l :rn yw, )

Figure 2.4.2. DNN model architecture from [5].
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Figure 2.4.3. Results from the paper of [5] in RSRP.

2.5 Generative adversarial network methods

With the increase of deep learning methods rapidly, new applications occurred
such as GAN methods. The idea of GANs was first introduced in [24]. The
basic principle of GAN is to approximate the unknown distribution of a particular

dataset by optimizing an objective function through a game between the generator
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and the discriminator [25]. Tt is stated that GAN can update dynamically through
training of the discriminator which means that the generator’s aim to fool the
discriminator to get targeted results. The total loss consists of generator loss and
also from the discriminator loss, whose function is to determine how far the output
is from the real input. The GAN applications are mostly known as hard tasks
which means that it is difficult to train a convenient model. There is a different
kind of GAN variations which are used for style transferring |7], semantic imaging
[26], producing a super-resolution images [27], image to image transferring [6], etc.
Sample results for these types of GANs shown in the Figure 2.5.1. Most of the
GANSs produce images as an output but some works have been done on producing
synthesized speech with GAN like in the paper [28|. Besides the GANs, a cGAN
is a type of GAN that simply can give the targeted output (Y) to the generator
and discriminator [29]. Thus, image generation can be conditional on a class label
that it is possible to use on different approaches such as path loss predictions.
Since this idea of predicting point-wise path loss with cGAN is novel, there are not
many applications in this area so our GAN based proposed method is explained
in detail in Chapter 4.

Input Ground truth

(b) Style transferring

Figure 2.5.1: Sample results of GANs [6, 7].
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Chapter 3

Regression of Path Loss Parameter
Prediction Model

Our interest in this thesis is the outdoor wireless channel parameter estima-
tions, and the first problem that we worked on is explained with our proposed
method in detail. New approaches have emerged in wireless communication appli-
cations with the rise of machine learning and deep learning techniques in various
fields [30]. Predicting the path loss by using machine learning techniques are
declared in [31] and [32| for areal path loss prediction. Also, the study in [33]
and [34] show that by using the height of Unmanned-Aerial-Vehicle (UAV) to get
the characteristics of the wireless communication parameters vary with different
heights when it is predicted with machine learning methods at the low-frequency
band. Aside from the usage of machine learning methods to estimate path loss,
the computational and visualization capabilities of computers have accelerated
recently so the deep learning method usage increased rapidly. The wireless tech-
nology identification using CNN is given in [35] and by using 2D satellite images
to predict path loss components in [16], and predicting the histogram of path loss
distribution in [4] can be given as examples of deep learning usages for wireless
channel parameter estimation methods that has been mentioned before in the

literature review.
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Propagation models are mostly used to estimate the mean signal power from
the transmitter to the receiver. Also, any distortion that happens to the signal
between the transmitter and receiver is known as path loss. In the proposed
regression model, we try to predict the path loss component and shadowing factor

so with the usage of the large-scale free space path loss model [16]:

d
PL(d) = PL(do) + 10nlogy, (d—0> + X, (3.1)

where the d at PL(d) is a distance and PL(d) is the path loss at an explicit
point from the transmitter. Also, dy of PL(dp) is the reference distance, and
PL(dp) is reference path loss. X, is a random variable whose mean is zero and
the standard deviation of X, is o. In [36] points out that o is a variable that
indicates the extent of shadowing. Model (3.1) is commonly used for the UAV
communications estimation [37]. In this work, we mainly focus on estimating
the path loss exponent (n) and shadowing factor (o) from height map of a given
region as well as satellite image. As an input to the deep neural networks height
map and satellite images are given and wireless channel parameters (n, o) are

predicted.

3.1 Dataset generation

Dataset generation is the key component to the training for deep learning pur-
poses. In this study, satellite and 3D building models and various urban areas
were selected. SketchUP! and 3D models were used in the auxiliary PlaceMaker?
program to obtain this data. This data covers (1.8 x 1.8) km of New York City in
each image. Ray-tracing simulations were made with Wireless Insite® program,
which works using 3D building models. In this simulation, the receivers are sim-
ulated to be 1.5 meters above the ground with 12,100 (110 x 110) points in the

Thttps:/ /www.sketchup.com/
https:/ /www.suplacemaker.com/
3https://www.remcom.com /wireless-insite-em-propagation-software
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form of a particular grid and the transmitter is placed 300 meters high in the
middle of the specified grid. Only outdoor receivers are used. Transmitter power
and antenna have been set to 60 dBm and omni-directional respectively. Table I
demonstrates the simulation parameters in detail. As a result of the simulation,
power levels were taken for each receiving point, and path loss was calculated.
For channel parameter calculation (n, o), the least squared method is used and
described by the equations below. We can see equation (3.1) translated into vec-
tor form in equation (3.2). When we accept X, as 0 (zero) and solve the equation,

we can get the value using equation (3.3).

Y =nA+X,, (3.2)

If we define 1010g(%) as A and (PL — PLg) as Y vectors, we can calculate
the n parameter with the following equations (3.3), (3.4), (3.5).

n=(ATA)"tATY, (3.3)
S YA,

n=-"="_ (3.4)
(A:)?

i=1

ﬁjl (PL(d;) — PL(dy)) <10log (g_))

n= ~ 5 (3.5)
> <10log (g—0>>

i=1

As shown in equation (3.6) that we can find this shadowing factor variance (o)
by using the computed path loss exponent (n). Then, we can get the (o) which

is the standard deviation of X,.

0% = %Z (PL(dz-) — PL(dy) — 10nlog (%))2 (3.6)

0
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Table 3.1: SIMULATION PARAMETERS

Parameters Values
Transmission Frequency 900 MHz
Transmit Power +60 dBm
Transmitted Signal Sinusoid
Transmitter Antenna Height 300 m
Receiver Antenna Height 1.5m
Antenna Polarization Vertical
Antenna Radiation Pattern | Omni-directional
Bandwidth 8 MHz
PL(dy) 63.44 dB

Channel parameters (n and o) have been added to our dataset with each

satellite image that is intended to be used.

To make wireless channel parameter estimation, good results have been
achieved with satellite images using deep learning [16], and it is targeted to use
height maps to further improve this method. We reveal that the detailed altitude
data of the height maps provide more detailed information than the information
obtained from the satellite images in deep learning networks. In Chapter 5, we
discuss the performance of using height maps and satellite images. It can be seen
in the block diagram in Fig. 3.1.1 that the detailed production process of the

dataset is described.

Aerial/Satellite

4

Image
O
p~
—
Target Height Map N >
Area Image - m
N —|

Ray-tracing N Parameter N

=>4
3D Model Simulation Calculation

Figure 3.1.1. Block diagram of the dataset generation.
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3.2

Height map generation

Making an useful and proper dataset is a hard task so in order to create such

dataset, height map generation can be explained by the following main steps,

Converting 3D files to open by MeshLab?.
Using Stanford Triangle Format in CloudCompare® to generate height maps.
Using Actiona® to automate height map production.

Coordinate system transformation for receiver locations to height maps co-

ordinate system

Making Wavefront 3D Object File (.OBJ) files to visualize powers in 3D
with CloudCompare

Generating receiver locations images

Cropping from boundaries of receiver locations for height map and resizing
Storing power information file in pixel wise

Intensity mapping

Wrapping operation to get identical with satellite imagery

As mentioned in the dataset generation part that different regions are selected

for satellite images and their 3D building models. Those selected area’s 3D models

are in Collada (.DAE) format to open and obtain the information inside a 3D

files, the format of the 3D models needed to be changed to Stanford Triangle

Format (\PLY) format by using the program called "MeshLab". This operation

has to be done because the information is needed for every 3D building where X

4http://www.meshlab.net /
Shttps://www.danielgm.net /cc/
Shttps://www.howtoinstall.co/en/ubuntu/xenial /actiona
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stands for horizontal coordinate, Y for vertical coordinate, and Z for the height

values.

After having the necessary information from the 3D format, the Stanford Tri-
angle Format is opened by CloudCompare, and the information of Z(height) gray-
colored where the surface is black and the highest building is white. The gray-
colored images named as "Height map" are generated and saved as a bitmap.
The bitmap can store the color data of each pixel in the image without any com-
parison applied and in this way, the exact level of height information can not be

lost.

Since generating a height map is a single-time process if we want to make it as
a large dataset the process needs to be repeated for the rest of the 3D files. To
make the process quick and productive, the "Action" automation tool is used. It

is a simple tool that repeats the same steps to generate height maps.

The generated height maps from 3D building model files have more information
that is compared with the satellite images, it can be seen in Figure 3.2.1 (b). Thus,
extras of the image have to be removed to be the same as the satellite image in
Figure 3.2.1 (a).

We have used it to simulated our 3D models and to get power distribution for
each receiver location on the 3D model where the transmitter is placed in the
middle on the WI program. After getting the simulation results from WI, the
power files are used. The power file includes X-Y coordinates and power values
for each receiver point but the coordinates of the powers do not match with the
coordinates of the 3D model when we open the 3D visualization of the power
as .OBJ file in CloudCompare the reason behind is that WI and CloudCompare
programs are not using the same global coordinates so, to match the powers from
WI with the height maps, we use the receiver location images from WI and get
the ratio between the buildings and the receiver location(red points). A receiver
location image from WI is shown in Figure 3.2.1 (c), the red points indicate the
receiver locations. Moreover, we needed to shift the X-Y-coordinates of power so

that the geometric center coincides with the cartesian origin(-1090 from X and
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(a) Satellite image (b) Extra-height map

(c) Receiver location image (d) Height map

Figure 3.2.1: A sample satellite, extra-height map, receiver location image and
height map.

Y). We use the ratio to scale the X-Y coordinates of power. After scaling is done,
it is needed to fix the shifting of the receiver locations to centralize all of the
images like WI did. So, we found out that if we added 4.84 to X and 0.5 to Y
coordinate, it exactly matches the WI configuration. Consequently, the simulated

powers and the height maps are matched.

After matching the powers with height maps, we need to find the receiver
location images’ boundaries and from these boundaries height map images will
be cropped to be the same as the satellite image. However, we need matched
power and height maps to be resized to (655,655) because we have (110 x 110)
receiver locations and we will need to show it pixel-wise on a regular grid. Since

we have 12,100 (110 x 110) receiver locations that consist of powers and it has to
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be distributed on a regular grid so we thought if we can make 1 power pixel and
5 empty pixels on a grid, it will be fine for the rest of the receiver locations. In
this way, we were able to assign the receiver powers for pixels. Height map shows
the height of the buildings as intensity for the pixels in the building area, where
the values are normalized from 0 to 255 which is named as "Intensity Mapping"
process. Each intensity corresponds to a fixed height (with a small margin of
error due to quantization) across the whole dataset. The highest building, which
is the Empire State building, has a height of 381 meters and its pixel intensity is
set to be 255. Every other building height is normalized accordingly.

The satellite images are not ortho-rectified which is not identical for the height
maps so that we have used perspective warping operation. In this operation, we
used 8 main points that can set-up the homography matrix and applied it to
satellite images. The last version of the satellite image and height map can be
seen in Figure 3.2.1 (a) and (d). Consequently, we will end up having resized,
cropped and intensity mapped height maps that exactly matched with satellite

images and their simulation information.

3.3 Network architecture

When we look at deep learning architectures, some architectures achieve sufficient
results through deep learning architectures and regression analysis. One of these
architectures is VGG-16 [8| given in Fig. 3.3.1. This architecture is used to
estimate path loss exponent and shadowing factor parameters. The VGG-16
architecture consists of 13 convolution layers and 3 fully connected layers and
has 134 million trainable parameters. The VGG-16 network is trained by using
a transfer learning technique that is pre-trained using a 1000-category ImageNet
dataset, which was implemented using ImageNet’s weights except for the last
fully-connected layer. It is proven that the transfer learning technique has a
great effect on the results shown in [38| as well because image features benefits
from well-defined filters of the early convolutional layers so they get more effective

results than training from scratch. As mentioned above that only the last layer
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which is the output layer of the VGG-16 is modified to give a single output, and
sigmoid is used as an activation function. For the training loss, MSE is preferred.
As an optimizer Stochastic Gradient Descent (SGD) is used with a momentum

of 0.9 and the learning rate is chosen as 0.0001.
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Figure 3.3.1. VGG-16 architecture [§].

A low-complexity network is also used to analyze the effect of shallower ar-
chitectures on the prediction of the wireless communication parameters. The
network is designed upon a sample path loss prediction architecture in paper [5].
This structure contains batch normalization and max-pooling layers for each 6
convolutional layers. The architecture ends up with 3 fully connected layers that
have 264,000 trainable parameters. Adam optimizer and 0.001 learning rate are

used to perform the training from scratch, i.e. with random initialization.

We analyzed the impact of the less complex shallow architecture for the esti-
mation of wireless communication channel parameters. This network is designed
to be a modified version of a network previously used [5] for path loss estima-
tion. This structure is designed with 6 convolutional layers followed by batch
normalization and maximum pooling layer, and 3 fully-connected layers at the
end. This low-complexity network contains 264,000 trainable parameters, with

its optimizer Adam and learning rate at 0.0001, but it is trained from the scratch,

unlike the VGG-16 network that we modified.

Our data is divided into %75 (725 images) for training and %25 (241 images)
for testing to be normalized and trained in the [0-1] range, including the wireless
channel parameters (n and o). The data augmentation method is just used for
the training data. This data augmentation method is used on the original samples

(i.e. satellite images and height maps) of training data with flipping vertically /
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Figure 3.3.2. Low-complexity architecture adopted from [5].

horizontally, rotating left by 90-180-270 degrees, and also flipping vertically and

rotated by 90-270 degrees. This data augmentation technique [39] is used because

of reducing the over-fitting as well as to increase the number of training samples

to make the network learn better. Also, the Keras deep learning framework is

preferred in this work.
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Chapter 4

Point-wise Excessive Path Loss
Prediction with Conditional GAN

Path loss is also important for wireless channel characteristics as much as the
path loss exponent and shadowing factor. Path loss can be calculated simply by
using the Tx and Rx powers for ATG UAV communications and also can be seen
by the formulation below:

PLyg = Pr, — Pg, (4.1)

By the usage of deep learning with height maps brought us the idea of using
cGAN to predict the point-wise path loss as a second problem in this work. The
dataset that is generated for this purpose contains mostly urban and suburban
areas so predicting the excessive path loss is more logical in this case. The
simple demonstration of free-space path loss and excessive path loss is given in

Figure 4.0.1 for ATG communication.
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Figure 4.0.1: Air-to-ground excessive path loss example. [9].

It can be understood that signals get affected by the obstacles in front of them
such as buildings and this situation is named as Line-Of-Sight (LoS). When there
is a LoS, the excessive path loss is higher than in Non-Line-Of-Sight (nLoS) cases
but even if there are no obstacles affecting the signal, it can get strong reflection
and refraction like mentioned in the paper [40]. Eventually, excessive path loss
is calculated for our dataset. The calculation of excessive path loss formula 7 is

given in (4.2):

n= PL, — FSPL (4.2)

PL, is the path loss values for the number of receivers and F'SPL formula is

given in (2.14).
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4.1 Conditional GAN dataset generation

Conditional GAN dataset generation has almost the same as the dataset gener-
ation in Chapter 3. The dataset which was explained in Chapter 3 is made for
frequency as 900 MHz and transmitter altitude as 300 meters but in this prob-
lem, it has been decided to use the same simulation parameters except for the
transmitter antenna height so we changed from 300 meters to 80 meters when
making the dataset. The reason for lowering the transmitter antenna height is to
see whether our model can predict true values of excessive path loss for an area.
The work is done point-wise which means that for each receiver in the image,
the excessive path loss is calculated. After getting the true values for excessive
path loss for every receiver for each image in the dataset, it has been decided to
make excessive path loss image where the true path loss values are placed on an
uniformly distributed rectangular grid. To make path loss image, it needs to be
matched with the size of the input image (height map, satellite image) which is
(256x 256) so the path loss image is resized from (110 x 110) to (256 x 256) by
using nearest interpolation. Since, this work is done only for outdoor propaga-
tion, we removed the path loss values that are indoor and sample of excessive

path loss image can be seen in Figure 4.1.1.

Figure 4.1.1: Satellite images, their corresponding height map, where the color-
bar is in meters, and path loss, where the color bar is in dB images are shown for
a certain region.
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4.2 Conditional GAN network and hyperparame-

ters

Conditional GANs can perform tremendously in a large number of applications,
and key application areas are usually style transfer, image super-resolution, etc.
One of the largest uses of the conditional GAN network, pixel-to-pixel [6], has
been modified and used to predict point-wise excessive path loss and explained
in detail in this section. To explain our modified conditional GAN network well,
we chose to tell it part by part. Our proposed cGAN network consists of the
generator and discriminator part. The generator part is described firstly, the
modified U-NET architecture is used as a generator in our cGAN. The U-NET
architect consists of encoder and decoder parts so that the same input size image
is expected in the output and by this method, the input image is transformed to

get the targeted image.
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Figure 4.2.1: Generator’s architecture. SQ1 has conv2D layer with strides (2)
and padding (same). Sequential 2 (SQ2) has conv2DTranspose layer with stride
(1) and padding (same).

The generator architecture consists of 18 convolutional layers with skip con-
nections that can get valuable information from encoder to decoder and it is
indicated as arrows in Figure 4.2.1. Each block in the encoder contains con-
volutional, batch normalization, and leaky relu layers. Also, each block in the

decoder has transposed convolutional, batch normalization, and relu layers. Since
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the generator architecture in detail is shown, the training of the generator part
is also given in Figure 4.2.2. As it can be seen from the block diagram that the
generator takes input imagery which can be a satellite image or height map. The
generated image from the input given to discriminator and as well as the input
image, discriminator with the taken input imagery learns to classify fake and
real path loss image by the usage of binary cross-entropy so that generator’s real

purpose is can be seen as fooling the discriminator.

Input Imagery ] [ PL Imagery ]

Y

[ Generator

|

Discriminator

! :

[ Binary Cross-Entropy ] [ L1 Loss ]

\_\/\/

Constant Factor

'

Generator
Gradient

Figure 4.2.2: Training of generator.

Our network needed a loss function that can work on the outdoor propagation
so the generator loss function is established on just outdoor loss. Outdoor loss
means that the structural areas such as buildings were not considered as values
that can effect on the getting generator loss. Then, from the values of outdoors,

the loss function is chosen as L1 Loss and the formulation is giving below:

Llloss = Z |yt7"ue — Ypredicted (43)

i=1
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The benefit of using L1 loss is to minimize the error between true and predicted.
Another reason is, the L1 loss is not simply affected by the outliers of the data.
Consequently, we get the generator gradient by these steps in order to get better-

generated images.

As is known that discriminators try to separate the actual data from the data
generated by the generator. Discriminator architecture is inspired by Patch-GAN
by the paper in [41]. It is called PatchGAN because patch-by-patch is taken into
account to penalize the structure instead of taking the data as a whole. In
Figure 4.2.3 the discriminator gets 2 inputs which are input and path loss images
that’s why the input size is (256 x 256 x 6). After the input layer, the following
layers are indicated like generator SQ1 which are the down-sampling layers and
continues with the block part that consists of (conv2D-BatchNorm-LeakyRelu)
and ends until the discriminator output reaches the shape of conv2D (5 x 5 x 1)

which is called discriminator receptive field.

SQ132x32x256 |
| so164x64x128
BatchNorm

Conv2D(29x29x512)

LeakyRelu
| convap (5x5x1) |

5Q1128x 128 x 64

)
0
o
Q
P
o0

Figure 4.2.3: Discriminator’s architecture. There are eight times of the layers in

shown in the block and conv2D has stride as (1).

Therefore, the discriminator can look at the part of the image (5 x 5). We have
found out that making the discriminator’s receptive field smaller gives us better
path loss estimations so that the most suitable receptive field for our purpose is
chosen as (5 x 5). The training of the discriminator is shown in Figure 4.2.4. The
loss of discriminator takes 2 inputs as mentioned before; real images and generated
images. The real loss is calculated by using the binary cross-entropy loss of the

real images which are an array of ones and generated loss is also calculated by

32



generated images using binary cross-entropy loss which is an array of zeros. Then,
the summation of real loss and generated loss form the total discriminator loss.
At last, the discriminator updates its weights by back-propagation from the total

discriminator loss.

[ Input Imagery ][ PL Imagery ]

v

Generator ]

Discriminator

v

[ Binary Cross-Entropy ]

Discriminator
Gradient

Figure 4.2.4: Training of discriminator.

To get the adversarial loss, the network tries to figure it out how many times
the generator failed to deceive the discriminator so that the output of the discrim-
inator for generated images should be ones by the output of binary cross-entropy
but it sometimes fails so getting the difference between real and generated im-
age gives our total conditional GAN loss. In this work, the data is divided into
%70 (700 images) for training and %30 (300 images) for testing to be normalized
and trained in the [0-1] range. Also, Tensor flow deep learning framework is pre-
ferred. Adam as an optimizer, 0.0002 as learning rate is chosen for both generator
and discriminator network. We trained on Tensorflow 2.0 on Nvidia RTX 2080
Ti GPU. The training takes about 12 hours for 500 epochs. The proposed cGAN

network is trained from scratch.
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Chapter 5

Simulations and Discussions

5.1 Regression model performance for (n,o) pre-

diction

Table 5.1: PATH LOoSs EXPONENT (n) PREDICTION

Mean Squared Error (MSE)
Architecture Satellite image Height map | Variance
VGG-16 [3] 046 x 102 | 0.4l x 102 0.65
Low-complexity [5] | 0.97 x 1072 0.62 x 1072 0.65

Table 5.2: SHADOWING FACTOR (o) PREDICTION

Mean Squared Error (MSE)
Architecture Satellite image | Height maps | Variance
VGG-16 [8] 5.28 5.43 90.63
Low-complexity [5] 4.11 3.41 90.63

In this section, we demonstrate different types of deep learning models and
their performances on the wireless communication channel parameter dataset
that has been made while this work is being done. Classification-based prediction
modeling problems differ from regression modeling problems. Since this work is

done upon regression modeling problem, MSE is used between predicted and true
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values that needed to be analyzed for satellite images and height maps. In Tables
5.1 and 5.2, the results are given for path loss exponent (n) and shadowing factor
(). The variances are provided with a table for a better comparison of the test
dataset. When we look at the ratio of MSEs in (n and o) to the variation, it
proves that the regression network is an accurate predictor in channel parameters.
n is better predictable compared to o by all tested networks and it can be seen
from Figures 5.1.1 and 5.1.2 like in Tables 5.1 and 5.2. The ¢ parameter is more
difficult to predict than n because it is associated with uncertainty and noise level
in path loss data. Figures 5.1.3 and 5.1.4 are presented as actual values (sorted
in ascending order) against estimated values for scenarios tried with different
networks. We can observe in both the satellite images and height maps that the

o values have some outliers in other words mispredicted values.

When looking at the tables where satellite images and height maps are com-
pared, the estimation of height maps with the VGG-16 network results better,
while only the sigma parameter’s estimation with the VGG-16 network results
poorly. It was understood that the height information was necessary for the cor-
rect modeling of the wireless channel and this information could not be obtained

from satellite images.

We get better results for the n values of the VGG-16 network and much less
results for o values when VGG-16 and low-complexity network’s performances
are compared. Since the size of the training data is limited, it causes over-fitting
on high-complexity models, such as on the VGG-16 network. This over-fitting
negatively affects the test set because it learns about the noise in the ¢ values in
the training data, which explains why the performance value of the o value is low
in its estimation. In the case of VGG-16, it is observed in Figure 5.1.3 and 5.1.4,
where there are many outliers for both satellite images and height maps. We see
that a low-complexity network for o achieves better results. This is because the
low-complexity network does not suffer from over-fitting and has produced better
results for ¢ than the VGG-16 network. For both satellite images and height

maps that various test sample results of this study were given in Figure 5.1.5.
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Figure 5.1.1. VGG-16 architecture [8] true vs. predicted scatter plots for test

data.
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Figure 5.1.3. Prediction of test samples based on the VGG-16 architecture [8].
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(a) True n: 2.54 (b) True n: 2.54

Predicted n: 2.52 Predicted n: 2.54
True o: 11.08 True o: 11.08
Predicted o: 9.36 Predicted o: 10.47

SBPER - .

(c) True n: 2.88 (d) True n: 2.88
Predicted n: 2.89 Predicted n: 2.88
True o: 13.57 True o: 13.57
Predicted o: 12.93 Predicted o: 13.43

Figure 5.1.5. Sample results from the test set.
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(a) True n: 3.14 (b) True n: 3.14

Predicted n: 3.12 Predicted n: 3.00
True o: 22.87 True o: 22.87
Predicted o: 21.05 Predicted o: 21.21

Figure 5.1.6. Sample results from the test set.

5.2 Conditional GAN performance for excessive

path loss prediction

Table 5.3: GAN PaTH L0OSs PREDICTION USING HEIGHT MAP

Transmitter Height 80 m 300 m
Average probability distribution mse | 3.45 x 107° | 1.28 x 10~*
Average point-wise mse 451 255
Path loss variance 520 277

In this work, the conditional GAN model is similar to style transferring be-
cause the model is taking a height map as an input and predicting the path loss
image of that region. This method has been tried on two different transmitter
altitudes which are 80 and 300 meters. The performance of the modified condi-
tional generative adversarial network for excessive path loss prediction in Chapter

4 has been evaluated and results are given in Table 5.3.
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The conditional GAN model is evaluated by average point-wise mean squared
error and average probability distribution mean squared error. Average point-
wise mean squared error is the evaluation parameter in which we compare all
the pixels in the predicted and ground truth images excluding the indoor pixels.
While for the average probability distribution mean squared error, we calculate
across the region the probability distribution of ground truth and predicted path
losses and we divide the distribution into 300-bins where each bin represents 1 dB
and we calculate the mean squared error between both of them. When we look
at figure 5.2.1 (b) the true path loss image, it can be seen that most of the area
in between the buildings is covered in red which is indicated as high path loss
values. It can be explained that since the transmitter height is set to 80 meters
in the middle of the image, most of the buildings around the Tx are higher than
80 meters which can result in high path losses for the receivers. Since we are
only interested in outdoor path loss modeling, the mean squared error between
the ground truth of path loss image and predicted path loss image is calculated
for the outdoor receivers for each of the test samples. In Table 5.3 the average
point-wise mean squared error in 300 meters has a better result than 80 meters.
We can see that for 300 meters and 80 meters datasets, average point-wise mse is
less than the true path losses variance which means that model is not predicting

the average but actually trying to give meaningful estimations.

Even though the 80 meters path loss images has higher variance where we can
see many images that have wide regions of high path losses that the network can
learn from and successfully be able to predict the shadowing effect as we can
notice the hint of shadowing in 5.2.1 (c). We think that with a bigger dataset
that has many more interesting samples like in 5.2.1 the network would be able

to estimate the shadowing more accurately.

It can be noticed from Figure 5.2.1 (d) that the hight path loss values are
very concentrated in narrow-based high triangle, while the prediction is widely
distributing this probability across the bigger interval and as we said that with a

better balanced dataset this could reach the desired behaviour.

In a contrast to 80m, the 300 meters transmitter is too high for most of the
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buildings so that the high path loss does not usual occur. That’s why the perfor-
mance is not as well as in the case of the 80 meters transmitter, higher variance

and higher more variations.

In order to show the performance of the proposed method, some of the results

for 80 meters and 300 meters are demonstrated in Figure 5.2.3 and 5.2.4.
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Figure 5.2.1: One of the 80 meter result is shown.
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Figure 5.2.2: One of the 300 meter result is shown.
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Chapter 6

Conclusion

In this study, two different problems are indicated on the wireless channel com-
munication which are estimating the path loss parameters such as (n and o) and
estimating excessive path loss point-wisely using deep learning from height map.
We show that whenever the height maps are available, it should be preferred as
they incorporate the 3D structural information directly while structural informa-
tion is extracted implicitly from satellite images through the networks. Our first
problem was the modelling a regression of path loss exponent (n) and shadow-
ing factor (o) estimation that is issued by height map and satellite images and
trained with two separate network architectures. It is observed that VGG-16
architecture is suitable for n estimation because the n value is not noisy, so it
is less prone to over-fitting [42]. While in the o case more noise is present, and
VGG-16 learns the noise during training, which badly affects the testing perfor-
mance. Hence, a shallower network is preferable to get rid of the over-fitting
caused by VGG-16 in o estimation. The performance of satellite images and
height maps are also compared and height maps are shown to be better at esti-
mating the channel parameters. The proposed approach can be easily adapted
to different communication scenarios, with different transmitter frequencies and
heights. Also, it remains to be seen whether better performance can be obtained
by combining both 2D satellite image and height map information when training

the deep network.
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On the other hand which we surely think that a difficult task of using the
conditional GAN for predicting the point-wise excessive path loss of a targeted
area is taken as the second problem to work on. With the proposed method it
can be said that conditional GAN is much more appropriate for the prediction of
excessive path loss for a region and its benefits from the height info. Even when it
is compared with [4], we achieved more realistic and accurate results and instead
of predicting 10 dB wide-bin probability distribution, we are predicting more
accurately 1-bin probability distribution. From that, it is proved that point-wise
path loss prediction gives helpful information and improves the excessive path loss
probability distribution prediction very well. Moreover, similar to these studies,
the use of deep neural networks can be investigated in predicting other channel
features, such as the delay spread function, which is important in the design and

performance of wireless communication systems.

Consequently, these works can be used to get a more general network planning
of a region and its instant needs. In real-life scenarios, this type of service can
be used in a disaster zone, i.e. to increase communication in that region with
the UAV, like how much power it should give, in which meters that transmitter

needs to be stay or its optimization, such as channel parameters.
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Appendix A

Summaries of the Networks
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Summary of VGG-16 network

Layer (type) Output Shape Param #
blocki_comvi (ComvaD)  (None, 224, 224, 64) 1792
blockl conv2 {Conv2D) (Mone, 224, 224, 64) 36928
blockl pool (MaxPooling2D)  (Mone, 112, 112, &4) @

block2 convl {Conwv2D) (None, 112, 112, 128) 73856
block2_conv2 {Conv2D) (Mone, 112, 112, 128) 147584
block2 pool (MaxPooling2D) (Mone, 56, 56, 123) a
block3_convl {Conwv2D) (Mone, 56, 56, 256) 295168
block3_conv2 {Conv2D) (Mone, 56, 56, 256) SoBBse
block3 conv3 (Conv2D) (Mone, 56, 56, 256) Loea38
block3_pool (MaxPooling2D)  (Mone, 2B, 28, 256) a

blocks convl {Conwv2D) (Mone, 28, 28, 512) 1188168
blockd4 conv2 {Conv2D) (Mone, 28, 28, 512) 2359888
blockd conv3 {Conv2D) (Mone, 28, 28, 512) 2359808
blockd pool (MaxPooling2D) (Mone, 14, 14, 512) a
blockS_convl {Conwv2D) (Mone, 14, 14, 512) 2359808
blockS_conv2 {Conv2D) (Mone, 14, 14, 512) 23595808
blocks conv3 (Conv2D) (Mone, 14, 14, 512) 2359388
blockS_pool (MaxPooling2D)  (Mone, 7, 7, 512) a
flatten (Flatten) (Mone, 25@888) @

fcl (Dense) (None, 4898) 182764544
fc2 (Dense) (Mone, 48958) 16781312

(Dense) (Mone, 1) 4037

Total params: 134,264,641
Trainable params: 134,264,541
Non-trainable params: @
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A.2 Summary of low-complexity network

Layer (type) Output Shape Param #
input_1=?;:;utLayer] T (Non=,=;;:j 224, 3) T =} -
zero_padding?d 1 (ZeroPaddin (None, 228, 228, 3) a8
conv2d_1 (Conv2D) (Nones, 224, 224, 20882) 15260
activation_1 (Activation) (Mone, 224, 224, 208) e
batch_normalization_1 (Batch (Mone, 224, 224, 288) 208
max_pooling2d 1 (MaxPooling2 (Mone, 112, 112, 288) 2
zero_padding?d 2 (ZeroPaddinm (MNone, 116, 116, 288) a8
conv2d_2 (Conv2D) (Nons, 114, 114, 18a) 138100
activation 2 (Activation) (None, 114, 114, 18a) =}
batch_normalization_2 (Batch (None, 114, 114, 188) 408
max_pooling2d 2 (MaxPooling2 (None, 57, 57, 188) 8
zero_padding2d 3 (ZeroPaddin (None, 61, 61, 18@) e
conv2d_3 (Conv2D) (None, 59, 59, 58) 45850
activation_3 (Activation) (Mone, 59, 59, 50) 2
batch_normalization 3 (Batch (Mone, 59, 59, 58) 288
max_pooling2d 3 (MaxPooling2 (None, 29, 29, 50) 8

zero padding2d 4 (ZeroPaddin (None, 33, 33, 58) =}
conv2d_4 (Conv2D) (None, 31, 31, 25) 11275
activation_4 (Activation) (Nones, 31, 31, 25) 8
batch_normalization 4 (Batch (MNone, 31, 31, 25) 12@
max_pooling2d 4 (MaxPooling2? (None, 15, 15, 25) 8
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zero_padding2d 5 (ZeroPaddin (Mone, 13, @
conv2d_5 (Conv2D) (Mone, 18, 1212
activation 5 (Activation) (Mone, 18, @
batch_normalization_& (Batch (Mone, 18, 4z
max_pooling2d 5 (MaxPooling2 (Mone, 9, 9, 12) @
zero_padding2d & (ZeroPaddin (Mone, 13, @
conv2d 6 (Conv2D) (Mone, 12, 49
activation_6 (Activation) (Mone, 12, @
batch_normalization & (Batch (Mone, 12, 4
max_pooling2d 6 (MaxPooling2 (Mone, 6, 1) a
flatten_1 (Flatten) (Mone, @
dense_1 (Dense) (Mone, 7400
activation_7 (Activation) (Mone, @
dense_2 (Dense) (Mone, 3216
activation B (Activation) (Mone, a
dense_3 (Dense) (Mone, 17
activation_9 (Activation) (Mone, @

Total params: 265,071
Trainable params: 264,295
Non-trainable params: 776
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A.3 Summary of GAN generator summary

Laver (type) output sShape Param #
input_2 (InputLayer) [{Mone, 256, 256, 3) @
sequential_& (Sequemtial) (None, 123, 128, &4) 2872
sequential_7 (seguemtial) (None, &4, B2, 128} 131534
sequential_g& (seguemtial) (None, 22, 32, 258} 525312
sequential_9 (Sequemtial) (None, 16, 16, 512} 2899294
sequential_18 (Sequential} (None, 8, 8, 512) 4196352
sequential_ 11 (Sequential} (None, 4, 4, 258) 2898176
sequential_12 (sequential} (None, 2, 2, 258) 1a49608
sequential_13 (Sequential) (None, 1, 1, 2%6) la49c88
sequentlial_14 (Sequenmtial) (None, 2, 2, 258) 124988
concatenate (Concatenate) (None, 2, 2, 512) a
sequential_15 (Sequential) (None, 4, 4, 256) 2898176
concatenate_1 (Concatenate) (None, 4, 4, 512) a
sequential_ 16 (Sequential} (None, &, 8, 258) 2898176
concatenate_2 (Concatenate) (None, &, 8, 768) 2]
sequential_17 (Sequential} (None, 16, 16, 256} 3148752
concatenate_3 (Concatenate) (None, 16, 15, 7&88) @
sequential_18 (Sequenmtial) (None, 22, 32, 128} 1573376
concatenate_4 (Concatenate) (None, 232, 32, 384} @
sequential_19 (Sequemtial) (None, &4, B4, &4) 393472
concatenate_5 (Concatenate) (None, &4, B2, 192} @
sequential_28 (Sequential) (None, 128, 128, 32) 98432
concatenate_& (Concatenate) (None, 123, 128, 95) @
conv2d_transpose_9 (Conv2DTrans (None, 256, 256, 3) 4611

Total params: 21,615,491

Trainable params: 21,688,543
Non-tralnable params: 6,848
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A.4 Summary of GAN discriminator summary

output shape Param #
input_image (Inputlayer)  [(Nome, 256, 255, 3) @
arget_image (InputLayer) [{None, 255, 2565, 3) @
concatenate_7 (Concatenate) (MoOne, 256, 256, &) @
sequential_21 (Sequential) (None, 128, 128, 64) 6144
sequential_22 (Sequential) (Mone, &4, &4, 128} 131534
sequential_23 (Sequential)} (MoOne, 22, 32, 2%} 525312
conv2d_15 {Ceonv2D) (None, 29, 29, 512} 2@97152
batch_normalization_22 {BatchMoc (None, 29, 29, 512} 2848
leaky_re_lu_15 (LeakyRelLU} (None, 29, 29, 512} @
convzd_16 {ConviD) (Mone, 26, 26, 256) 2837152
batch_normalization_23 {BatchMoc (None, 26, 26, 256) 1824
leaky_re_lu_1& (LeakyrelLU} (None, 25, 26, 256} @
conv2d_17 {Conv2D) (Mong, 23, 23, 128) 524288
batch_normalization_24 {EatchMo (None, 22, 23, 128) 512
leaky_re_lu_17 (LeakyrReLU} (MOne, 23, 23, 128} @
conv2d_18 {Conv2D) (Mone, 28, 28, 54) 131872
batch_normalization_25 {BatchMo (None, 28, 28, &64) 255
leaky_re_lu_18 (LeakyRelLU} (Mone, 28, 28, &4) 5]
conv2d_19 {Conv2D) (None, 17, 17, 32} 32768
batch_normalization_2& {Batchme (None, 17, 17, 32) 128
leaky_re_lu_19 (LeakyRelLU} (Mone, 17, 17, 22} a
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conv2d_28 {Conv2D) (None, 14, 14, 32) 15384

batch_normalization_27 (BatchMo (None, 14, 14, 22) 128

leaky_re_lu_28 (LeakyRelLU} (Mone, 14, 14, 22} a

conv2d_21 {ConvaD) (MOone, 11, 11, 22} 15384

batch_normalization_28 {Batchme (None, 11, 11, 32) 128

leaky_re_lu_21 (LeakyRelLU} (None, 11, 11, 32} a
conv2d_22 {ConviD) (Mone, 8, 8, 32) 15384
batch_normalization_29 {Batchme (None, 8, 8, 32) 128
leaky_re_lu_22 (LeakyRelLU} (None, 8, 8, 32) a

Trainable params: 5,596,545
Mon-trainable params: 2,944
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