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Abstract

The cervical cancer developing from the precancerous lesions caused by the human papillomavirus (HPV) has been one
of the preventable cancers with the help of periodic screening. Cervical intraepithelial neoplasia (CIN) and squamous
intraepithelial lesion (SIL) are two types of grading conventions widely accepted by pathologists. On the other hand, inter-
observer variability is an important issue for final diagnosis. In this paper, a whole-slide image grading benchmark for
cervical cancer precursor lesions is created and the “Uterine Cervical Cancer Database” introduced in this article is the
first publicly available cervical tissue microscopy image dataset. In addition, a morphological feature representing the angle
between the basal membrane (BM) and the major axis of each nucleus in the tissue is proposed. The presence of papillae of
the cervical epithelium and overlapping cell problems are also discussed. Besides that, the inter-observer variability is also
evaluated by thorough comparisons among decisions of pathologists, as well as the final diagnosis.

Keywords Cervical cancer - Human papillomavirus - Cervical intraepithelial neoplasia (CIN) - Squamous intraepithelial
lesion (SIL) - Digital pathology - Whole-slide imaging - Histopathological images - Morphological features - Inter-observer
variability

1 Introduction

Cervical cancer is one of the most commonly seen cancer
types in the world and the fourth most common cause of
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death, which develops from precursor lesions [35]. Studies
indicate that, almost all cervical cancer cases develop by
the effect of human papillomavirus (HPV), which reaches
epithelial basal layer cells with the help of micro-injuries
in the cervical epithelium. Carcinogenic effect of the virus
occurs when HPV’s genome integrates with the cell genome
[33, 36, 40]. This effect, which requires a certain period
of time, appears as morphological changes in the cervical
epithelium. These precancerous lesions characterized by
dysplastic changes are called squamous intraepithelial
lesions (SIL).

Impact of HPV on the cervical epithelium varies throughout
the life cycle of the virus, which in turn results in differ-
ent morphological changes. Early diagnosis can be made
possible by the analysis of these morphological struc-
tures [32, 35]. After being infected by HPV, basal cells
proliferate and the epithelium loses its maturation. As
well as the loss of maturation which results in polar-
ity loss in the epithelium, cells show nuclear enlarge-
ment, nuclear irregularity, and hyperchromasia. Depending
on the proliferation process, the number of mitoses also
increases. The effect of viral proteins on the cyto-skeleton
reveals halo cells with characteristic perinuclear halo named
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“koilocytes” (it means hollow in Greek). These dysplas-
tic changes are graded according to whether they are seen
among the lower, middle, and upper parts of the epithe-
lium [16, 28, 30]. They are reported according to Cervical
Intraepithelial Neoplasia (CIN) 1-3 in the CIN-based grad-
ing and LSIL (low-grade squamous intraepithelial lesion)
and HSIL (high-grade squamous intraepithelial lesion) in
the SIL-based grading [4, 6, 25]. Currently, the use of SIL-
based grading is recommended, yet the CIN-based grading
is also used.

Pathological diagnosis of cervical biopsies varies
depending on artifacts due to laboratory steps and patho-
logical interpretation. Due to the spread of women health
screening programs, the diagnosis of cervical biopsies is
frequently encountered and this diagnosis variability has
become a more important problem [14, 21]. Cervical biopsy
interpretation has inter- or intra-observer variability, which
means that a biopsy may have different diagnoses by dif-
ferent pathologists or by the same pathologist at different
times, and it is accepted to an extent in the literature [22,
34]. Studies have been made to overcome this problem with
classification systems suitable for the nature of HPV or with
the help of immunohistochemical techniques [6, 8, 33].

Increasing role of the information technology (IT)
on the area of medicine has a positive impact on the
pathology. Digital pathology includes diagnosis, education,
consultation, archiving, and also morphometric evaluation
tools [2, 19]. Studies about morphometric analysis are
available for different tissues and systems [12], as well as
for cervical lesions [7, 11, 26, 37] in the literature. De et
al. [7] studied image analysis methods on 62 digital images
of cervical epithelial lesions labeled with Normal, CIN1,
CIN2, and CIN3. The cervical regions are manually marked
by the pathologist on selected epithelial images, and these
regions are divided into vertical segments by calculating
the medial axis. The obtained epithelial segments are
examined in terms of structural, geometric, and profile-
based properties. Contrast, energy levels, pixel correlation
values, and neighborhood features of the pixels within
the vertical segment are studied as the structural features.
Geometric features include the distances between nuclei
centers and Delaunay triangulation. In the profile-based
feature extraction, correlation values and the brightness
values of all pixels of each row of vertical segment are
calculated. Linear discriminant analysis (LDA) and support
vector machines (SVM) are utilized to classify feature
vectors of vertical segments. First, each of the vertical
segments is classified individually, then these decisions are
fused to obtain a whole epithelium classification result.
The effect of individual decisions of vertical segments on
the whole epithelium classification result is also examined.
One-to-one correspondence between the system result and
pathological diagnosis is named as “Exact Class Label” (1st
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approach), only one class difference between system result
and pathological diagnosis is named as “Windowed Class
Label” (2nd approach), and bigger differences between
system result and pathological diagnosis are named as
Normal versus CIN (3rd approach). Different classification
performances are calculated using different approaches and
features. This study reported that using all the structural,
geometric, and profile-based features, recognition rates of
62.3% on vertical segments and 39.3% on whole epithelium
are reached.

Guo et al. [11] proposed enhanced image analysis
methods on the cervix image dataset that was formed
in De et al. [7]. They have increased the success of
classification by adding structural features of the nucleus
and cytoplasm in addition to the features extracted from
similar vertical segments as in De et al. [7]. These features
consist of nucleus, cytoplasm, and acellular areas and ratios,
color scale (red, green, blue) brightness values, numbers
of triangles obtained by Delaunay triangulation at upper,
middle, and lower epithelium regions. The features are
classified by the classification methods of the previous
study. The name “Windowed Class Label” used in the
second approach in the previous study is changed to ~Off-
By-One Class Label.” In this study, as well as using the
same dataset as De et al., they made a difference of
examination by two different pathologists. The diagnostic
success rates of the extracted features are determined by
the Attribute Information Gain Ratio (AIGR) algorithm.
They evaluated the success of features according to two
different classification approaches. As a result of adding
structural features of cervical regions, they have increased
their classification success up to 82—-88.5%.

Wang et al. studied morphometric analysis methods on
31 digital images of cervical biopsies [37]. Their study
consists of two steps as the automated segmentation of
squamous epithelium and the CIN classification. In the first
step, the epithelium is segmented using the difference of
the visual properties of five different regions consisting
of squamous epithelium, columnar epithelium, stroma,
background, and erythrocytes. The medial axis is drawn
parallel to the basal membrane (BM) and upper membrane
(UM) borders after the epithelial region is segmented.
Square windows with 250 x 250 pixel dimensions are
created on normal curves of medial axis. The feature vectors
are obtained by calculating the average of nucleus area,
the average area of the triangles obtained by Delaunay
triangulation, and the average edge length analyzed within
each window. This study reported that they have reached
accuracy rates ranging from 60 to 95% by using different
classification methods with the obtained feature vectors.

Keenan et al. proposed a study to analyze 230 digital
cervix images consisting of normal, koilocytosis, and CIN1-,
CIN2-, and CIN3-labeled lesions [15]. The feature vectors
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which contain the nucleus area, the nucleus cytoplasm
ratio, the ratio of nucleus area to cytoplasm, and the
edges/areas of the Delaunay triangles are analyzed. The
Kappa value for the observer difference between the
two pathologists involved in the study is 0.415. The
classification performance of the system in distinguishing
normal and CIN lesions is 98.7%. This study reported
that the overall success rate is 62.3%, where the worst
performance is achieved on CIN2-labeled patterns.

Nagdhy et al. proposed a study to classify a total of
475 cervical biopsies with normal, CIN1, CIN2, CIN3,
and invasive carcinomas using three different methods [26].
The nucleus area, core cytoplasm ratio, core boundary
irregularity, and areas of Delaunay triangles are analyzed.
They reached up to 97% with respect to specificity and
100% with respect to sensitivity using different methods
including Gabor-based texture descriptor, gray-level co-
occurrence matrix(GLCM) texture descriptor, and pre-
trained convolutional neural network.

In this study, morphometric analysis methods for the
cervical SIL diagnosis are investigated on a new digital
cervical image dataset. The numerical values of the
morphological features used by the pathologists in the
diagnosis are extracted. The statistical significance of their
contribution to diagnosis is examined. Within the scope of
the study, a Computer Aided Diagnostic Auxiliary System
(CADAYS) is developed and its performance is evaluated.

The contributions of this study are as follows:

— A new whole-slide image grading benchmark for
grading of cervical dysplasias is created and introduced
to histopathological image analysis community. To the
best of the authors’ knowledge, the “Uterine Cervical
Cancer Database” introduced in this article is the first
publicly available cervical tissue microscopy image dataset.

— Images obtained from the dataset are labeled by two
pathologists to investigate the inter-observer variability
in cervical dysplasia grading.

— Pathologists diagnosed each image patch stained
with hematoxylin and eosin (H&E) in the dataset
independently. In the likely case of inconsistent
diagnoses, the image patches that are stained with p16
and Ki67 immunhistochemical dyes are analyzed to
decide a final diagnosis.

— A morphometric analysis method for cervical SIL
diagnosis is proposed.

— The presence of papillaries in the dataset that leads to
tangential sections is one of the important parameters
that pathologists account for when diagnosing.

The remainder of the paper is organized as follows:
in Section 2, the pathological pre-processing, whole-slide
imaging, and the proposed method are explained. In
Sections 3 and 4, experimental results and discussions are

presented, respectively. Finally, conclusions are drawn in
Section 5.

2 Materials and methods

This study is conducted by a group of scientists and
medical researchers. Cervical tissue slide samples with
diagnosis results are collected in the pathology laboratory
of Istanbul Medipol University (IMU) Hospital, Istanbul,
Turkey. Figure 1 shows the processing steps followed in
this study for the proposed CADAS to grade cervical cancer
precursor lesions.

2.1 Data collection and image acquisition

Within the scope of the study, 128 high-resolution slides from
54 patients are scanned at the pathology laboratory of
IMU Hospital. Figure 2 represents the whole slide images
obtained from the dataset. The images are stained with
H&E dyes, and also treated with Ki67 and p16 biomarkers.
Hematoxylin stains cell nuclei blue, and eosin stains the
extracellular matrix and cytoplasm pink. With the help of
staining, the general layout and distribution of cells can be
seen, as well as an overview of the structure of a tissue
sample. The Ki67 is used as a marker for a special stain of
Ki67 protein to show the proliferative index of cells. The
pl6 immunostaining is used as a marker for a cell cycle
regulatory protein that is overexpressed in cervical dysplasia
for transcriptionally active HPV. All high-resolution images
are then divided into 957 small epithelium pieces by the
pathologist. Each slide in the dataset is diagnosed after
splitting into smaller epithelial pieces. In total, 957 epithelial
pieces are obtained from the whole slides. A total of 471
of the 957 images are diagnosed as normal, 240 of them
are diagnosed as CIN1, 107 of them are diagnosed as CIN2
LSIL, and 57 of them are diagnosed as CIN3.

The comparison of the dataset proposed in this study
with the datasets used in studies in the literature is pre-
sented in Table 1. As can be seen in Table 1, Wang et
al [37] includes 31 samples as whole slide images, while
our proposed dataset includes 128 whole slide images.
The columns of the table indicate the publication year
of the proposed studies, the presence of papillae in the
images, the usage of different biomarkers, the number of
images, observer variability, accessibility, and the anno-
tation of basal and upper membranes of the epithelium.
The main distinguishing importance of our dataset can
be expressed as being a publicly available benchmark
dataset, using different biomarkers while preparing the
data, the presence of papillae, and annotation of basal
and upper membranes, which shows the region of inter-
est. Scanning the dataset as a whole slide and marking
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Fig. 1 Processing steps followed in the proposed study. The first step in the second row are done by the medical researcher and the computer
describes the pathological preprocess which is handled in the pathol- scientist in collaboration. CADAS framework developed for grading
ogy laboratory. Whole-slide scanning and the filing process mentioned the cervical cancer pre-cursor lesion is mentioned in the third row

Fig.2 Image samples obtained
from the dataset. The
sub-figures of a and d represent
the whole-slide images which
are stained with H&E; the
sub-figures of b and e represent
the same images stained with
Ki67 immunohistochemical dye
and the sub-figures ¢ and f show
the same images obtained with
p16 immunohistochemical dye

T

(e) (f)
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Table 1 Datasets used in studies proposed to diagnose cervical squamous intraepithelial lesions

epithelium

intra-observer variability publicly available squamous

inter-observer variablity

year papillae biomarkers # of patients # of images

References

annotation

no

no

yes

yes

230 patches

2000 no

Keenan et. al. [15]
Wang et. al.[37]

yes

no

yes

yes

31 whole slide images

160 patches

2009 no

no

no

no

no

2012 no no

Rahmadwati et. al. [26] 2012 no

Miranda et. al. [24]

no

no

no

no

475 patches

no

no

no

no

no

61 patches

no

2013 no

De et. al. [7]

no

no

yes

yes

128 whole slide images yes

61 patches

no
yes

2016 no

Guo et. al. [11]
Proposed

yes

yes

yes

54

2020 yes

the membrane coordinates by expert pathologists will be
a good reference for future studies aiming to automati-
cally detect epithelial regions. Papillae and biomarkers have
crucial importance for specialists to pay attention to in
the diagnosis of cervical cancer. Squamous epithelium is
located on fibrous connective tissue. The fibrous connec-
tive tissue makes finger-like projections, called papillae,
into the epithelium (see Fig. 6). Papillae have blood ves-
sels feeding the epithelium and rarely free nerve endings.
Regardless which part of the epithelium the papillae is
located, the cells around the papillae are assumed to be cells
located in the basement membrane and analyzed accord-
ingly by the specialist [5]. Automated approaches performed
without marking the papillae regions will analyze cell mor-
phology incorrectly and this will cause inaccurate grad-
ing.

The images of the H&E, pl16, and Ki67 preparations
are acquired by an off-the-shelf whole-slide scanner (see
Fig. 3). The scanner has a capability of up to x20optical
and x40 digital zoom. The whole-slide images obtained
with the high-resolution scanner are transferred to the
digital platform to be processed by several image processing
techniques and also to be interpreted by the pathologists.
The images are stored in lossless TIFF format without any
loss. The sizes of the images obtained by the scanner are
varied from 7500 x 7700 to 55, 700 x 165, 000 and there
are more than one diagnosis in a single lesion.

2.2 Information about released cervix dataset

The dataset consists of 128 whole-slide images of 54
patients, where each image is placed in a separate folder.
Each of these folders contains a whole-slide image and its
subfolders divided into sub-lesions. Each subfolder contains
an image representing the relevant sub-lesion and sub-
level folders containing patch samples extracted from this
sub-lesion. The reason why each sub-lesion is divided
into several patch samples is that there is more than one
diagnostic tissue in each sub-lesion. In each folder and
its subfolders, there are two text files containing the pixel
locations of the basal and upper epithelial membranes of
the respective images. In addition, if there are papillae
in the image, there is an extra text file containing the
pixel locations of the papillae in each related folder and
sub-folder. For each folder/sub-folder level, image/patch
labels obtained by two experts are also included in a text
file named as label. The “Uterine Cervical Cancer Database”
introduced in this article is the first publicly available cervical
tissue microscopy image dataset within the knowledge of
the authors. The dataset is only allowed for academic studies.
The entire dataset and explanations related to the dataset
will be shared on request from http://spacing.itu.edu.tr/
datasets.
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Tissue Slides

Scanner

Server

Fig.3 Image acquisition system: Tissue slides are scanned using a high-resolution scanner. The scanned slides are then transferred to a server to

store the images in a file system

2.3 Ethics statements

The authors confirm that all samples taken from patients
were prepared in accordance with the legislation prepared
by the Ministry of Health of Turkey and in accordance with
international agreements and European Union standards.
All experimental protocols were approved by the Istanbul
Medipol University’s licensing committee. Informed con-
sent was obtained from all subjects whose tissue samples
were used in experiments. In tissue sample collection for the
dataset, there were no subjects under 18.

2.4 Annotation and image labeling

A graphical user program is developed within the scope of
this study for pathologists to mark/label the BM and papillae
of the cervical epithelium. After marking the membranes
and the papillae, the program extracts the hot spot region
from the background. Figure 4 represents a sample input
image taken from the dataset and the image after marking
the pixel locations of the epithelium.

At first, two pathologists made the diagnosis indepen-
dently for each Small Epithelial Piece (SEP) image patch. A
final diagnosis is then made by observing the same lesions
stained with pl6 and Ki67 immunohistochemical dyes in
case of disagreement. According to the final diagnosis, 471
of SEP (49.2%) are labeled as normal, 240 of them (25.1%)
are CIN1, 107 of them (11.2%) are CIN2, and 139 of them

Fig.4 Annotation and hotspot
region extraction. a Input image
obtained from the dataset; b
extracted hotspot cervix region
for further analysis. The red and
green curves drawn around the
lesion represent the BM and the
upper membrane (UM),

respectively B o
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(14.5%) are CIN3. However, 150 of Large Epithelial Piece
(LEP) (46.9%) are labeled as normal, 79 of LEP (24.7%) are
CIN1, 34 of LEP (10.6%) are CIN2, and 57 of LEP (17.8%)
are CIN3 (see Table 2). Diagnostic distributions of the SIL-
based grading are shown in Table 3. Similarly, distribution
of final diagnosis in SIL-based grading is as follows: 471
of SEP (49.2%) are normal, 240 of SEP (25.1%) are LSIL,
and 246 of SEP (25.7%) are HSIL. Similarly, 150 of LEP
(46.9%) are normal, 79 of LEP (24.7%) are LSIL, and 91 of
LEP (28.4%) are HSIL.

2.4.1 Inter-observer variability

Interpretations of morphologic changes representing dys-
plasia may differ between physicians or for the same
physician in different time intervals. This variety can be
interpreted as inter-/intra-observer agreement/disagreement,
respectively. Artifacts associated with the biopsy proce-
dure and tangential sections in the microscopic examination
are also effective on this variety. Inter- and intra-observer
agreement rates are in the range of 0.20 and 0.47 in the lit-
erature [21, 22]. Regarding CIN-based grading, SIL-based
grading provides higher inter-observer and intra-observer
agreement rates. The highest diagnosis diversity is reported
between the groups of CIN2, while the lowest is CIN3.
The disagreement rates are smaller between normal and
CIN1 groups. McCluggage et al. reported weak inter-
observer agreement in the CIN-based grading with Kappa

(a) (b)
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Table 2 Number of epithelium
pieces in each class depending Normal CIN1 CIN2 CIN3 Total
on the CIN-based grading
CIN-Based Grading SEP 471 240 107 139 957
LEP 150 79 34 57 320

value of 0.2. Although the compatibility rates are reported
low, Kappa value is found as 0.3 in the SIL-based grad-
ing. Failure to achieve the expected high agreement rates
is interpreted by the pathologists involved in the study not
being familiar with SIL-based grading. The same test is
repeated with the observers who have experience in use
of the SIL-based grading for 6 months or more and new
Kappa values are calculated as 0.33 (intra-observer) and
0.47 (inter-observer). Galgano et al. tried to maximize the
agreement rates between the observers with p16 and Ki67
immunohistochemical methods [9]. The Kappa value is
found to be 0.68 by immunohistochemistry examination
while standard H&E detection has the Kappa value of 0.47.
In the study, it is stated that the low agreement rates associ-
ated with diagnostic differences can be increased by using
SIL-based grading rather CIN-based grading, or utilizing
some immunohistochemical methods aiding diagnosis.

2.4.2 Final diagnosis

Immunohistochemical examinations are used as an assistive
method to obtain the diagnosis in case the morphological
features are not clearly interpreted. p16, Ki67, and ProExC
are the most widely used immunohistochemical studies
for cervical precursor lesions [9, 10, 17, 23, 29]. Staining
pattern with pl6 is important in immunohistochemical
evaluation; block-like and strong staining demonstrates
HrHPV associaticon, with at least one-third of the
epithelium. Ki67 is an indicator of proliferation. Positivity
may also be seen in other proliferating cells, such as
inflammatory cells as in keratinocytes. For this reason,
it must be interpreted carefully in the presence of
inflammation. ProExC is similar to Ki67 in terms of being a
proliferation indication and its staining type. p16 and Ki67
are frequently used in routine practice. HrHPV-associated
lesions show strong “nuclear” or “nuclear and cytoplasmic,”
block-like staining with pl6. The squamous metaplasia,
atrophy, and reactive regenerative changes that appear in the
SIL discriminator pattern show a negative staining pattern.
While Ki67 normally stains parabasal cells, positivity is also

observed in higher epithelial sections in relation to the grade
of dysplasia in SIL.

2.5 Morphometric feature extraction and tissue
classification

In this study, a morphological analysis—based feature
extraction method is used for the grading of cervical
cancer precursor lesions. The processing steps followed
in the study are represented in Fig. 1. The first row
of the diagram describes the pathological pre-processes
which are handled in the pathology laboratory. Whole-
slide scanning and the filing process mentioned in the
second row are done by the medical researcher and the
computer scientist in collaboration. This section describes
the CADAS framework which is mentioned in the third row.

2.5.1 Creating the small epithelial pieces

Small epithelium piece is the part of a large lesion which
is cropped by a specialist for further analysis. Similar to
the whole lesion, the membrane boundaries of the small
epithelial piece are also annotated by the specialist. In
Fig. 5, the red curve corresponds to the pixel locations
of the basal membrane (BM), while the green curve
corresponds to the pixel locations in the upper membrane
(UM). Determining the BM and UM pixel locations allows
us to localize cells in the epithelium. Figure 5a represents a
high-resolution histopathological image obtained from the
dataset; Fig. 5b and c represent SEP images cropped from
the related image. After the region of interest has been
obtained, an interface developed within the scope of the
study is used to divide the whole epithelium to SEP which
can be assumed equal in length (see Fig. 6).

The image patches which are analyzed in this study are
presented in Fig. 6. The pixel locations of BM and UM of
the epithelium are marked by the pathologists with the use
of a graphical interface. Pixel locations data information of
the papillae represented with yellow curves are also stored
in separate files.

Table 3 Number of epithelium
pieces in each class depending

on the SIL-based grading

Normal LSIL HSIL Total
SIL-based Grading SEP 471 240 246 957
LEP 150 79 91 320

@ Springer
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Fig.5 a A high-resolution
histopathological image example
obtained from the dataset. b and
c represent SEP images cropped
from the same image

T
. S R

T

(b)

2.5.2 Obtaining cells by simple linear iterative clustering
superpixels segmentation algorithm

After small epithelial pieces are obtained, the high-
resolution histopathological images are ready for further
analysis. First, a median filter of dimension 9 x 9 is applied
to the image to remove the artifacts without affecting the
boundaries. Then, cellular structures have been obtained
by simple linear iterative clustering (SLIC) superpixels
segmentation algorithm, which is one of the methods that
have not been widely used in histopathological images yet.
This method performs the segmentation process based on
the color similarities and neighbor relations of the pixels in
the image [1]. The grid size N is expressed as

w X h
k

where k is the number of superpixels for a given input
image; w and & represent the width and height of the given

N = (D

Fig.6 Sample SEP image
patch. BM (red), UM (green),
and papillae (yellow) structures
are considered by pathologists
for grading

@ Springer

image patch, respectively. The Euclidean distance, d,¢p, of
the related pixel to the superpixel center is

drgp =\ (rj = ri)? + (g — 8% + (b — b)? @)

where i represents each pixel and j represents the center of
related superpixel. Here, r, g, and b represent the brightness
values of red, green, and blue colors of the respective pixels.
RGB color space is used in this study instead of using
Lab color space as mentioned in Achanta et al. [1]. The
distance between the locations of each related pixel and
related superpixel is calculated as mentioned in Eq. 3:

dey = \J(xrj =20 + () — 31)? 3)

where, x; and y; are the horizontal and vertical pixel
locations of each center pixel, and x; and y; values are the
locations of each pixel to be clustered:

dy = dygp +m/(N X dyy) 4
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the value of d; is the sum of the (x, y) plane distance
normalized by the grid interval N and the RGB distance.
Here, normalization is done so that the calculation of the
pixel location does not directly affect the brightness interval.
The value of m is defined to set the compactness of
superpixels (Fig. 7).

Algorithm 1 Center estimation and distribution generation.

Input I;;;, € RV*M
image
Output C € RX*2 > Cell center matrix
: procedure LOCAL MAXIMA FINDING
for V(i, j) € 1;5; do
S={, v —w?+ (G —v)?=<r?}
if argmax {I;;5(S)} == (i, j) then
Cr.. < [i, j]

> Distance transform of binary

AR o o

return C
Input I;;;; € RV*M
Output H > Multiplexed Coordinates Set
1: procedure TEST C3
2 H<« @
3: for V(i, j) € L5+ do
4 H <« HUa®][i, j]>® : multiplexing operator
5 return H

According to the SLIC method applied in this study,
the cellular structures become more compact and can
be separated from the background when each obtained
SEP image is expressed with 3000 superpixels. A cellular
structure in cervical precursor lesion is approximately 20 x
20. A crucial point to note here is that the superpixels’
sizes should not exceed the size of the cellular structure.
As can be calculated from Eq. 1, choosing at least 2000

Fig.7 Implementation of SLIC

AR § 4
superpixels segmentation ; } Ree o
algorithm to a sample image w: $ 3
patch a SEP image patch, b s AL | ; :ﬁ
overlay of 3000 superpixels on B AN N a' A"‘,:
the related image patch, ¢ ‘%_‘ O SR N
resulting pre-segmented image ;“:.. :‘nzt, . :
obtained after applying SLIC 3

method

superpixels will guarantee most of the superpixels do
not exceed the size of a cellular structure. A smaller
number of superpixels cause overlapping cells. It can be
quite difficult to distinguish cellular structures, especially
those close to the BM. Superpixels which represent the
cellular structures are darker than the superpixels which
represent the background (fat-like tissues). To obtain the
cellular structures, superpixels which have brightness above
a certain threshold value are eliminated. At this stage,
small artifacts similar to the cellular structures and some
inflammation can remain with the cells as a foreground
information. These structures can be eliminated with a
morphological size operation that can be applied to the
binary image after segmentation stage. Final segmentation
result of a sample SEP image patch obtained from the
dataset is shown in Fig. 8.

2.5.3 Handling the overlapping cells problem

Following the morphological operations, overlapping cells
are separated. There are studies targeting the problem of
overlapping nuclei in the literature [3, 31]. Because the
presence of overlapping cell structures significantly reduces
the success of CADAS, solving the problem of overlapping
nucleus at this point is very crucial as a significant
contribution in this area. In our study, it is observed that
after the segmentation process, there are a large number of
overlapping nucleus structures, especially around the BM.
Overlapped cells are intensively present on the SEP
image patches. The problem of overlapping of cells
should be handled in order to obtain the morphological
characteristics of the cell nuclei. Binary images segmented
by using SLIC algorithm usually consist of small cellular-
like noisy parts. These unwanted small pixel groups are
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Fig.8 Final segmentation result
of a sample SEP image patch:

a given input image,

b segmentation of the image,

¢ final binary image after
post-processing

eliminated by an automatic method, which clears pixel
groups smaller than 50 pixels. Therefore, the circumference
of the cells is also quite rough after the segmentation pro-
cess. As shown in Fig. 9a, the binary image processing ope-
ration “closing” has been applied to make the binary regions
more compact. In order to obtain cell centers, the distance
transform is applied to get local maxima as shown in Fig. 9c.
Local maxima are estimated by using Algorithm 1.

The ellipse form is able to model the cell shapes
mathematically well. Thereby, Gaussian Mixture Model
(GMM) is one of the best candidates for ellipse fitting over
cell heaps. GMM is one of the most common algorithms
for statistical data modeling [27]. The main purpose of the
algorithm is to express the distributions, p(x), as the sum of
weighted Gaussian distributions.

K
P =) N (xlui. 5) &)
i=1
where N (x|u;, ;) intends normal distribution which has
mean u; and covariance matrix ;.

K
D =1

i=1

(6)

(a)

where ¢; represents the coefficients of normal distributions.

Figure 10 shows an example of overlapping nucleus
and how these overlaps are resolved in a small patch of
the image obtained from the dataset. The basic structure
of the algorithm that determines the cell overlapping is
based on the determination of local maxima from the
distance of the cell centers to the boundaries. Once the
cell centers are determined, the distance transformation
yields the value of the multiplexing for each pixel. The
processing steps applied for center estimation, distribution
generation, and multiplexing are given in Algorithm 1.
C and H refer to row-wise cell centers matrix, and
multiplexed coordinate set, respectively.The o parameter
obtained from the distance transform indicates how many
times the corresponding coordinate will be repeated in the
set H. Thereby, the distance values of the pixels away
from the border are higher, so the amount of these in
H will be more. Pixel distribution becomes more suitable
for GMM. For example, if each pixel is far away from a
boundary, the location of the related pixel is multiplexed.
By applying GMM on the obtained multiplexed coordinate
distribution, suitable ellipses are obtained for each cell
(see Fig. 11).

(b)

(©)

Fig. 9 Cells taken from the tissues are in often overlapped form. For the solution of this problem, it is important that the cell centers are firstly
correctly estimated: a binary mask of overlapping cell heaps, b distance transform of binary mask, ¢ finding local maxima

@ Springer



Med Biol Eng Comput (2021) 59:1545-1561

1555

Fig. 10 Separating overlapping cells after the segmentation process

2.5.4 Obtaining the morphological features of each SEP

After the cell segmentation and elimination of the cell
overlap problem, several morphological features of each
cell are extracted. The morphological features extracted
for grading each SEP image patch are represented in
Table 4. Average nucleus area (ANA), average cytoplasm
area (ACA), nucleus—cytoplasm area ratio (NCR), nucleus
perimeter (NP), border irregularity (BI), hyperkromasis
index (HI), and polarity loss index (PLI) are the features
represented from the first row to the end, respectively.
ANA defines the average nucleus area while ACA is the
average cytoplasm area. NCR describes the division results
of nucleus ratio to the cytoplasm ratio. NP is the average
length of the border pixels of nucleus. BI is the ratio of
the surrounding length of each pixel to the ellipse that fits
each nucleus. The value which represents the hyperkromasis
of cell is calculated by taking the standard deviation of
the pixel intensity values of the cellular structure. PLI is
determined by calculating the magnitude of each cellular
structure to the BM. All the features are extracted for each
region shown in Fig. 12

Fig. 11 Generation of ellipses
based on uniform and normal
distribution after the estimation
of center locations: The cell
population modeled as the
normal distribution is more
suitable for the GMM algorithm
than the uniform distribution

o

,‘“ﬁr:
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6""“
- - -

9::‘_
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’
o
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"
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(a) (b)

Fig. 12 a Sample image obtained from the dataset and b layered result
of the same image into three sections from BM to UM. The distance
of each pixel to the BM and UM is calculated using the pixel location.
The distance from the pixel coordinate to the each membrane indicates
the region it belongs to

Since the emphasized morphological features change
depending on their distance to the BM and the UM,
each image segment is divided into three main regions as
presented in Fig. 12. Then, morphological features related
to each region are extracted and stored for further analysis
in grading the SEP image patch.

The dataset of feature vectors is imbalanced. Different
classifiers have been proposed in the literature for imbal-
anced datasets [13, 20, 38]. The Weighted k-Nearest Neig-
bor (w-kNN) algorithm is one of these. In this study, w-kNN
algorithm is preferred because of its fast operation and prac-
tical use [18, 39]. The w-kINN algorithm takes into account
the k closest neighbors class similar with the k-NN algo-
rithm. Differently, for each neighbor, the weight w defined
inw = prememe is assigned to classify according to the
weight of the classes. d(., .) is Euclidean distance function.
If neighbor sample x; is far from query sample x,, the effect
on the classification is weak, and vice versa.
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Table 4 List of morphological features extracted in the proposed tissue classification method

Features

Description

Average nucleus area (ANA)
Average cytoplasm area (ACA)
Nucleus-cytoplasm ratio (NCR)
Nucleus perimeter (NP)

Border irregularity (BI)

Hyperkromosis index (HI)

Polarity lossindex (PI)

the average nucleus area of each region

the region which represents the subtraction of total nucleus area from total area of each region

the ratio of total nucleus area to the total the cytoplasm area in each region

the length of the curve which surrounds the nucleus in each region

obtained by dividing length of the uniform ellipses that fit the nucleus to the circumference of the
related nucleus

represents the standard deviation value of the parabasal cells with respect to the cells of the same

lesion

The average angle between the BM and the major axis of all nucleus

Table 5 Agreement/disagreement of the pathologists in diagnosis of SEP with respect to CIN-based grading

Pathologist 2
Normal CIN1 CIN2 CIN3 Total
Pathologist 1 Normal 354 37 0 0 391
CIN1 88 156 8 0 252
CIN2 13 52 71 15 151
CIN3 4 9 22 128 163
Total 459 254 101 143 957

Table 6 Agreement/disagreement of the Pathologist 1, Pathologist 2 and the proposed method with final diagnosis in diagnosing of SEP with

respect to CIN-based grading

CIN Grading Pathologist 1 Pathologist 2 Proposed
N Cl Cc2 C3 N Cl Cc2 C3 N Cl Cc2 C3
Final Diagnosis N 377 74 18 2 424 44 3 0 386 61 17 7
Cl 13 176 37 14 26 193 16 5 116 91 19 14
Cc2 0 2 87 18 8 17 79 3 13 30 47 17
C3 1 0 9 129 1 0 3 135 4 15 18 102
Tot. 391 252 151 163 459 254 101 143 519 197 101 140

Table 7 Agreement/disagreement of the proposed method and Delaunay Triangulation (DT) [15] with final diagnosis in the diagnosis of SEP

with respect to CIN-based grading

CIN Grading Proposed DT
N C1 C2 C3 N C1 C2 C3
Final Diagnosis N 386 61 17 7 471 0 0 0
Cl 116 91 19 14 240 0 0 0
C2 13 30 47 17 107 0 0 0
C3 4 15 18 102 139 0 0 0
Total 519 197 101 140 0 0 0 0
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Table 8 Evaluation of pathologists and the proposed method with respect to f-measure, precision and recall metrics according to CIN-based

grading system

Classes Evaluation by Final Diagnosis
f-measure precision recall
Normal Pathologist 1 0.87 0.80 0.96
Pathologist 2 0.91 0.90 0.92
Proposed 0.78 0.82 0.74
CIN1 Pathologist 1 0.71 0.73 0.69
Pathologist 2 0.78 0.80 0.76
Proposed 0.42 0.38 0.46
CIN2 Pathologist 1 0.67 0.81 0.57
Pathologist 2 0.75 0.73 0.78
Proposed 0.45 0.44 0.47
CIN3 Pathologist 1 0.85 0.92 0.79
Pathologist 2 0.95 0.97 0.94
Proposed 0.73 0.73 0.73
weighted overall accuracy Pathologist 1 0.80 0.80 0.82
Pathologist 2 0.87 0.87 0.87
Proposed 0.65 0.65 0.64

The weighted overall accuracies are obtained by normalizing the metrics of each class with the number of classes

3 Results

In this section, the classification results obtained by using
the proposed study are compared with the diagnoses given
by the pathologists. The similarities and differences of the
diagnoses of SEP images given by the two pathologists with
respect to CIN-based grading are represented in Table 5.
Diagonal values refer to the number of images which have
the same diagnosis of two pathologists. The agreement ratio
of the pathologists with respect to CIN-based grading is
shown in Table 5.

The agreement/disagreement of pathologist 1 and pathol-
ogist 2 to the final diagnosis of each SEP image patch are
presented in Table 6. Final diagnosis is determined accord-
ing to the disagreement of pathologists for an SEP image

patch. The SEP that are not labeled as the same by the
pathologists are then observed from the same tissue stained
with p16 and Ki67 immunohistochemical dyes.

Table 6 represents the agreement between the final
diagnosis and two pathologists with respect to CIN-based
grading system. It can be observed that pathologist 2 has
more compatible diagnosis result than pathologist 1 with
final diagnosis. However, pathologist 1 has more consistent
diagnosis in CIN2 SEP image patches. An important
information to be drawn from the table is that the number of
windowed classes (labelling CINT1 instead of Normal tissue;
Normal or CIN2 instead of CIN1; CIN1 or CIN3 instead of
CIN2 and CIN2 instead of CIN3) is high.

The agreement between the final diagnosis with the
proposed method and the DT [15] method which is one

Table 9 Agreement/disagreement of the Pathologists with final diagnosis in the diagnosis of SEP with respect to SIL-based grading

SIL Grading Pathologist1 Pathologist2
N LSIL HSIL N LSIL HSIL
Final Diagnosis N 377 74 20 424 44 3
LSIL 13 176 51 26 193 21
HSIL 1 2 243 9 17 220
Total 391 252 314 459 254 244
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Table 10 Agreement/disagreement of the proposed method with final diagnosis in diagnosis of SEP with respect to SIL-based grading

SIL Grading Proposed System
N LSIL HSIL
Final Diagnosis N 381 57 33
LSIL 106 91 43
HSIL 16 27 203
Total 503 175 279

of the best known algorithms used in diagnosis of cervical
cancer grading depending on CIN-based grading system is
represented in Table 7.

Agreement between the final diagnosis and the proposed
method with respect to CIN-based grading system is
represented in Table 7. Normal and CIN3 SEP images are
classified accurately. However, classifying CIN1 and CIN2
SEP images is less accurate while comparing with CIN1 and
CIN3. The classification accuracy of the proposed method
is 65.4%.

Tables 8 and 11 represent the classification performance
of two pathologists and the proposed method with respect
to CIN-based and SIL-based grading systems when tested
on the dataset introduced in this study respectively. The
columns of the tables represent f-measure, precision, and
recall values of the proposed method and two specialists.
Considering the overall evaluations, it can be observed
that pathologist 2 has the most successful classification
performance both in CIN-based and SIL-based grading
systems. Pathologist 1 has the highest recall value in normal
tissues. The results suggest that, when compared with the
pathologists’ performance, there is room for improvement
for the proposed method. The data-driven approaches

supported with morphological features are expected to yield
better classification results for this challenging dataset.

Another system that pathologists pay attention to while
diagnosing tissues is the SIL-based grading system. In this
system, the CIN2 grade is assumed to be composed of two
intermediate levels, namely, levels CIN3-like and CINI-
like. CIN2 lesions which resemble CIN3 and CIN3 are
expressed as HSIL; CIN2 which resemble CIN1 and CIN1
are expressed as LSIL. The treatment of precursor lesions
of cervical cancer varies according to LSIL and HSIL. The
agreement between the final diagnosis and two pathologists
with respect to SIL-based grading system is represented
in Table 9. Pathologist]l has more accurate results than
pathologist 2 in normal and LSIL, while pathologist 2 has
a more accurate result in diagnosing HSIL. If the diagnosis
agreements of the pathologists according to Tables 6 and
9 are compared, it can be observed that pathologists make
a more consistent diagnosis in the SIL-based grading
system.

Agreement between the final diagnosis and the proposed
method with respect to SIL-based grading system is
represented in Table 10. The results obtained from the SIL-
based grading system of the proposed method is improved

Table 11 Evaluation of pathologists and the proposed method with respect to f-measure, precision and recall metrics according to SIL-based

grading system

Classes Evaluation by Final Diagnosis
f-measure precision recall
Normal Pathologist 1 0.87 0.80 0.96
Pathologist 2 0.91 0.90 0.92
Proposed 0.78 0.80 0.76
LSIL Pathologist 1 0.71 0.73 0.70
Pathologist 2 0.78 0.80 0.76
Proposed 0.44 0.38 0.52
HSIL Pathologist 1 0.87 0.99 0.77
Pathologist 2 0.89 0.89 0.90
Proposed 0.78 0.83 0.73
weighted overall accuracy Pathologist 1 0.84 0.84 0.86
Pathologist 2 0.88 0.88 0.89
Proposed 0.72 0.73 0.71
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to 70.5% compared to the CIN-based grading system
as can be seen from Table 11.

4 Discussion

In this study, it is aimed to to develop a “Computer Assisted
Diagnostic Auxiliary Systems (CADAS)” which will assist
pathologists on grading of cervical cancer. Our study on
cervical dysplasia has the largest dataset according to the
similar studies available in the literature to the best of our
knowledge. The size of the images scanned by the high-
resolution histopathological image scanner ranges from
7500 x 7700 to 55, 700 x 165, 000.

It is clear that it is very difficult for a single limited-
capacity computer (in terms of processor and RAM) to
analyze these images in large sizes and high resolution.
Besides, an important point to note is that there may be
more than one diagnosis (NORMAL-CIN1, CIN1-CIN2, or
CIN2-CIN3) in the different regions of the same lesion.
Because of these reasons, dividing the entire epithelium into
smaller lesions helps diagnosis and eases processing the
lesions in a computer with limited resources. The lesions of
each image in the dataset and all related whole-slide images
are labelled by two pathologists.

Furthermore, the fact that the diagnoses are given by
two pathologists, and the reassessment and determination of
the definitive diagnosis during inconsistent cases increased
the reliability of the CADAS training set. The developed
CADAS promises to be used as an assistant system in
the future because of numerical values that are found to
be in parallel with the diagnostic parameters used by the
pathologists (such as ratio of nucleus to cytoplasm, nucleus
boundary irregularity, polarity loss, and hyperchromaticity)
and statistically significant. The studies in the literature
are mostly designed by engineers and the contribution
of pathologists is very limited. For this reason, there are
some shortcomings when viewed from the perspective
of pathology and clinical approach. In the development
of a CADAS to be used in pathology, the presence of
pathologists at every step is a necessary requirement.

5 Conclusion

In this paper, we present a new benchmark dataset of
cervical cancer precursor lesions, which we make available
to the scientific community for grading the cervical
intra-epithelial neoplasia. Each image in the dataset is
labeled by two pathologists to reveal the inter-observer
variability. In case of different diagnoses, pl16 and Ki67
immunohistochemical dyes are used to decide a final
diagnosis (ground truth). There are also papilla areas that

seriously affect the performance of automated methods,
which makes this study unique to the best of our knowledge.

A morphological analysis—based feature extraction
method is also proposed in the study for the grading of cer-
vical cancer precursor lesions. The result of the study is
also compared with each pathologist and the ground truth.
The results show that CAD systems could be used as a sec-
ondary decision system for experts with some improvement.
It is aimed to improve the classification performance of our
CAD system by developing up-to-date image processing
and machine learning algorithms especially types of deep
learning.
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