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ABSTRACT

IMAGE ENHANCEMENT THROUGH NEW
TECHNIQUES IN COMPUTATIONAL

PHOTOGRAPHY

Muhammad Zeshan Alam
Ph.D. in Electrical, Electronics Engineering and Cyber Systems

Advisor: Prof. Dr. Bahad�r Kür³at Güntürk
March, 2019

Quality of a digital image depends on several factors operative during the image
formation process, e.g. sensor defects, sensor dynamic range, poor spatial reso-
lution, lens distortion, camera shake and object motion. This study focused on
developing new techniques in computational photography for minimizing some
degradations in digital images, including blurring, limited depth of �eld, low dy-
namic range, and insu�cient resolution.

A �exible framework is developed for space-variant deblurring using a single
degraded image. Coarse PSF estimation of image patches and PSF clustering
are performed to identify regions of uniform blur in an image followed by PSF
re�nement, deconvolution, and fusion. Focus stacking and high dynamic range
(HDR) imaging are combined to generate all-in-focus HDR image using multi-
ple exposure and multiple focus images, captured through a camera array. The
limited resolution problem is addressed in the context of light �eld imaging in
two di�erent ways: hybrid stereo imaging involving a regular camera and a light
�eld camera and deconvolution based high-resolution light �eld extraction from
a single image capture.

All the developed algorithms are tested on real datasets and both qualitative
and quantitative comparisons have been made with the state-of-the art methods
to show the superiority of the proposed algorithms.

Keywords: Space-variant image deblurring, light �eld imaging, computational
photography, image enhancement, high dynamic range imaging, focus stacking.
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ÖZET

HESAPLAMALI GÖRÜNTÜLEMEDE YEN�
TEKN�KLERLE GÖRÜNTÜ �Y�LE�T�RME

Muhammad Zeshan Alam
Elektrik-Elektronik Mühendisli§i ve Siber Sistemler, Doktora

Tez Dan�³man�: Prof. Dr. Bahad�r Kür³at Güntürk
Mart, 2019

Dijital bir görüntünün kalitesi, görüntü kaydetme sürecinde etkin olan sensör
hatalar�, sensör dinamik aral�§�, dü³ük uzamsal çözünürlük, merceklerden kay-
naklanan bozulmalar, kamera sars�nt�s� ve nesne hareketi gibi çe³itli faktörlere
ba§l�d�r. Bu çal�³ma; dijital görüntülerde bulan�kl�k, s�n�rl� odak derinli§i, dü³ük
dinamik aral�k ve yetersiz çözünürlük için baz� bozulmalar� en aza indirmek için
yeni teknikler geli³tirmeye odaklanmaktad�r.

Tek bir bozulmu³ görüntüden uzamsal-de§i³ken netle³tirme amaçl� esnek bir
algoritma geli³tirilmi³tir. Algoritma, görüntüdeki temel bulan�kl�k bölgelerini
bulmaya yönelik kaba bir nokta da§�l�m fonksiyonu (PSF) kestirimi ve kümeleme,
PSF kestirimini iyile³tirme, dekonvolüsyon ve füzyon a³amalar�n�n içerir. Odak
isti�eme ve yüksek dinamik aral�kl� (HDR) görüntülemede kamera dizisiyle çek-
ilen çoklu pozlama ve odaklama görüntüleri kullan�larak geni³ odakl� ve yüksek
dinamik aral�kl� görüntü olu³turulmaktad�r. I³�k alan� görüntülemedeki s�n�rl�
uzamsal çözünürlük sorunu iki farkl� ³ekilde ele al�nm�³t�r: normal bir kamera ve
�³�k alan� kameras� içeren hibrit görüntüleme ve dekonvolüsyon ile tek bir görün-
tüden yüksek çözünürlüklü �³�k alan� ç�kar�m�.

Geli³tirilen tüm algoritmalar gerçek verisetleri üzerinde test edilmi³tir; hem
nitel hem de nicel kar³�la³t�rmalar önerilen algoritmalar�n mevcut literatür çal�³-
malar�ndan üstünlü§ünü göstermek için yap�lm�³t�r.

Anahtar sözcükler : uzamsal-de§i³ken görüntü netle³tirme, �³�k alan� görüntüleme,
hesaplamal� görüntüleme, görüntü iyile³tirme, yüksek dinamik aral�kl� görün-
tüleme, odak isti�eme.
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Chapter 1

Introduction

We are in the midst of an imaging revolution enabled by inexpensive digital cam-

eras and the easy accessibility of the internet. The rapidly growing social media

e.g Facebook and Instagram provide a platform to millions of people to share

their photos and videos on daily basis. In addition to entertainment, the use of

digital imaging �nds several applications in a variety of �elds, for example, indus-

trial automation, medicine, forensics, surveillance and even vehicle safety. The

versatile range of imaging applications, be it the entertainment industry where

the visual perception is of prime importance or in arti�cial intelligence which

involves the machine understanding of images, demands high-quality images.

1.1 Motivation

In recent times the availability of powerful computational resources has enabled

us to fully exploit the potential of image content. For example the use of compu-

tational resources, for extracting richer, perhaps more perceptually meaningful

information, from either multiple images or conventional cameras with modi�ca-

tions in sensors, optics, and illumination, in the �eld of computational imaging.

Through a variety of computational photography techniques not only many of

1



the existing limitations of a conventional photography, such as limited dynamic

range, poor resolution, limited depth of �eld, and lens distortions etc can be sur-

passed but also several new applications of images such as depth extraction and

3D reconstruction, panorama creation, image manipulation (warping, morphing,

mosaicing, matting, compositing) and light �eld imaging can be developed.

1.2 Background

A conventional camera typically consists of two parts, the optics and the imager.

The optical part of the camera is responsible for converging the light rays re�ected

by the scene onto the imager. Normally a combination of lenses comprises the

optical part of a camera. The role of the imager is to record the intensities of

the light rays striking over it surface. The imager is made of light sensitive semi

conductor material able to store image in digital format.

Quality of the �nal image by a typical camera depends on many factors. The

ability of the lens to converge the incident light rays onto the sensor determines

sharpness of the image. Pixels size and pixel density are two of the major factors

that determine an amount of details an image can hold. Sensor's dynamic range

is another important factor that e�ect the image quality as it determines the

luminance range of a scene that a camera can capture. In addition to the camera

speci�c factors there are some external factors that also determines the quality of

the recorded image, for example, movement of the objects in the scene, a possible

camera shake during the acquisition, and atmospheric turbulence etc.

These degradations e�ect many of the modern days imaging applications. Al-

though some of the camera speci�c degradations can be eliminated by using high

quality optics and sensors designed to capture high dynamic range and high spa-

tial resolutions etc, but these solutions are very expensive and can only solve

a speci�c problem. Through computational imaging techniques a wide range of

inexpensive solutions for a variety of image degradations can be developed which

2



not only improve the existing imaging applications but also open several new pos-

sibilities of using high quality images in solving day to day problems. Explained

below are some of the possible causes that degrades the images quality, previous

solutions to address these problems, their short comings, and some new prospects

that can be realized by overcoming these limitations.

1.2.0.1 Space-variant blurring

In many imaging applications, the recorded image is a blurry version of the true

image that ideally represents the scene. The common causes of blur are atmo-

spheric distortions, optical aberrations, blur due to averaging on a pixel site, and

blur due to motion of the camera and the objects in the scene. The aim of image

restoration is to recover the true image from a single or a set of recorded images.

The restoration problem is typically ill-posed, requiring regularization techniques

to impose certain desired properties on the restored image.

The majority of algorithms addressing the image deblurring problem assume

that the degradation process involves a linear shift-invariant blur kernel, which is

also known as the point spread function (PSF). When the PSF is unknown, the

problem is referred to as blind image deconvolution. Recently, highly successful

blind image deconvolution techniques that can handle large motion blur have

been developed. The assumption that the entire image is blurred by a single PSF

is not valid in general. A non-negligible depth variation in the scene results in

space-variant blurring when there is camera shake (i.e., motion blur) or the depth

of �eld is relatively narrow (i.e., defocus blur), as shown in Figure 1.1.

When the scene is static, the blur kernel due to camera shake or defocus is

scaled for di�erent depths; therefore, once the kernel is determined, its scaled

versions can be used for deblurring di�erent regions in the image. Blur due to

rotation of the camera or the scene is another type of space-variant blur whose

kernel can be modeled parametrically. In general, the scene can be dynamic

where there are objects moving independently in addition to camera movements

and optical aberrations. Therefore, it is necessary to handle arbitrary type of
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(a) (b) bgh
Figure 1.1: Images blurred by space-invariant and space-variant types of blur. (a)
Space-invariant blur (from [1]). (b) Space-variant blur (from [2])

space-variant blur. This is a challenging problem that requires explicit or implicit

segmentation of blur regions in the image.

1.2.0.2 Limited dynamic range

Another major limitation of a conventional imaging system is that the sensor′s

dynamic range is typically less than the dynamic range of the scene, as shown

in Figure 1.2, which limits the expected image quality in digital photography

and the performance in machine vision applications. Through capturing and

processing multiple images with di�erent exposure values, high dynamic range

imaging methods aim to exceed the limited dynamic range. The downside of

such an approach is the requirement to capture multiple images, which introduces

additional complexities when the scene and the camera are not �xed.

1.2.0.3 Limited depth of �eld

A common phenomenon that degrades the image quality arises from the limita-

tions of the lens. A typical imaging system, shown in Figure 1.3, has a limited

depth of �eld. For example the rays re�ected from a point p′ at a distance d′

in the scene, converge to approximate a point p′r on the sensor forming a sharp
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Figure 1.2: luminance range exhibited by the scene compared with the camera's sensor
limit to capture the luminance range (from [3]).

image point. However, another point p at a distance d which is relatively farther

away from the focus plane re�ects the rays with a certain angle that the lens

cannot converge these rays to a single point, hence forming a circle of diameter

bd on the image sensor.

Figure 1.3: Depth of �eld of a typical imaging system.

Therefore, any object beyond the depth of �eld of an imaging system begins to

defocus. Although shallower depth of �eld �nds many applications in computer

vision but from visual perception stand point it is regarded as a degradation.

Focus stacking is a common technique in computer vision that aims to extend

the depth of �eld through capturing multiple images of a scene with di�erent

focus setting and then combining these images. Again like high dynamic range

imaging focus stacking may also su�er from any movement in the scene or the

displacement of the camera during the sequential capture.
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1.2.0.4 Light �eld imaging

Apart from overcoming the previously mentioned limitations some new possiblites

can be explored through computational imaging techniques, one such example is

light �eld imaging. A light �eld can be de�ned as the collection of all light rays in

a 3D space [17, 4]. While a light �eld, in general, can be parameterized in terms

of 3D coordinates of ray positions, 2D ray directions, and physical properties of

light, such as as wavelength and polarization, the independent parameters can

be reduced to a four-dimensional space shown in Figure1.4, assuming there is

no energy loss during light propagation and when only the intensity of light is

considered; such a four-dimensional representation of light �eld is used in many

practical applications [18, 4, 19].

(a) (b) (c)

Figure 1.4: Perimetrized with two parallel plane, in each representation u and v serves as
primary arguments. The last two arguments are perimetrized by; (a) Global coordinates
of s and t [4].(b) Angular coordinates θ and Φ representing the angle of ray after
intersecting with uv plane. (c) Local coordinate of s and t, some time also referred as
slope of the angle of the ray intersected at uv plane.

1.2.0.5 Light �eld acquisition

Light �eld imaging systems can be implemented in variety of ways, including

camera arrays [20, 4, 21], micro-lens arrays [6, 22], coded masks [23], objective

lens arrays [24], and gantry-based camera systems [25]. Camera arrays con�gured

to capture a light �eld requires all the camera to be packed tightly as shown in

Figure 1.5. Camera array based light �eld acquisition methods results in high

quality light �elds as compared to other light �eld acquisition methods.
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(a) (b)
Figure 1.5: (a) Stanford camera array comprising of 8x16 cameras, con�gured to capture
light �eld [5]. (b) A point in the scene is projected to three camera sensors of a camera
array having independent optical elements.

A camera in an array captures the scene from single perspective on a entire

sensor i.e spatial resolution is equal to the camera′s sensor resolution and the

number of cameras in a camera array determines the angular resolution of the

light �eld. Since all the cameras are triggered simultaneously camera arrays are

also suitable for dynamic scenes. The cost to build camera arrays as large as the

one shown in Figure 1.5, are very high as compared to any other method of light

�eld acquisition and also they are very bulky and their mobility is restricted.

Among these di�erent implementations, micro-lens array (MLA) based light

�eld cameras o�er a cost-e�ective and compact approach for light �eld acqusition;

and it is widely adopted in academic research as well as in commercial light �eld

cameras [26, 27].

(a) (b)

Figure 1.6: (a) A �rst generation Lytro camera [6]. (b) Optical diagram of a microlens
array based light �eld camera.

7



There are many versions of the MLA based light �eld cameras. Angular and

spatial resolution of these cameras depends on the position of MLA in the camera

and the size of each micro lens. Lytro which is a commercially available light �eld

camera, shown in Figure 1.6, captures the light �eld by placing a hexagonal MLA

grid at the focal length of the objective lens. Raytrix another type of hand

held MLA based design records several micro images from di�erent perspectives

by positioning the MLA in front of the sensor which turns the sensor into a

micro camera array focused at an intermediate image plane. Irrespective of the

MLA position the imaging sensor is shared to capture both spatial and angular

information, therefore, MLA-based light �eld cameras su�er from a fundamental

resolution trade-o� between spatial and angular resolution, as shown in Figure

1.7.

Figure 1.7: Spatial and angular resolution trade-o� of an MLA based light �eld camera.
(The illustration is taken from ([7]).

The �rst-generation Lytro camera has a sensor of around 11 megapixels, pro-

ducing 11x11 angular resolution and less than 0.15 megapixel spatial resolution

[14]. The second-generation Lytro camera has a sensor of 40 megapixels; however,

this large resolution capacity translates to only four megapixel spatial resolution

(with the manufacturer's decoding software) due to the angular-spatial resolution

trade-o�.

The second issue associated with MLA-based light �eld cameras is narrow

baseline. The distance between sub-aperture images decoded from a light �eld
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capture is very small, signi�cantly limiting the depth estimation range and accu-

racy. For instance, the maximum baseline (between the leftmost and rightmost

sub-aperture images) of a �rst-generation Lytro camera is less than a centimeter,

which may result in sub-pixel feature disparities. There are methods in the liter-

ature speci�cally designed to estimate disparities and depth maps for MLA-based

light �eld cameras [28, 29, 30].

Coded mask based light �eld camera design is an alternative to MLA based

approach. In mask based approach a coded mask is used to optically modulate the

light �eld prior to projection. There are various design approaches, for example,

coded apertures, coded lens arrays, and coded aperture and mask combined. The

variation is not only on the placement of the mask but also on the mask design

to allow higher permittivity of light. There is also a di�erence in the design

approach based on the number of shots. For example coded mask based camera

designs involving multiple-capture [31, 32, 33, 34] and single-capture [8] methods.

In Figure 1.8, a coded mask based camera design is shown which requires a single

shot to capture the light �led. The mask is placed next to the sensor with a small

o�set to modulate the light �eld.

Figure 1.8: Coded mask based light �led camera (The illustration is taken from ([8]).

The limitations of the masked based approach are, either the multiple-capture

methods are not suitable to applications with dynamic scenes or single-capture

methods may su�er from low light e�ciency. Since a single sensor is used to

obtain both angular and spatial information, these cameras may also have a low

spatial resolution problem, as in the case of MLA based cameras. Gantry based

designs do not have a resolution issue however, they are not suitable for dynamic

scenes.
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1.2.0.6 Light �eld capabilities

Unlike regular cameras, light �eld cameras capture the directional light informa-

tion, which enables new capabilities, including post-capture adjustment of cam-

era parameters (such as focus and aperture size), post-capture change of camera

viewpoint, and depth estimation. As a result, light �eld imaging is getting in-

creasingly used in a variety of areas, including digital photography, microscopy,

robotics, and machine vision.

Post-capture refocusing

The light �eld camera captures the angular information of the incident rays

separately, which can be utilized to combine di�erent rays computationally to

generate a certain perspective image. For example, �xing the angular coordi-

nates u and v, i.e picking the pixels from the same u and v location in all the

microlenses results in a u x v perspective image. In [6] it has been shown that

averaging these perspective images after an appropriate shift produces an image

focused at a particular depth in the scene and a signi�cant blur at all the other

depths. Figure 1.9, presents an image which is refocused at three di�erent depths

computationally.

Post-capture aperture adjustment

The aperture size is one of the factors responsible for the quality of an image, as

it controls the amount of light that can reach the sensor. Aperture opening is also

responsible for the depth of �eld and hence is very important in many computer

vision applications. In Figure 1.10, it is demonstrated that how synthetically

changing the aperture size controls the depth of �eld. The narrow opening allows

only a narrow cone angle of the bundle of rays and thus extends the depth of �eld

and vise versa.
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(a) (b) (c)

(d)
(e) (f)

(g)
(h) (i)

Figure 1.9: (a, d, g) Optical diagram showing converging light rays at virtual image
plane; (b, e, h) Pixels picked from raw lenslet marked with red to get refocused image
after averaging marked points; (c, f, i) Three refocused images with each image having
one depth in focus.

1.3 Contribution

This work is concentrated on developing new methods in computational pho-

tography to address some of the previously mentioned limitations in generating

high-quality images for existing or possibly new applications. The major contri-

butions of this work are as follows:

• A �exible framework for space-variant bling image deblurring is developed.

• A �exible pipeline for joint focus stacked high dynamic range imaging is de-

veloped.
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(a)
(b) (c)

(d)
(e) (f)

Figure 1.10: (a, d) Optical diagram demonstrating e�ect of placing a virtual aperture
stop; (b, e) Region marked with red square shows the pixel region averaged to get the
projected point; (c, f) Reconstructed image.

• An algorithm for Light �eld spatial resolution enhancement and depth range

extension through hybrid stereo imaging is developed

• A prototype light �eld camera is designed which involves deconvolution to

extract high resolution light �eld extraction from a single capture.

Flexible framework for space-variant blind image deblurring

In this thesis a a framework for blind space-variant deblurring without any

parametric kernel restrictions is presented. The proposed strategy has the fol-

lowing main steps: coarse blur kernel estimation of small image patches; kernel

clustering to determine the prominent blurs in the scene; re�ning the kernels using

the image regions associated with the kernel clusters; and �nally space-variant

deblurring through deconvolution with the kernel estimates and image fusion.

Within the framework, the speci�c methods (such as blur kernel estimation, clus-

tering, and image fusion) can be altered.

Dynamic range and depth of �eld enhancement using camera array
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In this work, a method is presented that combines focus stacking and high

dynamic range imaging to generate a �nal HDR image with extended depth of

�eld using the images captured through a camera array. The �rst step of the

proposed algorithm is to perform focus stacking under exposure diversity. This

step involves photometric and geometric registration of the images to produce

a set of all in focus images. Radiance map is then estimated using all in focus

images with varying exposure followed by tone mapping. The resulting �nal

image has a high dynamic range image and extended depth of �eld.

Hybrid Light Field Imaging for Improved Spatial Resolution and

Depth Range

To address both resolution and baseline issues, a hybrid stereo imaging system

that consists of a light �eld camera and a regular camera is proposed. The pro-

posed imaging system has two main advantages over a single light �eld camera:

First, high spatial resolution image captured by the regular camera is fused with

low spatial resolution sub-aperture images of the light �eld camera to enhance

the spatial resolution of each sub-aperture image; that is, a high spatial resolu-

tion light �eld is obtained while preserving the angular resolution. Second, the

distance between the light �eld camera and the regular camera produces a larger

baseline compared to the maximum baseline of the light �eld camera; as a result,

the hybrid system has a better depth estimation range and accuracy.

Deconvolution based light �eld extraction from a single image cap-

ture

The proposed method overcomes the spatio-angular trade-o� and enables high-

resolution light �eld capture from a single image. In the experiments, a light �elds

with 11 x 11 angular resolution and 1024 x 1280 spatial resolution is obtained. The

results of the proposed method are compared with light �eld captured by a �rst-

generation Lytro camera to demonstrate the resolution improvement. In addition

to the resolution issue of the MLA based light �eld cameras, the proposed method

also overcomes the poor light e�ciency issue of the coded mask based light �eld

cameras. On the downside, the proposed method involves deconvolution, which
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may introduce artifacts.

1.4 Outline

The thesis addresses a subset of the possible causes of image degradation in a

conventional imaging system and explores new possibilities for imaging applica-

tion by overcoming these degradations. In the next chapter the issue of space-

variant blurring in digital images is addressed, the proposed method has been

compared with the state of the art methods from the literature. In the third

chapter we address two common limitations of the conventional imaging system,

low dynamic range and limited depth of �eld. The proposed algorithm combine

focus stacking and HDR imaging to overcome these limitations. Fourth chap-

ter addresses the problem of poor spatial resolution in the context of light �eld

imaging. The developed algorithm employs stereo hybrid imaging that not only

overcomes the limited resolution problem but also improves the depth estimation

accuracy, which is one of the main applications of light �eld imaging. In the

�fth chapter again the issue of limited spatial resolution in light �eld imaging is

addressed, but this time through a completely di�erent approach. An algorithm

is developed to extract a high-resolution light �eld from a single image through

the deconvolution of an input image with a set of pre-estimated PSFs. Finally

the thesis is concluded in chapter six.
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Chapter 2

Space-Variant Blur Kernel

Estimation and Image Deblurring

through Kernel Clustering

This chapter presents a space-variant blur kernel estimation and image decon-

volution framework. For space-variant blur kernel estimation, the input image

is divided into small patches, and for each patch, the blur kernel is estimated.

The estimated kernels are then grouped to determine di�erent kernel clusters in

the image. During clustering, unreliable kernel estimates are eliminated. The

blur kernel for each kernel cluster is �nally re�ned using the corresponding image

region, which is the union of image patches associated with the kernels in the

cluster. For space-variant image deconvolution, the entire image is deconvolved

with each blur kernel to produce a set of deblurred images. These images are then

fused to produce a blur-free image, where the fusion process selects the optimal

regions from the set of deblurred images.
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2.1 Related work

In this work, a blind image deblurring problem is addressed through only a single

image degraded by space-variant blur that does not have any speci�c paramet-

ric form. Since the proposed approach utilizes space-invariant blind deblurring

methods in local regions, �rst a brief of review such techniques, focusing mostly

on the ones where the blur kernel is not limited to a parametric form is provided.

A common space-invariant blur type is motion blur due to camera shake dur-

ing exposure period. The method in [35] requires the user to select a rectangular

patch without saturation and an initial guess about the orientation (horizon-

tal/vertical) of the blur kernel. The optimization is done in a Bayesian frame-

work, where the prior of the latent image is a mixture of Gaussians of the gradient

image, and the prior of the blur kernel is a mixture of exponential distributions,

promoting sparsity of the kernel coe�cients. In [36], the blur kernel is also mod-

eled with an exponential distribution, while the latent image model is the product

of a global and a local prior. The global prior is de�ned by modeling the image

gradient distribution in the logarithmic space by concatenating two (linear and

quadratic) functions. The local prior is de�ned by modeling the di�erence be-

tween the blurred and unblurred image gradients with a Gaussian distribution.

The method requires a rough initial estimate of the blur kernel, which can be in

the form of a user-drawn line.

The above-mentioned methods require the user to input an initial estimate

of the blur kernel. Alternatively, the initial estimate of the true (unblurred)

image can be used. In [37], a "sharp" version of the blurry image is predicted by

�nding the location and orientation of edges in the image using an edge detector,

and then propagating the local maximum and minimum pixel values along the

edge pro�le to form the sharp edges. Once the sharp image is predicted, the

kernel estimation is done in a Bayesian framework using Gaussian priors on kernel

gradient and noise terms. In [38], the initial unblurred image is estimated by

applying bilateral �ltering, shock �ltering and gradient magnitude thresholding

to eliminate small gradients from the estimate. The kernel and latent image
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are updated iteratively using least squares estimation technique with L2 norm

regularization. During iterations, the gradient magnitude threshold is reduced to

include more gradient values in the estimation. The method in [39] also starts

with a sharp edge construction with a shock �lter, selects signi�cant edges, and

makes a coarse kernel estimation using the least squares estimation technique.

As a second step, the coarse kernel estimate is re�ned with selected regions and

L1 regularization. Finally, the image is deconvolved with total variation (TV) -

L1 method. Alternative to the sparsity promoting total variation and L1-norm

regularizations, the use of framelets (for image) and curvelets (for blur kernel)

is also investigated [40]. There are also methods where multiple images, with

di�erent blur conditions, are used in space-invariant blind image deblurring [41,

42, 43].

Instead of modeling camera shake as a 2D planar motion, it is also possible

use 3D camera motion models. In [44], space-variant blur due to 3D rotation

(roll, pitch, and yaw) of a camera around its optical center is considered. The

parameterized blur model, which is shown to be a linear combination of homogra-

phies derived from the 3D rotation, is used to deblur images through approximate

marginalization and maximum a posteriori approaches. Alternative to 3D rota-

tion, roll (z-axis rotation) and in-plane (xy) translation model is also used [45].

In [1], instead of applying the homographies to the sharp image, all possible ho-

mographies are applied only once to a grid of single-pixel dots to form a blur

kernel basis. A space-variant blur due to camera shake can then be generated by

linear combination of the kernels in the basis, resulting in an e�cient algorithm.

There are also hardware-based approaches, where the built-in inertial sensors (gy-

roscope sensor) of the smart-phones are used for accurate blur kernel estimation

[46].

In [47], rotational blur is considered. A transparency map, which is produced

by the rotating object or camera, is predicted; the rotational motion parameters

are then estimated using transparency map. Another transparency based method

is presented in [48], where the blur kernel for the blurred region is obtained using

the technique in [35] and the deconvolution is done using the Lucy-Richardson

method.
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Some space-variant deblurring methods are limited to defocus blur, where the

kernel shape is �xed but its scale varies with depth. In [49], image patches with

similar content but di�erent defocus blur are determined; and among the patches

with similar content, those with less defocus blur are used to deblur the corre-

sponding patches with more defocus blur. The method requires the input image

to be segmented according to the defocus level, which is determined by identifying

the scale of a Gaussian kernel through optimization. In [50], the segmentation

is �rst done through a local contrast measure. The depth map is then re�ned

through Markov Random Field propagation and graph cut technique. In [51],

a blur map (that is, a Gaussian kernel scale map) is generated using a local

contrast measure and guided �ltering; the input image is then deblurred with

di�erent Gaussian kernels using L1-L2 optimization to obtain multiple decon-

volved images, which are �nally merged into a single image using the blur map.

In another method [52], the scale estimation is done using local variance, and the

restoration is achieved using the truncated constrained least squares technique.

As it turns out, blur kernel scale identi�cation is a critical part of space-variant

defocus deblurring. It is also shown that using coded apertures instead of full-

open conventional apertures, scale identi�cation performance can be improved

[53].

There are methods aiming to �rst segment images according to blur cues. In

[54], a Bayesian classi�er, with features including local power spectrum, gradient

histogram, maximum saturation and local autocorrelation, is used to segment

and image into sharp, linear-motion-blurred and defocus-blurred regions. In [55],

the segmentation is done using features obtained from sub-band decomposition

indicating likelihood of a small neighborhood being blurred by a candidate blur

kernel, which is limited to horizontal and vertical box �lters of speci�c lengths. In

[56], it is assumed that there is single blurred object in an unblurred background,

and the motion is in a single direction with a constant velocity. The image is

�rst segmented based on image derivatives, the size and direction of the kernel

in the blurred region is identi�ed, and �nally the blurred region is deconvolved

using Richardson-Lucy technique. [9], involves explicitly extracting the depth

map, parametric blur kernel estimation and deconvolution for each depth, in an
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expectation-maximization framework. In [2], the latent image and motion �ow

are estimated jointly based on a TV-L1 model. The regularization of the motion

�ow estimation incorporates edge-map, thus sharp motion boundaries can be

maintained. A local blur kernel is de�ned as a linear kernel whose direction and

length is determined by the motion �ow.

Patch based kernel estimation and deblurring is also a possible approach. In

[57], kernels for local regions are �rst estimated. Kernels that are adjacent are

assumed to have similar blur structure. Earth mover's distance is used to measure

the similarity between patch kernels. Finally, the kernels which are correct are

taken as such and the incorrect kernels are replaced with their neighboring kernels.

In [58], a sharp image is estimated using bilateral and shock �ltering; local blur

kernels are estimated while enforcing smoothness between neighboring kernels;

poor kernel estimates are identi�ed and replaced with neighboring kernels. In

[59], initial local blur kernel estimates are revised utilizing both the information

of corresponding image regions as well as the correlation with the neighboring

kernels.

Recently, convolutional neural networks (CNNs) are used for deblurring of

dynamic scenes [60, 11]. In [60], the blurry input image is divided into a set of

overlapping patches and then a CNN is used to predict motion blur kernels at

patch level. To learn the e�ective features for predicting motion distributions, a

set of candidate motion kernels are generated by discretizing the motion space,

i.e., the ranges of length and orientation of the motion vectors. Finally, to fuse

the patch level motion kernels into a dense �eld of motion kernels for the image, a

Markov random �eld model is adopted. The model ensures to choose the motion

kernel for each pixel with higher con�dence estimated by CNN, and also enforces

the smoothness of nearby motion kernels. In [11], a blur kernel free approach is

adopted for both blur dataset generation and latent image estimation to avoid

kernel estimation related artifacts. To simulate blurring process successive sharp

frames are captured with high-speed camera and then integrated over time. For

directly recovering the latent image from the blurry input, a CNN model with

multi-scale loss is proposed. In the multi-scale loss approach, every intermediate

output becomes the sharp image of the corresponding scale and hence enhances
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Figure 2.1: An illustration of the proposed space-variant deblurring framework. For
each image patch Bp, the blur kernel kp is estimated. The kernels are then clustered to
determine the main clusters Ci. The image regions B̂i corresponding to kernel clustered
are obtained. For each image region B̂i, re�ned kernels k̂i are estimated. The entire
input image is deblurred with each kernel to obtain a set of deblurred images Îi. The
deblurred images are then fused to produce a sharp image I.

the convergence greatly. These learning based methods can handle multiple types

of blur but the e�ectiveness depends greatly on the diversity of the training data

and the success of model �tting.

A single-image blind deconvolution framework where the blur can be space-

variant and non-parametric is presented in this chapter. There is no restriction

on the type or the number of the blur kernels in the image. The algorithm

e�ectively identi�es the blur kernels, segments the image into regions of uniform

blur using mean-shift clustering and eventually produces a sharp image through

image deblurring and fusion. A comparison of the proposed method with the

one given in [61] is presented. A visual and quantitative comparisons with other

well-known methods in the literature is also presented.
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2.2 The blur kernel estimation and deblurring

framework

The proposed framework has three main steps: (i) image patch blur kernel estima-

tion, (ii) blur kernel re�nement through kernel clustering, and (iii) space-variant

deblurring through image fusion. An illustration of these steps is given in Figure

2.1.

2.2.1 Image patch blur kernel estimation

The �rst step is to estimate the local blur kernels in the input image. To estimate

the local blur kernel at a pixel location, a small region around that pixel is

selected and a space-invariant blur kernel estimation method is applied. In this

implementation, the coarse blur kernel estimation method presented in [38] is

adopted, which can compute the blur kernels reasonably fast and with acceptable

accuracy. The method is applied for each image patch Bp (from the blurry input

image B) to obtain the latent image Ip and blur kernel kp. The patches do not

have to be non-overlapping; and will be detail later, a sliding window approach

with a stride of one-fourth of the patch size is used.

2.2.2 Blur kernel re�nement through kernel clustering

The estimated local blur kernels from the image patches are not all expected to

be accurate and reliable. Some image patches may come from transition regions

where there are more than one type of kernel; some image patches may come

from regions where the texture is not strong enough to produce accurate ker-

nel estimates. It is proposed to perform a clustering process on the estimated

blur kernels to determine the major blurs in the image while getting rid of the

unreliable kernels. After kernel clustering, the image patches corresponding to a

speci�c kernel cluster are combined to form a larger region for that cluster. Using
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larger regions, more accurate kernel estimates are obtained.

With no prior knowledge about the number of blur kernels in the image, the

mean shift clustering technique [62] is used. The clustering process starts with

a randomly chosen point in the kernel space. The kernel estimates with sum of

squared di�erence less than a �xed bandwidth are added to the cluster. With

the added new points, the centroid of the cluster is updated. With the updated

centroid, new points are added to the cluster, and the process is repeated until

convergence. The clusters are �nally checked for possible merging if the distance

between two cluster centroids is less than half the bandwidth. Image patches with

uniform blur kernel and su�cient texture inside are expected to produce good

kernel estimates; and, therefore, they are more likely to form reliable clusters.

The patches with non-uniform blur or insu�cient texture are expected to have

poor kernel estimates, and they do not group with the major clusters.

Once the clusters are obtained, the image is segmented into regions with uni-

form blur by combining the small patches corresponding to their kernels in the

clusters. Kernels k̂i of the newly combined image regions B̂i are re-estimated,

producing more accurate results. For kernel re�nement, the methods presented

in [38] and [39] are tested. The method in [39] has higher computational cost than

the one in [38] but turned out to produce better results. (For implementation

details of the kernel estimators, we refer the readers to [38] and [39].)

In Figure 2.2, a set of input images are provided which are used in the ex-

periments. The �gure includes the regions corresponding to kernel clusters and

re�ned kernel estimates k̂i. The patch size and the kernel window size are �xed

in all experiments, therefore, di�erent number of kernels are obtained depending

on the input image size. (The values of these parameters are given in Section 4.)

2.2.3 Space-variant deblurring through image fusion

The clustering process leaves some of the kernels and their corresponding regions

un-assigned. These un-assigned patches are extensions of the regions with known
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re�ned kernels, and should be taken care at the end. The Proposed approach

is deblur the entire input image B for each re�ned kernel k̂i to obtain a set of

deblurred images Îi, and to apply an image fusion process, picking the best pixel

value at a pixel position among the alternatives coming from the deblurred images

Îi, to produce a sharp image I.

For image deconvolution, TV-L1 based method [63] is used, which minimizes

the following cost function ‖B − k̂i ⊗ Îi‖1 + λ‖∇Îi‖2, where λ is a regularization

constant.

For the fusion process, at each pixel position, one pixel value from one of the

deblurred images is selected. The selection is based on the observation that in

a restored image Îi, regions for which the applied kernel is correct, a smooth

recovery is achieve; while severe ringing artifacts appear in the rest of the image

because those regions cannot be explained by that kernel. These ringings are

intense and have gradients with large magnitude compared to the gradients of

a natural image. This cue has been used before to determine the scale of a

blur kernel for depth from defocus [53]. This cue is used in the fusion process

in addition to the sparse distribution of gradients in a natural image. In the

implementation, a pixel is selected from the deblurred image which produces the

minimum energy in a local window around that pixel. The energy function to be

minimized is de�ned as:∑
(x,y)∈W

|B(x, y)− k̂i ⊗ Îi(x, y)|2 + α|∇Îi(x, y)|, (2.1)

where (x, y) is a pixel position, W is a local window around that pixel and α is

a regularization constant.

2.3 Experimental results

the proposed framework is tested on a variety of images degraded with space-

variant blur of di�erent types. The comparisons with the following methods,

which can handle space-variant blur are done:
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• Joshi et al. (2010) [10]

• Hirsch et al. (2011) [1]

• Shen et al. (2012) [51]

• Hu et al. (2014) [9]

• Qian et al. (2014) [61]

• Sun et al. (2015) [60]

• Nah et al. (2017) [11]

• Shen et al. (2018) [57]

From Figure 2.3 to 2.10, a visual comparisons is provided. In Table I,a quan-

titative comparison using a dataset from [12] is given.

The proposed method has several parameters whose values should be set. One

of them is the patch size. The patch size be carefully chosen; and it should be

greater than the size of the blur kernel. On one hand, when the patch size is too

large, the region may contain more than one type of blur, which would reduce

the accuracy of the kernel estimate. On the other hand, a small patch size may

result in inaccurate estimates due to insu�cient texture within a patch. In all

the experiments, the patch size is set to 312 x 208, which is one-sixth of the size

of the images that is initially worked with and used to decide on the parameter

values empirically.

Another parameter is the stride amount in the sliding window for obtaining

the local image patches. If a sliding window with one pixel stride is used, the

computational cost would be maximum since the kernel for each patch is going to

be estimated. If non-overlapping patches are used, regions of uniform blur could

be missed. In all experiments, the stride in horizontal and vertical directions is

set to one-fourth of the patch size.

The kernel clustering step employs the mean-shift clustering algorithm, for

which the distance measure is sum of squared di�erence between two kernels,
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and the bandwidth is set to 4.5, which is determined empirically. For kernel

estimation, the parameters are set to the recommended ones in the paper [39];

and for image deconvolution, again the recommended parameters in [63] are used.

For image fusion, the local window size is set to the size of the blur kernel size,

and the regularization constant α is set to 10. Once decided, the parameter values

are kept �xed in all the experiments.

In Figure 2.3, the input image involves defocus blur and motion blur in at

least two di�erent directions as can be seen in the patch blur kernels in Figure

2.2. A method designed for space-invariant blur, such as the one in [39], cannot

work well with this type of an image. A method designed for defocus blur, such

as [51], also fails to get rid of motion blur. The proposed method in this case

works the best. It should be noted that the kernel re�nement of the proposed

method is based on [39], which is indeed producing very good results when the

blur is space-invariant, but fails otherwise as seen in this example.

The input in Figure 2.4 has blur due to camera shake; the scene is also non-

planar. The input image is taken from [1]. It is seen that the proposed method

works better than [1] as well as [61].

The input in Figure 2.5 has objects at di�erent depths, and there is motion

blur, while it is not as much as the one in Figure 2.4. The input image is taken

from [9]. The proposed method produces sharpest result compared to [9] and

[61].

The input image in Figure 2.6 is taken from [57]. The proposed method is

compared with [57], [10], and [61]. The proposed method has a better recovery

overall as seen in di�erent close-up regions.

Recently developed convolutional neural network (CNN) based methods can

produce exceptional results with space-variant blur. The input images in Figures

2.7, 2.8, and 2.9 are taken from [11], which is such a CNN based space-variant

deblurring method. In these �gures, results of [2] and [60], which are also designed

for removing space-variant blur are included. Evaluating these results, it can be
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said that the proposed method produces better or comparable results with all

these methods.

Finally, a quantitatively comparison of the CNN based methods [11] and [60]

with the proposed method is presented. The dataset is taken from [12], which

provides ground truth images. Table I, provides peak signal to noise ratio (PSNR)

and structural similarity (SSIM) values for a number of images with various

amounts of blur. More information on these datasets can be found [12]. In

Figure 2.10, a sample visual comparison from this dataset is presented.

It is seen that while some methods are designed for speci�c types of blur sit-

uations, the proposed method works with a variety of blur situations, producing

comparable or better results compared to the other methods, even under condi-

tions where the competing method is speci�cally designed for such a scenario.
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Figure 2.2: Blur kernel estimation and clustering. (From left to right) Original image,
kernels estimated for image patches, and image regions after kernel clustering along
with the corresponding re�ned kernels. The patch size and the kernel window size are
�xed in all experiments, therefore, depending on the image size, di�erent number of
kernels are obtained. The input images and the kernel clusters are scaled to �t into the
�gure.
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Figure 2.3: Comparison of space-variant image deblurring methods.
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Figure 2.4: Comparison of space-variant image deblurring methods. The input image
is taken from [1].
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Figure 2.5: Comparison of space-variant image deblurring methods. The input image
is taken from [9].
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Figure 2.6: Comparison of space-variant image deblurring methods. The input image
is taken from [10].
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Figure 2.7: Comparison of space-variant image deblurring methods. The input image
is taken from [11].
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Figure 2.8: Comparison of space-variant image deblurring methods. The input image
is taken from [11].
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Figure 2.9: Comparison of space-variant image deblurring methods. The input image
is taken from [11].
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Table 2.1: Quantitative comparison of the proposed method with some other space-
variant image deblurring algorithms. The dataset is taken from [12].

Image Name Sun et al. [60] Nah et al. [11] Proposed
PSNR SSIM PSNR SSIM PSNR SSIM

Manmade 01 17.51 0.75 16.54 0.71 18.41 0.79
Manmade 02 14.16 0.61 14.15 0.59 15.62 0.67
Manmade 03 16.82 0.72 18.12 0.77 21.25 0.87
Manmade 04 16.72 0.71 19.33 0.80 20.16 0.84
Natural 01 20.42 0.87 20.62 0.87 20.26 0.86
Natural 02 17.77 0.79 18.35 0.81 19.61 0.84
Natural 03 18.82 0.83 19.41 0.85 23.09 0.93
Natural 04 19.20 0.83 19.98 0.86 20.14 0.86
People 01 31.48 0.96 32.29 0.95 31.09 0.96
People 02 27.36 0.91 28.01 0.91 27.44 0.92
People 03 31.02 0.95 31.11 0.94 34.10 0.98
People 04 31.10 0.95 31.99 0.95 32.37 0.96
Average 21.86 0.82 22.49 0.83 23.62 0.87
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Figure 2.10: Comparison of space-variant image deblurring methods. The input image
is taken from [12].
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2.4 Discussion

The proposed framework involves multiple steps, and the Table 2.2 provides a

breakdown of the computational time for each step. Since the number of clusters

and the size of clustered regions depend on the input image, there is no �xed time

for the entire process. In the table, an average computation times (10 runs) from

the dataset of images with size 1248 x 1872 is presented. The patch size is set

to 312 x 208, and the stride amount is set to 1/4 of the patch size in each run.

The experiments are done on a machine with Intel Xeon(R) CPU @ 3.50 GHz

and a memory of 4.7 GB. It should be noted that some of the steps can easily

be parallelized: image patches can be processed in parallel to get the initial blur

kernels, kernel re�nement for each cluster can be done in parallel, and image

deblurring for each kernel can be done in parallel.

Table 2.2: Computational time for each step involved in the proposed space-variant
image deblurring framework

Computational Time
Algorithm step Average time
Image patch blur kernel estimation 4 secs per patch
Kernel clustering 2 secs
Kernel re�nement 6 secs per image
Image deblurring 70 secs per image
Image fusion 26 secs

As already mentioned, the proposed framework is �exible to accommodate

changes in the techniques used at di�erent steps. The clustering, kernel estima-

tion, deblurring, or fusion techniques can be replaced with others. The parameters

of the techniques can be �ne-tuned to obtain the best overall performance. In all

experiments that are reported, a a �xed set of parameters are. These parameter

values have been determined through experimental evaluation. Here, a further

discuss of the e�ect of these parameters on the performance is provided. One of

the critical parameters is the patch size. When it is too small, there may not

be enough image features to obtain a reliable blur kernel; when it is too large,

it may not be possible to have image patches covering only one type of blur.

In Figure 2.11, three patch sizes are compared. The patch size 312x208 results
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in su�ciently large cluster regions with uniform blur within each cluster. The

smaller patch size results in many small cluster regions, while the larger patch

size results in a large cluster region, which incorporates more than one type of

blurring; and in both of these cases, the deblurring performance degrades. The

second critical parameter is the stride amount, indicating shift from one image

patch to another. In the extreme case, the stride amount would be set to one

pixel; this would increase the number of image patches (therefore, the number

of estimated blur kernels), and it is expected to have reliable kernel clustering.

On the downside, the computational cost would increase since the blur kernel for

each patch has to be estimated. As the stride amount is increased, it is expected

to get performance degradation as the number of kernels is decreased and the

chance of missing uniform kernel regions is increased.

In Figure 2.12, the stride amounts of 1/4 and 1/2 of the patch size are com-

pared. It is seen that the larger stride amount (1/2 of the patch size) results in

visible artifacts in the �nal deblurred image.

Another important parameter is the mean-shift clustering bandwidth. When

the bandwidth is too large, di�erent types of kernels may be joined together;

when the bandwidth is too small, kernels (even from the same type of blur)

cannot be grouped and some blur types may be skipped. In Figure 2.13, results

with di�erent bandwidth values are provided; it can be seen that the bandwidth

value of 4.5 produces a good result compared to the others. Finally, whether the

initial point in kernel clustering has any signi�cant e�ect on the performance is

investigated. The seed point is selected randomly and repeated the process ten

times. As expected, di�erent seed points may result in slightly di�erent clusters;

however, this does not result in any signi�cant variation in the �nal deblurred

image. This is exempli�ed in Figure 2.14.
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(a) The patch size is 240 x 156. (Top) Clustered regions. (Bottom) Final
deblurred image and zoomed-in regions.

(b) The patch size is 312 x 208. (Top) Clustered regions. (Bottom) Final
deblurred image and zoomed-in regions.

(c) (The patch size is 468 x 312. (Top) Clustered regions. (Bottom) Final
deblurred image and zoomed-in regions.

Figure 2.11: E�ect of patch size on clustering and �nal deblurring. Clustered regions
and deblurred images are shown for di�erent patch sizes. The stride amount is 1/4 of
the patch size in each case.
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(a) The stride amount is 1/2 of patch size. (Top) Clustered regions. (Bottom) Final
deblurred image and zoomed-in regions.

(b) The stride amount is 1/3 of patch size. (Top) Clustered regions. (Bottom) Final
deblurred image and zoomed-in regions.

(c) The stride amount is 1/4 of patch size. (Top) Clustered regions.(Bottom) Final
deblurred image and zoomed-in regions.

Figure 2.12: E�ect of stride amount on clustering and �nal deblurring. The patch size
in each case is 312 x 208.
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(a) The mean shift clustering bandwidth is 4.0. (Top) Clustered regions. (Bottom)
Final
deblurred image and zoomed-in regions.

(b) The mean shift clustering bandwidth is 4.5. (Top) Clustered regions. (Bottom)
Final
deblurred image and zoomed-in regions.

(c) The mean-shift clustering bandwidth is 5.0. (Top) Clustered regions. (Bottom)
Final
deblurred image and zoomed-in regions.

Figure 2.13: E�ect of mean-shift clustering bandwidth on clustering and �nal deblurring.
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(a) (Top) Converged regions. (Bottom) Final deblurred image and zoomed-in re-
gions

(b) (Top) Converged regions. (Bottom) Final deblurred image and zoomed-in re-
gions.
Figure 2.14: Random selection of clustering seed points and its e�ect on the clustering
convergence and �nal deblurring. The result in (a) is obtained in 7 out of 10 runs; the
result in (b) is obtained in 3 out of 10 runs.
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Chapter 3

Dynamic Range and Depth of Field

Extension using Camera Array

Combining multiple digital cameras in di�erent con�gurations and forming large

camera arrays enable several new imaging capabilities. Cameras separated by a

small spacing and arranged such that their �eld of view is overlapping, allows

simulating a wider synthetic aperture. Such a wider aperture can be useful to

see through in partially occluded environments. Camera array with narrower

spacing between the cameras and staggered triggering times create a virtual high-

speed camera. Varying the exposure of cameras in a camera arrays enables an

interesting possibility i.e high dynamic range imaging.

The con�guration of the camera array in this work helps to overcome the

limitations of traditional cameras in terms of their dynamic range and depth of

�eld. In this chapter we present a method that combines focus stacking and high

dynamic range imaging to generate a �nal HDR image with extended depth of

�eld, using the images captured through the camera array. The �rst step of the

proposed algorithm is to perform focus stacking under exposure diversity. This

step involves photometric and geometric registration of the images to produce

a set of all in focus images. Radiance map is then estimated using all in focus

images with varying exposure followed by tone mapping. The resulting �nal
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image has a high dynamic range image and an extended depth of �eld

3.1 Related work

Camera arrays have been used in the past for di�erent imaging applications such

as, high dynamic range imaging, high-resolution imaging [5], high-speed video

[64], reconstructing occluded surfaces [65], [66], and blur removal in [67]. In [5]

the cameras are arranged as 12 x 8 array with around 50% overlapping �eld of

view between adjacent cameras. Autostitch software is used to perform feature

detection and correspondence, bundle adjustment, and generate HDR mosaiced

image. To capture a high-speed video a total of 52 cameras are packed closely

together to approximate a single center of projection in [64]. They achieved a

higher frame rate by staggering the exposure time of each camera and to align the

frames from each camera to a reference view the scene is assumed to be planar

and hence projective transformation is used.

In [65] a total of 88 cameras were used to generate a large synthetic aperture.

By synthetically focusing the large virtual lens on objects behind occlusion, the

defocus blur of occlusion projections becomes obvious and hence the occlusion

does not appear in the image. In another attempt to see through occlusion, the

visual parallax of the objects at di�erent depths and the sub-pixel information of

the images captured by the camera array is used in [66] to determine the shape

of occlusion and regenerate the background. To address the problem of spatially

varying blur in images and videos a hybrid camera array is proposed in [67]. The

camera array captures high-resolution low frame rate images and low-resolution

high frame rate images. These images are fused to generate a deblurred high-

resolution high frame rate video. In this work, the camera array is diversi�ed

such that it has variations in both the exposure time as well as in the depth of

�eld. The change of exposure enables room for high dynamic range imaging and

the variation of camera's focus in the array allows for extending the overall depth

of �eld.
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High dynamic range imaging has been studied extensively and several meth-

ods have been proposed to extend the dynamic range. These methods can be

categorized into two types, sensor design methods, and multi-exposure capture.

In [68] an optical mask with spatially varying transmittance is placed adjacent to

the sensor to change the exposure of adjacent pixels. A modi�ed camera sensor

is used in [69] and [70] where the sensor design includes detector cells with di�er-

ent size sensing elements to record di�erent measurements in each cell which are

then combined on-chip to generate HDR image. In [71] a camera design has been

proposed that measures alternating 'cliques' of the sensor to locally determine

the best exposure and use Poisson solver to reconstruct the HDR image.

HDR imaging algorithms that use multi-exposure images involve four basic

steps. 1) Multiple exposure images acquisitions. 2) A camera response curve

estimation. 3) Applying the inverse camera response curve on the images. 4)

Merging the linearized images. There are several di�erent ways of capturing

multi-exposure images [72], [5], [73], [74] as well as camera response function

(CRF) estimation [72], [75], and [76]. In [72] a set of images of a static scene

are captured sequentially with di�erent exposure times by a single camera from a

�xed location. A large size camera array is used in [5] to capture a dynamic scene

from multiple cameras with di�erent exposure settings. In [73] and [74] light

�eld cameras are used to capture multi-exposure images. In [73] an optical mask

with higher transmittance in the middle and lower transmittance at the border is

introduced in front of the main lens to increase the e�ect of vignetting resulting

in multiple exposure sub-aperture images. Plenptic 2.0 camera is used in [74] to

capture multiple-exposure microcamera images. The change in the size of the

aperture of a microlens based on its f-number results in the change of exposure

of each microlens image. There is also a wide range of camera response function

estimation models in the HDR imaging literature, while [72] approximates the

CRF by a simple gamma function [75] proposes a non-parametric model and

de�nes the curve by a set of exposure values for a better approximation. In [76]

the camera response curve is expressed by a low order polynomial to provide a

�exible radiometric model.

Focus stacking has also been the topic of interest for researchers over the past
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and a large volume of papers have been published in this area [77],[78], [79], [80],

[81], [82]. In order to generate an all in focus image from a set of di�erently ex-

posed images, a spatial frequency based method is proposed in [77]. The method

involves applying a sharpness measure on all the images to determine the pixels

with larger information content in each image. Another class of methods for gen-

erating all in focus images are the image pyramid based methods. These methods

[78] and [79], usually perform a multiscale decomposition of the image in order to

identify the pixels or image regions with higher information content at di�erent

scales. Defocus modeling based methods [80], [81], [82] provide an alternative

for all in focus image creation. These methods are based on an assumption of

a known point spread function (PSF) model and to undo the e�ect of the PSF

an inverse �lter is applied resulting in an all in focus image. In wavelet trans-

form based methods the wavelet decomposition of the series of focus images is

performed which is followed by the fusion process in the wavelet domain and the

wavelet coe�cients are selected based on some criterion [83].

3.2 Camera array con�guration

A 3 x 3 camera array is developed to simultaneously captures a total of 9 images

with varying exposure, depth of �eld and largely overlapping �eld of view. In

Figure 3.1, the diversi�cation of the camera array is presented.

Allied machine vision cameras with a Ricoh 8.5mm lens are used in the entire

camera array. Three di�erent focus settings, focused close, focused middle and

focused far are selected for the experiments. Focused close translates to 0.3 meters

from the camera, focused middle translates to 0.5 meters from the camera, and

focused far is anything above 0.5 meters. The top row of the camera array C(1,j) is

focused close with the addition of the second row leftmost camera C(2,1). Camera

C(2,2) is focused middle while the bottom row of the cameras C(3,j) along with

camera C(2,3) is focused far. This con�guration improves the registration of all

the images with respect to the camera C(2,2) image because of the availability of

images with a similar focus setting for both horizontal and vertical alignment.
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(a) Camera array (b) Images captured
Figure 3.1: Camera array con�gured to capture multiple exposure images with varying
depth of �eld. (a) Camera array marked with focus and exposure variation. (b) Images
captured with the camera array shown in 3.1a.

The exposure of the cameras in a camera array varies along the rows. The

left cameras C(i,1) have the highest exposure the middle ones C(i,2) have middle

exposure while the right cameras C(i,3) have minimum exposure. To change the

exposure across the row, the aperture opening is varied according to the camera

position. To synchronize the acquisition of the frames all the cameras are con-

nected with the external hardware trigger. PCI express slots and Vimba SDK are

used to interface the camera array to the PC with Intel i5 @ 3.2 GHz processor

and 16 GB RAM. The algorithm is implemented in MATLAB.

3.3 Focus stacking algorithm overview

The proposed algorithm has two major parts, focus stacking given images with

di�erent exposures and focus settings, and the dynamic range extension through

focus stacked multiple exposure images. The focus stacking process is highlighted

in Figure 3.2 and detailed below

All the input images I(i,j) are divided into three categories based on their

exposures. These input images from di�erent exposure categories are spatially

registered to the reference image Ir(2,2). After the spatial registration, the reg-

istered imagesĨ(i,j) are photometrically mapped to an image from a particular

exposure category. Weight is estimated for each pixel in all the geometrically
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Figure 3.2: Proposed focus stacking algorithm �ow. IMF is the intensity mapping
function [13] and i, j are the row and column index of the cameras in the camera array.

and photometrically mapped images. This weight is based on the two measures

namely local sharpness and registration errors. The local sharpness measure of

a pixel is large if it belongs to a focused area in an image and vice versa. How-

ever, a large registration error indicates that a pixel in the registered image is

not correctly mapped to the corresponding pixel in the reference image Ir(2,2).

The weight is, therefore, the combination of local sharpness and the inverse of

registration error. The pixels with the highest weight in all of the registered im-

ages is selected and combined with other selected pixels to generate a �nal focus

stacked image Ifs . The process is repeated for the remaining di�erent exposure

categories resulting in a total of three focus stacked images. The details of the

steps involved in focus stacking are provided below.

3.4 Spatial registration

Combining all the di�erent exposure and focus images into a single focus stacked

HDR image requires all the images to be perfectly aligned. To have a large
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overlapping area for all the images Ir(2,2) is chosen as a reference image and all

the remaining images are aligned with respect to the reference image. One simple

way to achieve this task is to estimate the motion �elds between the reference

image Ir(2,2) and the input images I(i,j). However, there is a di�erence in the

focus of the images which may result in large registration error in the regions

where there is a focus mismatch. To overcome this problem the camera array is

recti�ed both horizontally and vertically so the resulting images form a regular

grid as shown in Figure 3.3. Since the focus of the images is uniform across the

(a) Before recti�cation (b) After recti�cation
Figure 3.3: Camera array calibration for better spatial registration of the target images
on the reference image.

top row as well as across the bottom row, the motion �eld across the x-axis is

estimated between the middle image I(1,2) and the two adjacent images I(1,1) and

I(1,3) for the top row and similarly for the bottom row between I(3,2) and the two

corresponding adjacent images I(3,1) and I(3,3). Since the images are placed on a

regular grid after recti�cation the same motion �elds estimated for either the top

or bottom row are used for aligning the middle row images I(2,1) and I(2,3) with

Ir(2,2). Similarly to vertically register the images, motion vector across the y-axis

is estimated between image I(1,1) and I(2,1) and used for all the top row images. A

motion vector between I(2,3) and I(3,3) is estimated and is used for all the bottom

row images. In the non-overlapping part, some ghosting artifacts may appear in

the �nal all in focus images which are handled during the fusion process and is

explained in a section below.

Since there is a variation in the exposure of the cameras across a row, the

optical �ow algorithm cannot be directly applied to estimate the x-axis motion

�eld as the constant brightness assumption does not hold anymore. In order to
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ful�ll the constant brightness requirement intensity mapping must be performed

before optical �ow estimation.

In our experiments histogram based intensity mapping function [13] is used

because it is robust to such misalignments, apperas to be an appropirate choice.

The motion �elds are estimated using [84], because it has a robust data �delity

term and discontinuity preserving total variation regularization term. Once all

the motion �elds are estimated every input image is warped to the reference

image Ir(2,2) by using the corresponding motion �elds. The warped images are

now considered to be spatially registered with a reference image in the overlapping

regions.

3.5 Extending depth of �eld

All the registered images Ĩ(i,j) are separated based on their exposures, resulting in

three categories, high, middle, and low exposure with three images in each cate-

gory. For each category an all in focus image Ifs is generated which has the depth

of �eld larger than any of the individual images in that category. Since there is a

variation of exposure, images from di�erent exposure categories cannot be used

as such. Therefore, all the registered images Ĩ(i,j) are photometrically mapped to

a one of the image from a exposure category under consideration. Although all of

the images within a category are expected to have the same exposure but there

might be slight di�erences due to a minute change in the aperture opening and

hence photometric registration is performed within a category as well.

As mentioned earlier the �nal all in focus image Ifs is generated by combining

pixels from images captured with di�erent focus settings. To choose these pixels a

weight is assigned to each pixel based on its local sharpness and registration error.

Local sharpness has been extensively used in common focus stacking algorithms

to indicate the focus. The local sharpness is de�ned as follows
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S(x) =
∑

(y)∈Wh(x)

||∇(Ĩ(i,j)(y))||, (3.1)

where, ∇(Ĩ(i,j)(y)) is a gradient vector at pixel y obtained by applying Sobel

�lter, ||.|| denotes gradient magnitude, and Wh(x) is an h x h window across

pixel x. Now that sharpness for each pixel is known the registration error is

estimated. One may suggest the small threshold value at the absolute di�erence

between the photometrically mapped registered image and reference image can

be applied to eliminate the non-registered pixels, however, it should be noted

that the images have di�erent focuses and the absolute di�erence may be large

even when the images are registered correctly. It is decided to use the motion

vectors from spatial registration step between the reference Ir(2,2) and input I(i,j)
images. These motion vectors have signi�cantly large values for pixels in the non

overlapping or occluded regions which can be easily eliminated. It is noticeable

that using �ow vector based thresholding instead of simple absolute error based

thresholding handles ghosting artifacts better in the �nal HDR image.

The thresholding process outputs either one or zero for every pixel in an im-

age depending on its registration and saturation conditions resulting in a binary

registration error map R(i, j) for every image in a category. This registration

error map is then combined with local sharpness map resulting in a �nal weight

map w(i, j). For common black pixels in all weight maps w(i, j), the reference

image Ir(2,2) is photometrically mapped to an image in exposure category under

consideration and the pixel is then selected from the intensity mapped reference

image. Finally, the weighted sum of all the images performed to generate a �nal

all in focus images Ifs . The process is repeated three times to generate an all in

focus image for each exposure category.
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3.6 HDR radiance map estimation and tone map-

ping

Three all in focus images with di�erent exposures can now be processed through

any standard HDR image creation algorithm to generate an HDR image. In this

work, a commercially available software Photomatix pro is used to estimate the

radiance map. The software estimates the exposure time from the input images

so there is no need to explicitly estimate the exposure time for each frame. To

display the HDR image on an LDR display a standard tone compression technique

provided by the software is used. The resulting image has a larger depth of �eld

and high dynamic range than any of the individual images captured through the

camera array.

3.7 Experimental results

In this section, the experimental results of the proposed algorithm on a real

dataset are provided. In Figure 3.4, the artifacts caused by the spatial registration

of the target images on the reference image are shown.

(a) Target image (b) Reference image (c) After registration

Figure 3.4: E�ects of the spatial registration process on one of the target image warped
to reference image.
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These artifacts are the result of estimating optical �ow in the occluded regions.

The motion vectors in these regions produce very large values and hence they are

easily detected by the algorithm and eliminated as shown in the Figure 3.5.

(a) Input Registered image (b) Binary Map (c) Registration corrected

Figure 3.5: Minimizing artifacts caused by the spatial registration through proposed
algorithm.

In Figure 3.6, a comparison of the �nal focus stacked high dynamic range

image with individual multiple exposures, multiple focus images is presented to

demonstrate the extended depth of �eld and dynamic range.

As mentioned earlier three di�erent focus setting ranging from 0.3 meters away

from the camera to 0.5 meters and beyond 0.5 meters are used to capture images

and hence the all in focus image has a depth of �eld extended by 20 cm from

the image captured with the camera that has the largest depth of �eld in the

camera array. To provide an idea of the dynamic range extension by the camera

array the histograms of, high, mid, and low exposure images with the HDR image

histogram are compared in Figure 3.7. The noise is relatively higher in darker

regions, so the e�ective dynamic range is considered from zero onwards.

Estimating motion �ow based registration error instead of the traditional abso-

lute di�erence method a signi�cant reduction is achieved in the ghosting artifacts.

In Figure 3.8, a comparison the proposed method with the state of the art HDR

image creation methods is presented. All the methods involve deghosting step

and the proposed method show signi�cant improvement over these methods.
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Figure 3.6: Depth of �eld and Dynamic range comparison of the individual images
captured by the camera array with the focused stacked HDR image generated by the
proposed algorithm.
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(a) High Exposure (b) Mid Exposure

(c) LOW Exposure (d) HDR
Figure 3.7: Comparison of the histogram of multiple-exposure LDR images with HDR
image.

P
ro
po
se
d
m
et
ho
d

P
ho
to
m
at
ix

pr
o

Se
n
et

al
.
[8
5]

Figure 3.8: Comparison of the proposed method with state of the art HDR creation
techniques that include deghosting algorithm.
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Chapter 4

Hybrid Light Field Imaging for

Improved Spatial Resolution and

Depth Range

Light �eld imaging involves capturing both angular and spatial distribution of

light; it enables new capabilities, such as post-capture digital refocusing, camera

aperture adjustment, perspective shift, and depth estimation. Micro-lens array

(MLA) based light �eld cameras provide a cost-e�ective approach to light �eld

imaging. There are two main limitations of MLA-based light �eld cameras: low

spatial resolution and narrow baseline. While low spatial resolution limits the

general purpose use and applicability of light �eld cameras, narrow baseline limits

the depth estimation range and accuracy. In this chapter, a hybrid stereo imaging

system that includes a light �eld camera and a regular camera is presented. The

hybrid system addresses both spatial resolution and narrow baseline issues of the

MLA-based light �eld cameras while preserving light �eld imaging capabilities.
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4.1 Related work

On low spatial resolution: There are various methods proposed to address the

low spatial resolution issue in MLA-based light �eld cameras. One main ap-

proach is to apply super-resolution image restoration to light �eld sub-aperture

images. Super-resolution in a Bayesian framework is commonly used, for exam-

ple, in [86] with Lambertian and textural priors, in [87] with a Gaussian mixture

model, and in [88] with a variational formulation. Learning-based methods are

adopted as well, including dictionary-based learning [15] and deep convolutional

neural networks [89, 90]. In addition to spatial domain super-resolution restora-

tion, Fourier-domain techniques [91, 92] and wave optics based 3D deconvolution

methods [93, 94, 95, 96] have also been utilized.

Alternative to the standard MLA-based light �eld camera design [6], where

the MLA is placed at the image plane of the main lens and the sensor is placed at

the focal length of the lenslets, there is another design approach where the MLA

is placed to relay image from the intermediate image plane of the main lens to

the sensor [22]. This design is known as �focused plenoptic camera.� As in the

case of the standard light �eld camera approach, super-resolution restoration for

focused plenoptic cameras is also possible [97].

All single-sensor light �eld imaging systems are fundamentally limited by the

spatial-angular resolution trade-o�, and the above-mentioned restoration meth-

ods have performance limitations in addition to the computational costs. An-

other approach for improving spatial resolution is to use a hybrid two camera

system, including a light �eld camera and a high-resolution camera, and merge

the images to improve spatial resolution [7, 98, 99]. Dictionary-learning based

techniques are adopted [7, 98] in this problem as well: High resolution image

patches from the regular camera are extracted and stored as a high resolution

patch dictionary. These high resolution patches are downsampled; and from the

downsampled pathes, low resolution features are extracted to form a low resolu-

tion patch dictionary. During super-resolution reconstruction, a low resolution

image patch is enhanced through determining (based on feature matching) and
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using the corresponding high resolution patches in the dictionary. In [99], high

resolution image is decomposed with complex steerable pyramid �lters; the depth

map from the light �eld is upsampled using joint bilateral upsampling; perspec-

tive shift amounts are estimated from the upsampled depth map, and these shift

amounts are used to modify the phase of the decomposed high resolution im-

age; with the modi�ed phases, pyramid reconstruction is applied to obtain high

resolution light �eld.

On narrow baseline: One of the most important features of light �eld cameras

is the ability to estimate depth. However, it is known that depth accuracy and

range is limited in MLA-based light �eld cameras due to narrow baseline. The

relation between baseline and depth estimation accuracy in a stereo system has

been studied in [100]. In a stereo system with focal length f and baseline b, the

depth z of a point with disparity d is obtained through triangulation as z = fb/d.

With a disparity estimation error of εd, the depth estimation error εz becomes

[100]:

εz =
fb

d
− fb

d+ εd
=

d2εd
f ∗ b+ dεd

≈ z2

fb
εd, (4.1)

which indicates that the depth estimation error is inversely proportional with the

baseline and increases quadratically with depth. The disparity error εd is typically

set to 1, and the depth estimation error εz as a function depth can be calculated.

It is also possible to set an error bound on εz and derive the maximum depth

range from the above equation.

For an MLA-based light �eld camera, the maximum baseline is less than the

size of of the main lens aperture, making depth estimation very challenging.

There are methods speci�cally proposed for depth estimation in MLA-based light

�eld cameras. For example, in [101], the problem is formulated as a constrained

labeling problem on epipolar plane images in a variational framework. In [28], ray

geometry of 3D line segments is imposed as constraints on light �eld triangulation

and stereo matching. In [30], defocus and shading cues are used to improve the

disparity estimation accuracy.
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Figure 4.1: Hybrid imaging system including a regular and a light �eld camera. The
maximum baseline of the light �eld camera is limited by the camera main lens aperture,
and is much less (about an order of magnitude) than the baseline (about 4cm) between
the light �eld and the regular camera.

(a) (b)
Figure 4.2: (a) Raw light �eld. (b) Decoded sub-aperture images.

4.2 Hybrid stereo imaging

The hybrid stereo imaging system consists of a regular camera and a light �eld

camera as shown in Figure 4.1.

The system has two advantages over a single light �eld camera: (i) The high-

resolution image produced by the regular camera is used to improve the spatial

resolution of each sub-aperture image extracted from the light �eld camera. That

is, a light �eld with enhanced spatial resolution is obtained. (ii) The large baseline

between the regular camera and the light �eld camera results in a wider range

and more accurate depth estimation capability, compared to a single light �eld

camera.
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(a) (b) (c)
Figure 4.3: (a) Regular camera image. (b) Regular camera image after photometric
registration. (c) One of the bicubically resized Lytro sub-aperture image.

Figure 4.4: Illustration of the resolution enhancement process.

4.2.1 Prototype system and initial light �eld data process-

ing

The prototype system includes a �rst-generation Lytro camera and a regular

camera (AVT Mako G095C). The light �eld is decoded using [14] to obtain 11x11

sub-aperture images, each with size 380x380. The regular camera has a spatial

resolution of 1200x780 pixels. The imaging system is �rst calibrated: The regular

camera image and the light �eld middle sub-aperture image is calibrated (utilizing

the Matlab Stereo Calibration Toolbox) to determine the overlapping regions

between the images and rectify the regular camera image. The regular image is

then photometrically mapped to the color space of the light �eld sub-aperture
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images using the histogram-based intensity matching function technique [102].

A raw light �eld data and the extracted sub-aperture images are shown in

Figure 4.2. In Figure 4.3, the recti�ed regular camera image is shown along with

a light �eld sub-aperture image.

4.2.2 Improving spatial resolution

An illustration of the resolution enhancement process is given in Figure 4.4. Each

low-resolution (LR) light �eld sub-aperture image is bicubically interpolated to

match the size of the high-resolution (HR) regular camera image. The optical

�ow between the HR image and the light �eld middle sub-aperture image and

the optical �ow between the light �eld middle sub-aperture and every other sub-

aperture images are estimated. (The optical �ow estimation algorithm presented

in [103] is used in all experiments.) Combining these optical �ow estimates,

motion vectors between the HR image and each light �eld sub-aperture image

are obtained. The HR image is warped onto each light �eld sub-aperture image

and fused to produce a high-resolution version of each sub-aperture image. As a

result, a high-resolution light �eld is obtained.

The problem of image fusion for resolution enhancement has been well studied

in the literature, with applications in satellite imaging for pan-sharpening, digital

camera pipelines for demosaicking, and in computational photography for multi-

focus stacking [104]. Two basic methods for image fusion are used: (i) a wavelet-

based approach [105], available in Matlab as function wfuseimg, which essentially

replaces the detail subbands of low-resolution image with the detail subbands of

the high resolution image, and (ii) alpha blending, also available in Matlab as

function imfuse, which simply takes the weighted average of input images.

Speeding up the registration process: The speed of the registration process

is further increased by using the fact that light �eld sub-aperture images are

captured on a regular grid. Instead of estimating the optical �ow between the

middle sub-aperture image and each of the remaining sub-aperture images, the
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Figure 4.5: Speeding up the optical �ow estimation process.

optical �ow is estimated between the middle and the leftmost, rightmost, topmost,

and bottommost sub-aperture images as shown in Figure 4.5. The estimated

motion vectors are interpolated for the rest of the sub-aperture images according

to their relative positions within the light �eld. As a result, four within-light-�eld-

camera optical �ow estimation (instead of 120) and one between-cameras optical

�ow estimation are obtained. In Figure 4.6, the di�erence between the regular

camera image and light �eld sub-aperture images before and after registration is

shown. The optical �ow within the light �eld is estimated as described above.

The after-registration result shows that the registration process works well. (Note

that the residuals for the sub-aperture images in the aperture corners are large

because of the fact that the original sub-aperture images in the corners are too

dark due to vignetting.)

4.3 Experimental results

In this section, experimental results on resolution enhancement and depth esti-

mation are presented. All implementations are done with Matlab, running on

an Intel i5 PC with 12GB RAM. For the resolution enhancement process, given

in Figure 4.4, the processing time of an entire Lytro light �eld is about 70 sec-

onds, in which the optical �ow estimation per image pair is about 11 seconds.

In Figure 4.7, a comparison of light �eld sub-aperture image with its resolution-

enhanced version is presented. Both the alpha blending and wavelet-based image
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Figure 4.6: (Top) Residual between the regular camera image and light �eld sub-
aperture images before warping. Two sub-aperture images are highlighted. (Bottom)
Residual between the regular camera image and light �eld sub-aperture images after
warping.

fusion processes produce good results in terms of resolution enhancement. Alpha

blending suppresses the low-spatial-frequency color noise better than the wavelet-

based approach; this is expected because the wavelet-based approach preserves

the low-frequency content of the light �eld images, which have more noise com-

pared to the image obtained from the regular camera. Alpha blending, on the

other hand, simply averages two images, reducing the overall noise in all parts of

the �nal image. (In all experiments, the weights of the HR image and light �eld

sub-aperture images are 0.55 and 0.45, respectively, giving slightly more weight

to the HR image in alpha blending.)

In [7] it has demonstrated that hybrid imaging approach has better perfor-

mance in terms of image quality as compared to single sensor based restoration

techniques but their speci�c algorithm is computationally expensive. With the

proposed stereo setup and optical �ow based registration the computational time

is greatly reduced without compromising the quality of the high resolution light
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(a) (b) (c)
Figure 4.7: Resolution enhancement of light �eld sub-aperture images. (a) One of the
bicubically resized Lytro sub-aperture image. (b) Resolution-enhanced sub-aperture
image using alpha blending. (c) Resolution-enhanced sub-aperture image using wavelet-
based fusion.

(a) (b) (c) (d)
Figure 4.8: Comparison with the existing light �eld resolution enhancement algorithms.
(a) Dansereau et al. [14] (b) Cho et al. [15] (c) Boominathan et al. [7] (d) Proposed.
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Figure 4.9: Zoomed in regions from Figure 4.8. (Red) Dansereau et al. [14] (Blue) Cho
et al. [15] (Purple) Boominathan et al. [7] (Black) Proposed.

�eld. In �gure 4.8 - 4.10 a comparison the image quality of the resolution en-

hanced light �eld with the existing methods is presented.

Refocusing: One of the key features of light �eld imaging is post-capture dig-

ital refocusing through a simple shift-and-sum procedure [4]. In Figure 4.11,

refocusing at di�erent distances with Lytro light �eld images and the resolution-

enhanced light �eld sub-aperture images is shown. It can be clearly seen that

sharper refocusing is attained through the proposed algorithm as compared to

the original Lytro images. In Figure 4.12, refocusing examples from another data

set captured by the proposed imaging system is presented. Again, the resolution-

enhanced light �eld result in higher resolution refocusing compared to the Lytro

light �eld.

Addressing Occlusion: The registration based on optical �ow leads to holes

on the occlusion boundaries. Hence the fused image loses high frequency signal

in boundary regions. these high frequency signals are retained by �rst detecting

the holes using a binary hole mask. In the mask those pixels which are present
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(a) Dansereau et al. [14]

(b) Boominathan et al. [7]

(c) proposed

(d) Dansereau et al. [14]

(e) Boominathan et al. [7]

(f) Proposed
Figure 4.10: Comparison of the EPI images with the existing light �eld super resolution
techniques

in re-sized sub-aperture image and are missing in the warped high resolution

image are set to one while the non-missing pixels are set to zero. Hole �lling

is then performed by taking the occluded regions in the fused image from the

re-sized sub-aperture image. Since the holes are only present at the boundaries

any signi�cant degradation in the overall quality of the fused image is not noticed

and the high frequency content is preserved as shown in Figures 4.13 and 4.14.

Improving depth range and accuracy: To demonstrate the increased depth range

and improved depth estimation accuracy of proposed hybrid imaging system,

an experimental setup is we devised, where target objects (i.e, �Lego blocks�)

are placed in the scene starting from 40cm away from the imaging system. In

Figure 4.15, the leftmost and rightmost light �eld sub-aperture images as well as

the regular camera image is shown, in addition to the disparity maps, which are

estimated using [103]. The dynamic range of the disparity map for the hybrid

system (between the middle sub-aperture image and the regular camera image) is
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[Close focus] [Close focus] [Close focus][Mid focus] [Mid focus] [Mid focus][Far focus] [Far focus] [Far focus]

(a) (b) (c)
Figure 4.11: Post-capture digital refocusing using shift-and-sum technique. (a) Lytro
light �eld refocusing. (b) Resolution-enhanced (using alpha blending) light �eld re-
focusing. (c) Resolution-enhanced (using wavelet-based fusion) light �eld refocusing.
(Bottom row) Zoomed-in regions from middle depth focusing.

[Lytro] [Lytro] [Lytro]

[Resolution enhanced] [Resolution enhanced] [Resolution enhanced]

(a) (b) (c)
Figure 4.12: Post-capture digital refocusing using the shift-and-sum technique. (Top
row) Lytro light �eld refocusing. (Middle row) Resolution-enhanced light �eld (using
alpha blending) refocusing. (Bottom row) Comparison of zoomed-in regions. (a) Close-
depth focus. (b) Middle-depth focus. (c) Far-depth focus.
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High resolution Low resolution Warped Mask After hole �lling
Figure 4.13: Hole �lling after warping high resolution image on light �eld.

Figure 4.14: Zoomed in region of �gure 4.13. (Left most column) high resolution. (Left
column) low resolution. (Right column) Resolution enhanced. (Right most column)
After hole �lling.

about eight times larger than that of the light �eld camera (between the leftmost

and rightmost sub-aperture images). Comparing the ranges of disparity maps

and the separation of di�erent objects from di�erent depths, it can seen that

the hybrid system improves the depth estimation accuracy. In Figure 4.15(f),

the disparities for the target object positions are plotted. For the light �eld

camera, the disparity di�erence from one depth to another becomes too small

beyond 100cm, making it di�cult to distinguish between di�erent depths, and

the disparities eventually become sub-pixel beyond 200cm. On the other hand,

for the hybrid system, the disparities are large and distinguishable in the same

range.
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(a) (b) (c)

(d) (e) (f) (g)

(h)
Figure 4.15: (a) Leftmost Lytro sub-aperture image. (b) Rightmost Lytro sub-aperture
image. (c) Regular camera image (before photometric registration). (d) Disparity map
by Lytro desktop software. (e) Slope based EPI disparity map [16]. (f) Disparity
map between the leftmost and rightmost Lytro sub-aperture images. (g) Disparity
map between the middle Lytro sub-aperture image and the regular camera image. (h)
Disparities of the target object centers.
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Chapter 5

Deconvolution Based Light Field

Extraction from A Single Image

Capture

In this chapter, a method to extract light �eld using a conventional camera from

a single image capture is presented. The method involves an o�ine calibration

process, where point spread functions, relating di�erent perspective images cap-

tured with a narrow aperture to a central image captured with a wide aperture,

are estimated for di�erent depths. During application, light �eld perspective im-

ages are recovered by deconvolving the input image with the set of point spread

functions that were estimated in the o�ine calibration process.

5.1 Related work

The proposed light �eld extraction technique requires depth estimation from a

single blurry image. Estimating depth from a single defocused image has been

studied extensively in[106, 107, 108, 109, 110, 111]. Single image captured with

circular aperture usually assumes some prior information about either the PSF
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[106], texture [107] or color information [108]. Even though some good results

have been attained using DFD techniques with circular apertures, there are some

inherent limitations.

Coded aperture photography has been used for both, improving out of focus

deblurring [112, 113, 114] and better depth estimation [109, 110, 111]. Techniques

that use coded aperture for depth estimation can be categorized into two types:

multiple images/shots coded aperture methods and single image coded aperture

methods.

In [115] coded aperture pair was optimized for optimal DFD performance by

increasing relative defocus which depends on the di�erence in amplitude and

phase spectra. In [116] a stereo camera system with coded apertures is designed

to combine two types of depth cues i.e defocus and disparity. Both defocus

and correspondence cues are also combined through Markov random �eld global

optimization process in [117] using light-�eld data.

Also in single image-based methods, the advantages of the coded aperture

designs are well utilized. In [109] the aperture shape is optimized by using Gaus-

sian prior on image derivates. With this model, a likelihood for a blurry image

to belong to a certain depth level can be derived. Therefore the Mask that has

maximum Kullback Leibler divergence for this likelihood has better depth dis-

criminability. In [110] a parametric maximization problem is de�ned to �nd a

suitable mask pattern that di�erentiates between the images blurred with di�er-

ent blur scales. Two di�erent objective functions are de�ned in [111] to �nd out

a mask pattern that minimizes deblurring error with correct PSF but also max-

imizes deblurring error with incorrect PSFs. The proposed depth discrimination

criterion is inspired from [109], however, a conventional aperture is utilized to

capture the blurry image.
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5.2 O�ine PSF estimation for di�erent perspec-

tives and depths

The o�ine calibration process is illustrated in Figure 5.1. A planar object is

placed at a distance dj from the camera. The aperture of the camera is closed

to a narrow opening and the camera is moved to a perspective position pi. The

image corresponding to that speci�c perspective and depth is then captured and is

denoted as Ii,j(x, y), where the subscripts (i, j) indicates the perspective position

pi and the object depth dj, and (x, y) indicates a pixel coordinate. In addition to

the narrow aperture perspective images, an image with a wide aperture, denoted

as Bj(x, y), is also taken for the same depth dj. The process is repeated for all

depths and perspectives. The perspective positions are chosen on a regular grid

within the wide aperture opening.

The wide aperture image Bj(x, y) can be modeled as the superposition of

narrow aperture images taken from di�erent perspectives within the aperture.

Other than the occluded regions, the image Bj(x, y) can be written as the con-

volution of the narrow aperture image Ii,j(x, y) with a PSF ki,j(x, y) that in-

corporates the di�erence between the aperture sizes for Bj(x, y) and Ii,j(x, y):

Bj(x, y) = ki,j(x, y) ∗ Ii,j(x, y). The convolution equation would result in a set

of linear equations when written for all (x, y). These equations can be written

as Bj = Ii,jki,j, where Bj and ki,j are the vectorized forms of the wide aperture

image and the PSF, and Ii,j matrix is constructed from Ii,j(x, y). The system

using the least squares estimation technique to obtain the PSF for a speci�c per-

spective and depth. The PSF estimation process is repeated for all depths and

perspectives.

The prototype system is shown in Figure 5.2; it includes two motorized trans-

lation stages (Thorlabs NRT150) and a regular camera with a 1024 x 1280 CMOS

sensor and a 35mm lens. During the calibration, the planar target object is moved

from 30cm away from the camera upto 2 meters with steps of 10cm. For each

depth, the camera is moved with a step size of 0.1mm as shown in the �gure to

capture the perspective images; in addition, the camera is moved to the central
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position to capture the wide aperture image.

5.3 Deconvolution based light �eld extraction

Once the PSFs are estimated, the camera is taken o� from the translation stage,

the aperutre is set wide, and it is ready for light �eld acquisition.

5.3.1 PSF scale identi�cation

Light �eld extraction from a single wide aperture image capture consists of several

steps. First, for each perspective, a depth (PSF scale) map is obtained. The

depth map is then utilized to fuse multiple deconvolved images to construct a

perspective image. The process is repeated for all perspectives.

The PSF scale identi�cation algorithm is adopted from [109], which exploits

the reconstruction error when there is scale and blur mismatch. When an image of

a natural scene with multiple depths is deconvolved with the PSF of a particular

scale, the corresponding depth regions in the image become sharp while severe

ringing artifacts appear in the rest of the image because these areas cannot be

explained by that scale of the PSF. These ringings are dense and have gradients

with magnitude signi�cantly larger than that of natural sparsely distributed data;

the di�erence can be used as a cue for kernel scale identi�cation [109, 118].

First, Li,j(x, y) are estimated by minimizing the following cost function.

|Cki,j(x,y)Li,j(x, y)−Bj(x, y)|+
∑
xy

ρ(Li,j(x, y)...

− Li,j(x+ 1, y)) + ρ(Li,j(x, y)− Li,j(x, y + 1)), (5.1)

where ρ is a heavy-tailed function and |Cki,j(x,y)Li,j(x, y)−Bj(x, y)| is the recon-
struction error and C represents the convolution between ki,j(x, y) and Li,j(x, y).
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Figure 5.1: Illustration of the o�ine calibration process. For each depth dj , narrow
aperture images Ii,j(x, y) from di�erent perspective locations pi and a single wide aper-
ture image Bj(x, y) are taken. The process is repeated for di�erent depths.
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Figure 5.2: Setup for the o�ine calibration process. (Left) Motorized translation stages
and the camera. (Right Top) Narrow aperture opening for perspective images. The
camera is moved as illustrated on lens for di�erent perspective images. (Right Bottom)
Wide aperture opening for the central image.

Once the deblurred images are obtained, then for every pixel in the blurry image

B(x, y) the reconstruction error with all the sample PSFs ki,j(x, y) is estimated

as follows.

Êi,j (x, y) =
∑

x,y∈W

|B(x, y)− ki,j(x, y)⊗ Li,j(x, y)|2...

+ λ|∇Li,j(x, y)|. (5.2)

where Li,j(x, y) is the set of deconvolved images, ∇Li,j(x, y) are the gradients of

the deconvolved images, W is a local window centered at a pixel x, y at which

the reconstruction error is to be estimated.

The PSF scale that generates the minimum energy is considered to be the

correct PSF scale and hence assigned to the corresponding pixel in PSF label

map Mi(x, y):

Mi(x, y) = argminjÊi,j(x, y). (5.3)

The resulting scale (depth) map Mi(x, y) may have some misclassi�ed labels

or gaps in the depth map. This may be due to occluded areas or regions without

su�cient texture. While inpainting techniques can be used for view synthesis

[119, 120], a simple approach is preferred in this work. A mode �lter is applied,

that is, a sliding window over the depth map to compute the mode of a local

neighborhood and re-assign the center pixel to the mode label.
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5.3.2 Blurred image deconvolution and fusion

Figure 5.3: Single perspective image recovery process from the blurred image.

The recovery of entire light �eld involves the repetition of steps required for

a single perspective image recovery shown in Figure 5.3 and 5.4, and detailed

below.

First, the input image B(x, y) is deconvolved for every color channel using [109]

with the PSFs, known through the previous PSF scale identi�cation step. The

deconvolved image Li,j(x, y) has one of the depths recovered while ringing artifacts

appear on regions other than the recovered depth. The depth map Mi(x, y) is

used to generate a set of binary masks corresponding to the PSF labels; and

these masks applied on corresponding deconvolved images to construct a single

perspective image Li(x, y). The process is repeated for all perspectives.

5.4 Experimental results

In this section, the results of light �eld reconstruction from a single blurred image

of size 1024 x 1280 pixels are presented. In the experiments, a light �elds of 11 x

11 angular resolutions is generated. The size of each recovered perspective image

is again 1024 x 1280 pixels. In the experiments the target is placed at, 30cm away

from the camera and moved until 2 meters from the camera with a separation of

10cm resulting in 18 di�erent depths. The size of PSF is set to 69 x 69 pixels.
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Figure 5.4: Fusion of deconvolved images to generate the �nal perspective image .

In Figure 5.5, a subset of the PSFs obtained in the o�ine calibration process

are shown. In Figure 5.6, an input image B(x, y), images deconvolved with the

PSFs corresponding to the middle perspective and three di�erent depths, the

label map and the �nal perspective image are presented. From the deconvolved

images, it is seen that when the PSF scale does not match the region, ringing

artifacts occur. The �nal image is constructed from the �rst two deconvolved

images given in the �gure.

Figure 5.7, compares the central perspective image of a light �eld generated

using the proposed algorithm with a regular image captured from same prototype

camera through a pinhole on the full sensor.

In addition to the comparison of the central perspective image of the light

�eld obtained from the proposed method with a regular image captured from

same prototype camera, a comparison with central perspective image of Lytro

camera's light �eld is also presented in Figure 5.8. The Lytro camera image is

decoded by [14] which produces a regular grid of 11 x 11 perspective images with

the spatial resolution of 380 x 380 pixels. The overlapping part of the Lytro's

perspective image is bicubically resized to the match size of the prototype camera

image.

Figure 5.9 and 5.10, presents the entire 11 x 11 light �eld generated using the
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Figure 5.5: Subset of the PSFs obtained in the o�ine calibration process. (Row 1) PSF
estimates of all perspectives at dj sampled depth of 11 x 11 light �eld. (Row 3) PSF
stack of multiple depths of pi perspective position of 11 x 11 light �eld.

proposed method along with the corresponding horizontal and vertical epipolar

plane images (EPIs).

To characterize the imaging performance a standard ISO 12233 test chart is

used. The results in the Figure 5.11 shows the better quality of the proposed

algorithm's light �eld over the Lytro �rst generation camera's light �eld, however

when compared with regular image, resolution limitations and slight chromatic

aberrations are visible.

One of the most attractive features of light �eld camera is its ability of post-

capturing refocusing. In Figure 5.13 and 5.14 the refocusing on a high-resolution

light �eld generated through the proposed algorithm is successfully demonstrated

.
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5.5 Discussion

In this work, an extraction of a high-resolution light �eld from a blurred image

is successfully . The reconstruction algorithm requires a PSF label/depth map

which represents di�erent depths present in the scene. This PSF scale label/depth

map like any other passive depth estimation technique relies heavily on the tex-

ture of the scene. Even though the gaps in the PSF label/depth map due to

fewer texture regions are handled by the algorithm from the information of local

neighborhood, The proposed algorithm at the moment does not incorporate any

mechanism to deal with the fewer texture surfaces. As the depth discrimination

criterion in the proposed algorithm exploits the sparsity of the natural images,

its application is also limited to natural images.

Depth estimation from a single image has always been a challenging problem

yet a variety of algorithms exits for this purpose and the chosen algorithm is

just one of the existing methods. However with the availability of modern day

computational resources and learning-based tools, in future, it is planed to over-

come all these dependencies by the incorporation of a learning-based depth map

estimation algorithm from a single image. In the current setup, the maximum

depth range is limited to 2 meters from the camera but in future, it is planned

to extend this depth range by the controlled camera motion during the exposure

time to extend the e�ective aperture size.
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Figure 5.6: Recovery of a perspective image. (Row 1) Input image. (Row 2-4) Decon-
volved images with di�erent PSFs. The �rst two deconvolved images have matching
depths, which can be identi�ed from the zoomed-in regions; the last deconvolved image
does not have any matching depth. (Row 5) Recovered perspective image and the label
map indicating the regions taken from the �rst two deconvolved images. The PSFs used
in the deconvolution are given in Figure 5.5.
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Figure 5.7: (Input) Input image to the proposed algorithm. (Regular) Image captured
from prototype camera through a pinhole on the full sensor. (Proposed) Central per-
spective image of the light �eld generated using the proposed algorithm. (Residual) The
residual between the regular image and central perspective image. PSNR and struc-
ture similarity between the regular image and proposed algorithm's light �eld central
perspective image PSNR = 27.0280, SSIM = 0.94.
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Figure 5.8: Comparison of 11 x 11 high-resolution light �eld recovered by the proposed
method with bicubically resized Lytro's light �eld. (Input) Input image to the proposed
algorithm. (Regular) Image captured from prototype camera through a pinhole on the
full sensor. (Proposed) Central perspective image of the light �eld generated using the
proposed algorithm. (Lytro) Central perspective image of the light �eld from Lytro
camera. PSNR and structure similarity between the regular image and proposed algo-
rithm's light �eld central perspective image PSNR = 28.4208, SSIM = 0.9571. PSNR
and structure similarity between the regular image and Lytro's light �eld central per-
spective image PSNR = 25.9110, SSIM = 0.9497
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Figure 5.9: Reconstructed light �eld (LF). (Top row) 11 x 11 reconstructed light �eld
and 4 zoomed-in corner perspectives. (Middle row) Horizontal EPI. (Bottom row)
Vertical EPI.
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Figure 5.10: Reconstructed light �eld. (Top row) 11 x 11 reconstructed light �eld and
3 zoomed-in perspective images. (Middle row) Horizontal EPI. (Bottom row) Vertical
EPI.
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Figure 5.11: Comparison of 11 x 11 high-resolution light �eld recovered by the proposed
method with bicubically resized Lytro's light �eld and regular camera image. (Input)
Input image to the proposed algorithm. (Regular) Image captured from prototype
camera through a pinhole on the full sensor. (Proposed) Central perspective image of
the light �eld generated using the proposed algorithm.
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Figure 5.12: Modulation transfer function of all the images in Figure 5.11.
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Figure 5.13: Comparison of post-capture refocusing of high-resolution 11 x 11 light �eld.
(Prop.) Recovered by the proposed method. (Lytro) A bicubically resized Lytro's light
�eld.
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Figure 5.14: Comparison of Post-capture refocusing of high-resolution 11 x 11 light
�eld. (Prop.) Recovered by the proposed method. (Lytro) A bicubically resized Lytro's
light �eld.
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Chapter 6

Conclusion

In this thesis, few limitations of the conventional imaging system which results

in the loss of quality of the image are addressed. Through computational imag-

ing techniques, we overcome these limitations and explored new possibilities for

digital images. The major limitations addressed in this work are limited dynamic

range, limited depth of �eld, space-variant blurring and limited spatial resolution

in the context of light �eld imaging.

First, a blind image deblurring method for space-variant blur is developed.

The method can handle space-variant blur of any type without any parametric

assumption of the movement of the camera or the objects. The method splits

the image into overlapping patches and estimates the blur kernel for each patch.

The estimated kernels are then clustered to �nd the main blur kernels and the

corresponding regions. Some regions may remain unassigned to a cluster. For

each region, the blur kernel is re�ned. The input image is then deblurred with

each re�ned blur kernel. An image fusion process merges these deblurred images

into a single one, picking the optimum pixel using an energy function. While the

provided results are obtained with a speci�c set of techniques for each step, the

framework can be used with other techniques and parameter choices, making it

possible to improve in the future. The method is compared with various other

space-variant deblurring methods; and it produces comparable or better results
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on a variety of blur scenarios, including camera shake, out-of-focus blur, and

object motion.

In the proposed method for space-variant image deblurring, we try to model

large abrupt blur variations over the entire image as small patches of smoothly

varying or uniform blur within a patch and large changes between the patches.

Also, we assume that patch size should be large enough to have a rich texture

for accurate PSF estimation. It is because of these assumptions, the size of the

patch becomes very critical. In addition, the use of overlapping window requires

determination of an adequate shift amount, which can neither be too small, due

to computational complexity, nor too large to produce fewer samples. Finally, the

bandwidth of the clustering algorithm is also very critical in generating accurate

clusters and that too along with the patch size and stride amount is set empirically

in the current implementation. In the future, we would like to investigate it

further and plan to come up with an adaptive method for the selection of these

patches based on certain criteria, for example, the availability of texture within

each patch.

In the current implementation, neither object segmentation nor boundary con-

ditions are kept in consideration during image segregation into regions with dis-

tinct blur. To make our algorithm applicable to more general types of space-

variant blur, pre-segmentation for separating regions of distinct blurs in an image

can be adapted in future.

Secondly, an algorithm is proposed for extending the depth of �eld and dy-

namic range from di�erently focused and exposed images captured through a

camera array. The core process is focus stacking regardless of the exposure value;

it requires photometric and spatial registration and includes pixel-by-pixel weight

calculation (involving sharpness, saturation, and registration errors) for fusion.

For HDR imaging, it is proposed to perform focus stacking for each exposure cate-

gory and fuse the focus-stacked images using a standard HDR imaging algorithm.

The experiments are done with real data and satisfactory results are obtained.

There is some future work that may improve results. The choice of the optical

�ow algorithm is critical and should be investigated further as spatial registration
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errors may lead to artifacts. The appropriate choice of optical �ow algorithm can

enable the possibility for the registration of di�erently focused images and hence

a more e�ective utilization of the camera array can be achieved.

Finally, two di�erent camera setups are designed to overcome the spatial res-

olution problem with hand held light �eld cameras. A hybrid imaging system

that includes a light �eld camera and a regular camera is proposed. The sys-

tem, while keeping the capabilities of light �eld imaging, improves both spatial

resolution and depth estimation range/accuracy due to increased baseline. Be-

cause the �xed stereo system allows pre-calibration and by utilizing the fact that

light �eld sub-aperture images are captured on a regular grid, the registration of

low-resolution light �eld sub-aperture images and high-resolution regular camera

images is simpli�ed. With proper image registration, even a simple image fusion,

such as alpha blending, produces good results.

Another method is proposed to recover light �eld from a single capture with

a regular camera. The method is based on deconvolving a wide aperture image

with a set of PSFs calculated in an o�ine calibration process. It has good light

e�ciency and can achieve spatial resolution as much as the camera sensor has

since it does not have any spatio-angular trade-o�, unlike the MLA based light

�eld cameras. The method can be used to convert any regular camera with a

controllable aperture into a light �eld camera.

In the current implementation, the segmentation algorithm used requires user

interaction, to de�ne the number of depths in the image. User interaction is

needed only once per light �eld extraction. However, Image segmentation is a

well-investigated topic in computer vision and a variety of both conventional

and learning base segmentation methods exists in the literature. Although there

are many learning based methods which produce good results without any user

interaction, but most of these algorithms are pre-trained only for the outdoor

environment. Methods designed for indoors will still require �ne-tuning with suf-

�ciently large datasets to produce acceptable results. In the future, we would like

to investigate the automatic segmentation algorithms to perform segmentation

without human interaction.
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Overall in this work, four di�erent algorithms based on computational imag-

ing techniques are developed which address a number of limitation in the �eld

of computer vision. The work enables several new application and improves the

existing imaging applications, ranging from improved image classi�cation to bet-

ter depth estimation and post-capture refocusing to high dynamic range imaging.

Every algorithm developed addresses some of the challenging research topics in

computational photography and has still su�cient room for improvement. We

hope to address the above-mentioned limitations in the future to make these algo-

rithms more robust and user-friendly and eventually transform these into software

packages from commercial usage.
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