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In the classical approach of antenna array theory, mutual coupling between elements is usu-

ally ignored. However, depending on the application, errors due to mutual coupling can

be significant. This thesis presents a numerical study for the compensation of mutual cou-

pling between elements in small dipole arrays using Method of Moment. By using the mutual

impedance of the antenna elements, it is possible to compute a new set of excitation voltages.

Using these new compensated voltages one can obtain the pattern that would be similar to

the pattern obtained by the original voltages if there were no mutual coupling. This compen-

sated pattern is compared with the radiation pattern obtained using pattern multiplication

method which does not include mutual coupling. In this thesis, mutual coupling has been

compensated for different array configurations including linear arrays, circular arrays as well

as 3-Dimensional arrays. Individual element of the arrays can have different length, radius

and relative positions in space.

Keywords: Method of Moments, Mutual Coupling Compensation, Linear Arrays, Planar

Arrays, 3-Dimensional Arrays, Arrays of Dipoles.
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ÖZET

VERİCİ İNCE TEL ANTEN DİZİLERİNDE KARŞILIKLI
BAĞLANMANIN TAZMİN EDİLMESİ

Sana Khan

Elektrik Elektronik Mühendisliği ve Siber Sistemler, Yüksek Lisans

Tez Danışmanı: Prof. Dr. Ercümend Arvas

Ağustos, 2017

Anten dizisi teorisinin klasik yaklaşımında, öğeler arasındaki karşılıklı bağlanma genellikle

dikkate alınmaz. Bununla birlikte, uygulamaya bağlı olarak, karşılıklı bağlantıdan kay-

naklanan hatalar önemli olabilir. Bu tez, Moment Metodu’nu kullanarak küçük dipol

dizilerindeki elemanlar arasındaki karşılıklı bağın tazmini için sayısal bir çalışma sunmak-

tadır. Anten elemanlarının karşılıklı empedansını kullanarak yeni bir uyartım gerilimi seti

hesaplamak mümkündür. Bu yeni dengelenmiş gerilimleri kullanarak, karşılıklı bir bağlanma

olmasaydı orijinal gerilimlerle elde edilen desene benzer bir model elde edebilir. Bu den-

gelenmiş desen, karşılıklı eşleşme içermeyen çarpma metodu deseni kullanılarak elde edilen

radyasyon deseni ile karşılaştırılır. Bu dengelenmiş desen, karşılıklı eşleşme içermeyen çarpma

metodu deseni kullanlarak elde edilen radyasyon deseni ile karşılaştırılır. Bu tezde, karşılıklı

bağlantı, doğrusal diziler, dairesel diziler ve 3 Boyutlu diziler de dahil olmak üzere farklı dizi

yapılandırmaları için telafi edilmiştir. Dizilerin bireysel elemanları, uzaydaki farklı uzunluk,

yarıçap ve göreli konumlara sahip olabilir.

Anahtar sözcükler : Moment Metodu, Karşılıklı Bağlanma Tazmini, Doğrusal Diziler,

Düzlemsel Diziler, 3 Boyutlu Diziler, Dipol Dizileri.
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Chapter 1

Introduction

Antenna arrays have a wide range of applications involving commercial and military ap-

plications [1],[3]. They are used in systems such as radio, television broadcasting, weather

research, radar, missile guidance systems and space communications. Due to miniaturization

of electronic devices, small-sized antenna arrays also called as compact antenna arrays has

attracted a lot of interest. One such example of compact antenna arrays is called Multiple

Input Multiple Output (MIMO) system. In conventional wireless communications, a single

main antenna was used to transmit and receive data. Nowadays, mobile phones or smart

phones provide us with multiple services. These services include GPS, WiFi, Bluetooth, In-

frared etc. All of these services require an antenna in order to receive and transmit data. In

the current industry, the single main antenna has been evolved to multiantenna solution as

MIMO. In a MIMO system these multiple antennas are placed at a close proximity inside the

handset. Due to the small distance between the antenna elements they interact with one an-

other. This electromagnetic interaction is called mutual coupling. This interaction changes

the current magnitude, phase, and distribution on each element from their free space values.

As a consequence, total array pattern is altered. Compact antenna arrays suffer from mu-

tual coupling which can alter the overall radiation pattern, gain, bandwidth and impedance

matching of the antenna. Mutual coupling between the antenna elements in an antenna

array is a classic problem which is responsible for the degradation of array performance [4],

[5], [6]. In the classical array theory, it is often taken that the radiation pattern of an array

of identical antenna elements is the product of an element pattern and an array factor. The

element pattern is the pattern of an isolated element with center usually at origin. This

element is assumed to be excited by a unit voltage. The array factor is a sum of fields from

1



isotropic point sources located at center of each array element and is found from the element

voltages (amplitudes and phases) and their locations [1]. Therefore, in the classical array

theory, it is assumed that all the elements of the array have equal radiation pattern, in other

words, the coupling between individual elements is ignored. For a practical array, this is

not entirely true since mutual coupling causes each element to see a different environment

and consequently has a different radiation pattern from its neighboring elements. Several

techniques to reduce mutual coupling and improve the isolation have been investigated [7],

[8]. Some of them are given below:

� Decoupling Networks (DN): These networks use lumped elements and hybrid cou-

plers to reduce mutual coupling. It has a disadvantage of narrow bandwidth. Parallel

resonant circuits can be used to achieve broad bandwidth. Strips and slots introduce

different resonances at different frequencies to help increase the isolation.

� Defected Ground Plane Structure (DGS): In this technique ground plane is

modified by introducing slits of different shapes. This modification creates a band-

stop filter and suppresses the coupling fields.

� Parasitic Elements: Inductance and capacitance is introduced using Electromagnetic

Band Gap (EBG) to create a forbidden band of frequencies which helps in isolation of

the antennas.

� Meta-materials: These are materials with special properties, e.g., negative permit-

tivity or permeability or both. They are used due to existence of band gaps in their

frequency response. The band gaps act as band notch filters and destroy mutual cou-

pling between the elements. Mostly used structures are split ring resonators (SRR)

and complementary split ring resonators (CSRR). Due to the substrate there is a de-

terioration of bandwidth.

� Neutralization Lines (NL): In this technique current at the input element is taken

at a location where impedance is minimum and current is maximum and then its phase

is reversed by choosing suitable length of NL. The reversed current is then fed to nearby

antenna to lessen the amount of coupled current. This method has a narrow bandwidth

and the location of maximum current is difficult to find.

All the techniques mentioned above increase complexity of the network one way or the other.

Physical modification of the structure is required by introducing lumped elements, parasitic

2



elements or special materials may be needed to reduce the coupling. This dissertation uses a

non-invasive method in which the physical structure or design of the antenna is not changed.

Neither any special materials or elements are required. Instead, only the excitation voltages

of the antenna are changed and these new excitation voltages which are called compensated

voltages produce a radiation pattern which is very similar to the pattern obtained from

pattern multiplication method. In summary, the array factor method gives us the theoretical

pattern of antenna arrays without mutual coupling. The real practical pattern is different

from the theoretical pattern because of mutual coupling. In order to make the real practical

pattern similar to our desired theoretical pattern, we compensate for the mutual coupling.

This thesis considers arrays of thin wire dipole antennas with length less than or equal to

λ/2. Such antennas are usually called as single mode antennas. The individual elements in

the array may not be identical in length, radius or position. A number of methods have been

suggested for the compensation of mutual coupling [6], [9] and [10]. Here a numerical method

has been used to compensate for mutual coupling, called Method of Moments (MoM). By

using thin wire approximation the exact integral equation is solved approximately using

MoM which helps us to compute the current distribution on the thin wire antennas. This

gives us the radiation pattern in the presence of mutual coupling. Using the moment matrix

for the array, we can calculate the coupling effect in terms of scattering matrix which is then

used to find the new input voltages or compensated voltages to the antennas. When the

antennas are excited by these new voltages it is observed that the pattern is similar to the

theoretical pattern which we expect using the array factor theory and thus compensation is

achieved.
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1.1 Motivation

(a) (b)

Figure 1.1: Circular array of four half-wave dipoles with radius of circle λ/4. a) Side View. b)

Top View.

Figure 1.1 shows an array of four half-wave dipole antennas placed on a circle of radius

a = λ/4. The elements are identical with radius λ/200. The radiation pattern of such an

array can be found easily using pattern multiplication method which is discussed in detail in

Sec. 2.5. The element pattern of a half-wave dipole antenna in the H-plane is a unit circle.

Since the total pattern is the product of the element pattern and array factor, we can say

that total pattern is simply equal to the array factor in this case. The setup for the array

factor can be seen in Fig. 1.2 where θ = 90◦ and the xy-plane can be seen with ϕ starting

from the x-axis. The elements (P1, P2, P3 and P4) are assumed to be excited with voltages

V1 = 1∠0◦, V2 = 1∠30◦, V3 = 1∠60◦, and V4 = 1∠90◦, respectively.
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Figure 1.2: Four isotropic sources arranged in a circular array.

Then the array factor can be expressed as follows

AF =
4∑

n=1

Vne
jβr̂.r

′
n (1.1)

where r̂ is the position vector from the origin to the field point and r
′
n is the vector from the

origin to the source point. They are defined as

r̂ = xx̂ + yŷ + zẑ = sin θ cosϕx̂ + sin θ sinϕŷ + cos θẑ

r
′
n = xnx̂ + ynŷ = a cosϕnx̂ + a sinϕnŷ

for the spherical co-ordinate system. Then the array factor is simply given by

AF =
4∑

n=1

Vne
jβ(xn sin θ cosϕ+yn sin θ sinϕ) (1.2)
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Figure 1.3: Theoretical pattern of the circular array of four dipoles calculated by pattern multi-

plication method.

Fig. 1.3 shows the resultant pattern after plotting Eq. 1.2. This is the total radiation

pattern of the circular array of four dipoles calculated theoretically since element pattern

in H-plane is a unit circle. It must be noted that this method does not take into account

the effects of mutual coupling. In reality the practical pattern is very different from the

theoretical pattern because of mutual coupling. The same antennas when excited with the

same voltages gives the pattern as shown in Fig. 1.4.
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Figure 1.4: The real practical pattern of circular array of four dipoles.

It can be seen that the theoretical pattern and practical pattern are totally different

from one another because of mutual coupling. When the same antenna is excited by V
′
1 =

0.29∠83◦, V
′
2 = 0.23∠94◦, V

′
3 = 0.16∠136◦ and V

′
4 = 0.056∠177◦ respectively, the following

pattern is achieved as shown in Fig. 1.5.
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Figure 1.5: Radiation pattern of a circular array of four dipoles.

The black curve in Fig. 1.5 is the radiation pattern of the same circular array in the

presence of mutual coupling excited by these new voltages. It can be seen that this black

pattern is very similar to the theoretical pattern in pink. This is called the compensated

pattern which has been obtained after the compensation of mutual coupling in the circular

array. The situation shown in Fig. 1.5 is the main motivation behind this dissertation. The

purpose of this work is to compute the so called compensated voltages for an array of thin

wire antennas. In this work we use method of moment [11] to compute the mutual impedance

between the array elements which are then used to compute the compensated voltages. The

details are given in Section 2.6.

1.2 Approach

The intent of this study is to numerically compensate for mutual coupling using method

of moment in small arrays in different configurations. The compensation is performed for

linear and circular arrays both in 2-D and 3-D. A Matlab code (henceforth algorithm) is

written to numerically compute the far-field radiation patterns for thin wire antennas using
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MoM. Piecewise sinusoidal (PWS) functions are used as expansion functions. Testing is

performed using Galerkin method. The moment matrix [11] is computed by a closed form of

the integral in Appendix B using the Si and Ci functions [2]. From the moment matrix and

its inverse Z, Y, and S parameters for the array can be computed. A magnetic frill current

[12] is used for the excitation of the individual antenna element as shown in Appendix C.

The radiation pattern computed using MoM is calculated in the presence of mutual coupling.

The S parameters are used for calculating the new compensated voltages. When the array

is excited with these new compensated voltages the radiation pattern is the compensated

pattern where the effect of mutual coupling has been reduced. The result is compared

with the theoretical pattern calculated using the pattern multiplication method since it

does not take into account the mutual coupling. When perfect mutual compensation has

been achieved, the theoretical pattern and compensated pattern should be exactly the same,

otherwise the two patterns will differ. The computed compensated radiation patterns for

the 2-D and 3-D arrays have been verified using ANSYS® HFSS� software.

1.3 Overview

This work analyzes thin wire dipole arrays with identical and non-identical elements us-

ing method of moments and then compensate for the mutual coupling between the array

elements. The organization of the thesis is as following.

Chapter 2 gives a brief background of the different computational electromagnetic methods

for low and high frequencies. A single thin wire antenna is analyzed using MoM in free space

which is further extended to an array of thin wire dipoles. Finally, the compensation method

has been discussed which is derived using the scattering matrix.

Chapter 3, presents the simulation results. First, mutual impedances have been shown for

identical and non-identical arrays in different configurations, i.e., co-linear, staggered, and

non-staggered. The simulated results are compared with theoretical results [1], [13]. Next,

the compensation technique is applied to the above array configurations and the results are

compared with those of pattern multiplication. In case of non-identical arrays, the array

factor is calculated by summing the isolated pattern of each wire antenna in the array.

Compensation has been shown for planar arrays and compared with [14] and [15]. Circular

and 3-D arrays compensation are shown and compared with the results from ANSYS®

HFSS� software simulations.
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Finally, Chapter 4 concludes this thesis with a summary of the main findings and sugges-

tions for future work.
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Chapter 2

Methods of Computational Electromagnetics

(CEM)

Numerical methods have been used extensively to speed up antenna computations. Nowa-

days, plenty of commercial softwares are available but due to their high cost and complex na-

ture they may not be the best choice for researchers. The simulations using these commercial

softwares may last for days and months depending on the complexity of the geometry even

with the most high-end CPUs. Hence, for a specific complex problem developing a source

code to efficiently calculate an approximate solution using FORTRAN® or MATLAB®,

maybe more feasible in terms of cost and time.

While the data gathered from the experimental measurements can be useful, the process

itself can be extremely expensive in terms of time and money. On the other hand, the

CEM algorithms can help simulate a variety of problems in much shorter time. Many design

parameters can be varied and its effect can be analyzed before actually building the real

system. CEM can help the designer in better visualization of the problem with computer

aided designs.

Due to the broad range of electromagnetic (EM) problems, many numerical methods have

been developed. These numerical techniques can be divided into two broad classes. Full-wave

methods (also known as low frequency and/or exact methods) and High-Frequency methods

(also known as approximate methods).

Because of computational resources the full-wave methods are mostly limited to problems
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which are not very large electrically. The computational domain, which includes the antenna

and/or scatterer, is first discretized and then a matrix equation of the form [A][x] = [B] with

solution of x = [A−1][B] is generated. Whereas, the high frequency methods are used for

electrically large problems.

Maxwell’s equations exist in both differential and integral form, hence the full-wave prob-

lems can be solved with Partial Differential Equations (PDEs) or Integral Equations (IEs).

The PDE technique divides the antenna/scatterer and the space surrounding it into small seg-

ments. Due to computational limitations the surrounding space can not be infinite, therefore,

some absorbing boundary conditions (ABC) must be introduced around the antenna/scatter

to simulate infinite space [16].

On the other hand, IE technique subdivides the antenna/scatterer into small segments

but not the surrounding space. Equivalence theorem is used to produce equivalent currents,

where required, which radiate in free space. The three different types of integral equations

are, Electric Field Integral Equation (EFIE), Magnetic Field Integral Equation (MFIE), and

Combined Field Integral Equation (CFIE).

Under IE and PDE techniques problems can be divided into time domain and frequency

domain. Frequency domain solves the Maxwell’s equation at a single frequency, which makes

it a suitable candidate for solving problems with narrow bandwidths. The time domain

on the other hand, calculates the system response to a time limited pulse of appropriate

shape, which makes it a relatively better technique for wide bandwidth problems. The CEM

techniques, as mentioned above, can be divided into different groups as shown in the Fig.

2.1.
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Figure 2.1: A flow chart showing different computational electromagnetic techniques.

2.1 Low-Frequency Methods

Low-frequency methods solve problems that are usually electrically small due to limitations

of computational and time resources. The methods included in this sub-group of the CEM

techniques are briefly mentioned below.

2.1.1 Finite Difference Time Domain Method

The Finite Difference Time Domain (FDTD) method is a well known technique for solving

electromagnetic problems. It can be applied to a variety of problems such as, scattering

from dielectrics, metal objects, antennas, and electromagnetic absorption in human body

when exposed to EM radiations. The method is simple and easy to implement even in

programming.

FDTD solves Maxwell’s equations in the time domain by discretizing the solution

workspace into small elements. The electric and magnetic fields are computed from one

another in a ‘leap-frog’ manner. Despite high memory requirements this method excels in

13



the analysis of inhomogeneous and nonlinear media. The memory requirement is high due

to discretization of the entire solution space. In addition to this, FDTD suffers from the

dispersion issues and the need to truncate the solution boundary. This time domain method

has a wide variety of applications ranging from packaging and waveguide problems, and the

study of wave propagation in complex dielectrics.

2.1.2 Finite Element Method

The Finite Element Method (FEM) is used to solve frequency domain boundary valued

electromagnetic problems. Canonical elements of differing shapes are used which allows for

a highly accurate discretization of the solution domain. The solution domain needs to be

truncated in FEM similar to the FDTD case, which limits its use for radiation and scattering

problems unless a boundary integral equation approach is used.

2.1.3 Method of Moments

The Method of Moments is one of the first full-wave numerical method used for solving

electromagnetic radiation and scattering problems [11]. It is used to solve electromagnetic

boundary or volume integral equations in the frequency domain. It models the problem with

an exact equation usually an integral equation then solves it numerically/ approximately.

As the electromagnetic sources are the quantities of interest, MoM is very useful in solving

radiation and scattering problems. It is considered to be the best method when metallic

objects and wires are of interest. This method is explained in more detail in Section 2.3.

2.2 High-Frequency Methods

Even prior to the birth of super computers, large scale problems existed, which were difficult

to solve. For example calculation of an antenna’s radiation pattern when mounted on a large

structure or radar cross section of an electrically large target. For electrically large problems

asymptotic methods produce accurate results and at times these initial results can be passed

on to other computationally demanding methods if further accuracy is required. Some of

the high-frequency methods are briefly introduced below.
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2.2.1 Uniform Theory of Diffraction (UTD)

UTD utilizes ray-optics to determine EM wave propagation. It takes into account the fields

diffracted from the edges. The method is fast but does not produce accurate results for

complex structures.

2.2.2 Geometrical Optics (GO)

This method is used to approximate high-frequency surface currents which allows boundary

integration to obtain the fields. GO does not account for the diffracted fields from the edges

and the multiple reflections, thus some corrections have to be added to it. GO can be used

in reflector antenna analyses and radar cross section prediction codes.

2.2.3 Physical Theory of Diffraction (PTD)

This method is mostly used in radar cross section and scattering analyses. PTD aids the GO

solution by adding the effects of non-uniform currents at the diffracting edges of an object.

2.3 The Method of Moments

The basic approach used in this frequency domain method is to expand an unknown function

in terms of known functions with unknown coefficients. This method usually starts with an

exact linear operator equation and solves it approximately. On the other hand, FDTD

approximates the differential equation with a difference equation and solves it exactly. In

both cases the computed result is an approximation to the exact result. This process can be

formally introduced as the method of weighted residuals known as the method of moments.

Given the operator equation,

L(f) = g (2.1)

where L is a linear operator, g is a known function, and f is unknown. In case of electromag-

netics L is an integro-differential operator, f is the unknown function (current, charge) and

g is a known excitation source (incident field). f can be expanded into a sum of N weighted

basis or expansion functions,

f =
N∑
n=1

αnhn(x) (2.2)
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where hn(x) is the expansion function and αn is the expansion coefficient. After substituting

(2.2) in (2.1), we have the following,

L

(
N∑
n=1

αnhn(x)

)
= g (2.3)

Since L is a linear operator, (2.3) can be written as

N∑
n=1

αnL(hn(x)) = g (2.4)

Equation (2.4) is tested by defining a set of testing (weighting) functions wm(x),〈
wm,

N∑
n=1

αnL(hn(x))

〉
= < wm, g > where m = 1, 2, . . . , N. (2.5)

The bracket <> stands for the defined inner product which is used in the testing process.

Equation (2.5) can be written as N separate equations:

< w1, α1L(h1(x)) > + < w1, α2L(h2(x)) > + · · ·+ < w1, αNL(hN(x)) >= < w1, g >

(2.6a)

< w2, α1L(h1(x)) > + < w2, α2L(h2(x)) > + · · ·+ < w2, αNL(hN(x)) >= < w2, g >

(2.6b)

...

< wN , α1L(h1(x)) > + < wN , α2L(h2(x)) > + · · ·+ < wN , αNL(hN(x)) >= < wN , g >

(2.6c)

The above N equations in N unknowns can be written in matrix form as :

Z11 Z12 . . . Z1N

Z21 Z22 . . . Z2N

...
...

...
...

Zm1 . . . Zmn ZmN
...

ZN1 ZN2 . . . ZNN





α1

α2

...

αm
...

αN


=



g1

g2
...

gm
...

gN


(2.7)

Where,

Zmn = < wm, L(hn(x)) > (2.8)
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and

gm = < wm, g(x) > (2.9)

Then the unknown expansion coefficients can be calculated by taking the inverse of the

moment matrix, as shown below,
α1

α2

...

αN

 =


Z11 . . . Z1N

...
...

...
...

ZN1 . . . ZNN


−1 

g1

g2
...

gN

 (2.10)

If the weighting function is wm(x) = δ(x − xm), then the testing method is called point-

matching, whereas for wm(x) = hm(x), it is called Galerkin’s Method [1].

2.4 Dipoles

Wire antennas are one of the most popular antennas that are still an integral part of our

technological society due to its infallible characteristics. They are inexpensive, robust and

simple to understand and use. Due to these features, it is one of the most widely researched

antenna since it can be used as a building block for developing other complex antennas.

2.4.1 Single Dipole in Free Space

The ideal Hertzian dipole is the fundamental building block of a practical dipole. The

ideal dipole can be defined as an infinitesimal element with a uniform current magnitude

and phase. Therefore, we can assume that a dipole of any length can be approximated

as the vector sum of the contributions from all the ideal dipoles weighted by the current

distributions. The far-field pattern of a z-directed dipole in an array is called the element

pattern (EP), which is sin θ for the Hertzian dipole. When the length of the dipole is finite the

current and phase are no longer constant. Dipoles that have L 6 λ/2 are known as single

mode antennas. The current distribution may change in magnitude or phase but not in

shape. Similarly, a short dipole whose length L << λ/2 the amplitude can be approximated

by a triangle where as the current is in phase. In case of a half-wave dipole, the amplitude

is sinusoidal with current in phase. The exact expression for the radiation pattern of a
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half-wave dipole (assuming zero radius) is given by

F (θ) =
cos [(π/2) cos θ]

sin θ
(2.11)

For these dipoles, the radiation pattern will be strongest along the normal and weakest along

the axis of the dipole as shown in Fig. 2.2.
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Figure 2.2: Normalized E-plane pattern of a half-wave dipole.

The half-wave dipole is omni-directional in H-plane as shown in Fig. 2.3.
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Figure 2.3: Normalized H-plane pattern of a half-wave dipole.

The above figures show that the radiation pattern plotted due to the exact Eq. 2.11

which assumes zero radius is approximately equal to the numerical pattern computed using

method of moments which assumes a finite radius λ/1000. This close approximation shows

us the accuracy of the numerical method used. The short dipole or ideal dipole has a

half-power beamwidth of 90◦ which is decreased to 78◦ in the case of the half-wave dipole.

For dipoles longer than one wavelength, the currents on the antenna are out of phase on

some sections with the others, which results in partial or total cancellation in the far-fields.

The Appendix A gives the details of application of MoM to thin wire antennas. Using this

method, a sample calculation of the current and phase is shown in Fig. 2.4, for a wire of

length 0.4781λ, radius λ/1000, and number of expansion functions NP = 63. An input

impedance of Zin = 73.7210 + 5.3596i Ω was calculated which suggests that the radiation

resistance is 73.7 Ω.
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Figure 2.4: Magnitude and phase of the current distribution for a center-fed dipole in free space

with length L = 0.4781λ, radius a = λ/1000 and number of expansion functions NP = 63.

The impedance is inductive in this case due to the imaginary part which can be made

totally resistive by shortening the dipole length. For dipoles with lengths λ/2 and below, the

radiation resistance decreases monotonically with length and is almost independent of diam-

eter, whereas the reactive component depends heavily on diameter. The thinner antennas

are more capacitive for a given length. In practice, a dipole has a finite length-to-diameter

ratio. Additionally, the environment surrounding the antenna also affects its impedance.

Both the radiation pattern and impedance are influenced by the presence of nearby objects.

2.5 Array Theory

Principle of pattern multiplication states that the radiation pattern of an array is the product

of the pattern of the individual antenna with the array pattern. The array pattern is a

function of the location of the antennas in the original array and their relative complex

excitation amplitudes. Array factor is the pattern of the array with actual elements replaced

by isotropic point sources. The total pattern of the array is then the product of the element

pattern and array factor.

Total Pattern = Element pattern x Array pattern
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Figure 2.5: Equally spaced linear array of isotropic point sources [1].

Consider a linear array of dipoles with elements equally spaced along the z-axis. In order to

calculate the array factor for such an array the elements of the array are replaced by isotropic

point sources which are placed at the center of these elements as shown in Fig. 2.5. These

point sources respond equally in all directions to an incoming plane wave. The point source

at origin has a zero phase for convenience. The corresponding phase of waves at element 1

relative to the origin is βd cos θ which is the spatial phase delay. Similarly, the phase at each

corresponding element on the right is less than its nearest neighbor on the left. In other

words, the wave will first hit the nth element and lastly the element at the origin [1].

AF = I0 + I1e
jβd cos θ + I2e

jβ2d cos θ + · · · =
N−1∑
n=0

Ine
jβnd cos θ (2.12)

In the case of short dipole the element pattern is simply sin θ in the E-plane which is similar

to that in Fig. 2.2. Since we are using single mode antennas the element pattern can be taken

as sin θ in E-plane and a unit circle in the H-plane similar to Fig. 2.3. Pattern multiplication

has the advantage of giving us a quick sketch of the pattern by just knowing the pattern of

an isolated element and array pattern but it does not consider mutual coupling between the

array elements. The limitation of pattern multiplication is that all the elements of the array

must be identical. Hence, we can use pattern multiplication as a reference for comparing

when the mutual coupling has been compensated for an array of identical elements. The

compensated far-field pattern must be similar to that of pattern multiplication method. In

case of non-identical elements, e.g., when the length or radius of the elements are different

in the array then the conventional method of pattern multiplication does not apply. In that

case, the array factor method could be redefined as simply taking the isolated individual

patterns of each element and then adding it up. This will give the complete pattern of the
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array without mutual coupling which can be used as a reference for comparing with the

patterns that have been mutually compensated.

2.6 Compensation Method

Consider an array of N thin wire antennas as shown in Fig. 2.6. The pattern of this array

can be changed by fixing the input current I n of the nth element of the array. These input

currents without mutual coupling can be found as,

In =
Vgn

Z0 + Zn
for n=1,2..N. (2.13)

Here Vgn is the generator voltage feeding the nth antenna, Z0 = 50 Ω is the characteristic

impedance of the transmission line (of zero length), which is equal to the internal resistance

of the source Zg, and Zn is the input impedance of the nth antenna when it is isolated, that

is, when the other N-1 antennas are removed.

Figure 2.6: Equivalent circuit of N antennas with no mutual coupling

Figure 2.6 shows the equivalent circuit. When mutual coupling exists, the input

impedance of each individual antenna changes to Z
′
n, thus changing the input currents which

would change the radiation pattern of the element. Note that two isolated identical antennas

must have same impedance Zm = Zn. This however does not imply that input impedance of

these antennas in the array will also be the same (Z
′
m 6= Z

′
n), in general. In order to bring
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the currents back to the desired values In, the generator voltages must be readjusted to V
′
gn.

The input impedance has changed from Zn to Z
′
n whereas the input currents must remain

the same as shown in Fig. 2.7. Our problem is to find these adjusted voltage source values

V
′
gn to give the desired currents In in the presence of mutual coupling.

Figure 2.7: Equivalent circuit of N antennas with mutual coupling

Thus the source voltages are changed from Vgn to V
′
gn. The desired current can be written

as,

In =
V
′
gn

Z0 + Z ′n
(2.14)

Here both Z
′
n and V

′
gn are unknown. However, Z

′
n can be calculated using MoM.

Using transmission line theory, we know that the current can be expressed as,

In =
V +
n − V −n
Z0

(2.15)

where V +
n is the forward (incident) voltage entering the nth antenna of the N-port network

defined by,

V +
n =

V
′
gn

2
(2.16)

and V −n is the reflected voltage from the nth antenna. It can be written as,

V −n = Sn1V1
+ + Sn2V2

+ + · · ·+ SnNVN
+

= (Sn1Vg1
′
+ Sn2Vg2

′
+ · · ·+ SnNVgN

′
)/2

(2.17)
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Where, Sij is the element of the scattering matrix for the system. Substituting the values

of (2.16) and (2.17) in (2.15) we get

I1 = (V +
1 − V −1 )/Z0

= V
′

g1/(2Z0)− (1/Z0){S11V1
+ + S12V2

+ + · · ·+ S1NVN
+}

= 1/(2Z0){Vg1
′ − S11Vg1

′ − S12Vg2
′ − · · · − S1NV

′

gN} ,

(2.18)

I2 = 1/(2Z0){Vg2
′ − S12Vg1

′ − S22Vg2
′ − · · · − S2NV

′

gN} , (2.19)

IN = 1/(2Z0){VgN
′ − SN1Vg1

′ − SN2Vg2
′ − · · · − SNNV

′

gN} . (2.20)

The above equations can be written in matrix form as


I1

I2
...

IN

 = 1
2Z0


V
′
g1

V
′
g2
...

V
′
gN

− 1
2Z0


S11 S12 . . . S1N

S21 S22 . . . S2N

...
...

...
...

SN1 SN2 . . . SNN




V
′
g1

V
′
g2
...

V
′
gN


Or in short hand notation as

[I] =
1

2Z0

{U − S}[V ′g ] (2.21)

Here [I] is the N × 1 column vector of the desired input currents. U is N ×N unit matrix

and [V g
′
] is the N × 1 column vector of the desired compensated source voltages feeding the

antennas. The desired compensated source voltages (in the presence of mutual coupling) are

given by,

[V
′

g ] = (2Z0){U − S}−1[I] (2.22)

Or

[V
′
g ] = (2Z0){U − S}−1



Vg1
Z0+Z1

Vg2
Z0+Z2

...
VgN

Z0+ZN


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2.7 Formulation of Matlab Code

In order to solve the currents on the wire antennas, MoM using the Galerkin’s method has

been applied. This means, the basis function and testing function are the same, which are

the PWS functions defined by (A.8) in the Appendix. Using (2.10), we define α as the

coefficients of the expansion functions of the unknown currents on the wires in the array, Z

matrix as the moment matrix and g matrix is the excitation or voltage matrix.

The Z matrix is the moment matrix which is found using (B.1) in the Appendix. Equation

(B.1) may be evaluated without difficulty by numerical integration. However, when ρ = a

and a is small (i.e., wires of very small radius) it may be preferable to carry out the integration

in the form of sine “Si” and cosine “Ci” integrals given in (B.4) and (B.5). The elements of

Zmn are given by Zmn = Rmn + jXmn, which are defined in the closed form equations given

by (B.6) and (B.7). This calculates the moment matrix for the arrays of wires.

The wires are center fed and the voltage source used for the wires is modelled using

magnetic frill current given by (C.5). Once the moment matrix, Z, and voltage matrix, V ,

are known we can calculate the current matrix, I, for the array. Using this the radiation

pattern for the array in the presence of mutual coupling can be computed. This pattern is

the real life practical pattern of the array. Using the moment matrix and its inverse one can

compute the open circuit parameters matrix Zo, and the short circuit parameters Ys matrix,

and scattering matrix S for the array. The compensated current is calculated by,

Icompensated = [Z−1][V
′

g ] (2.23)

This current produces the radiation pattern when the mutual coupling has been compensated

for. This new compensated radiation pattern is then compared with the theoretical pattern

obtained using principle of pattern multiplication. In the following we plot three patterns: (i)

uncompensated voltages (this pattern is produced by the original voltages in the presence of

mutual coupling. (ii) compensated voltages (this pattern is computed using the compensated

voltages in the presence of mutual coupling), and (iii) pattern multiplication method (this

pattern is computed using the original voltages and without mutual coupling). Chapter 3

shows comparison of the above three mentioned patterns for different antenna orientations.
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Chapter 3

Simulations and Results

Simulation results are divided into two sections, identical and non-identical arrays. For each

section the mutual impedance has been calculated and then the far-field patterns are shown.

3.1 Identical Arrays

Two element identical arrays are presented in this section. Length of a single element is

L = 0.4781λ and radius a = λ/1000. The number of expansion functions (NP) used for each

dipole are thirty one. The elements are arranged in three different configurations:

� Non-staggered (parallel)

� Staggered

� Collinear

3.1.1 Mutual Impedance

The mutual impedance for two element identical arrays is calculated in this section. These

results have been calculated in the literature before [2]. They have been regenerated in order

to confirm the proper working of the algorithm.
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3.1.1.1 Non Staggered

Figure 3.1: Two parallel dipole antennas in non-staggered arrangement with length L = 0.4781λ,

radius a = 0.001λ, separation d/λ, and λ = 1 m.

Figure 3.2: Real part of mutual impedance between two parallel dipole antennas as a function of

spacing relative to wavelength with L = 0.4781λ and a = 0.001λ. Geometry shown in Fig. 3.1

.
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Figure 3.3: Imaginary part of mutual impedance between two parallel dipole antennas as a

function of spacing relative to wavelength with L = 0.4781λ and a = 0.001λ. Geometry shown in

Fig. 3.1.

Figs. 3.2 and 3.3 are in conformation with those presented in [2].
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3.1.1.2 Staggered

Figure 3.4: Two identical parallel dipole antennas in staggered arrangement with length L =

0.4781λ, radius a = 0.001λ, fixed horizontal separation of 0.25λ, and staggered by h/λ.

The mutual impedance between two staggered dipole antennas, as a function of spacing

relative to wavelength, which were computed by [2], were removed from the later editions

of the book due to ambiguity in the results. The correct results for this case are presented

below in Figs. 3.5 and 3.6.
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Figure 3.5: Real part of mutual impedance between two identical but staggered dipole antennas

of length L = 0.4781λ, radius a = 0.001λ, fixed horizontal separation of 0.25λ, and staggered by

h/λ.

0 0.5 1 1.5 2
h / λ

-40

-30

-20

-10

0

10

Im
  Z

12
 [

o
h

m
s]

Figure 3.6: Imaginary part of mutual impedance between two identical but staggered dipole

antennas of length L = 0.4781λ, radius a = 0.001λ, fixed horizontal separation of 0.25λ, and

staggered by h/λ.
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It can be noted easily when h/λ = 0, the case is similar to that of non-staggered antenna

and by examining the mutual impedance at d/λ = 0.25, the value of Fig. 3.2 matches with

that of Fig. 3.5. Similarly, the same holds true for Fig. 3.3 and Fig. 3.6, which also verifies

the authenticity of the results. These results were also verified with [13].

3.1.1.3 Collinear

Figure 3.7: Two dipole antennas in collinear arrangement as a function of spacing relative to

wavelength with length L = 0.4781λ and radius a = 0.001λ.
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Figure 3.8: Real part of mutual impedance between two collinear dipole antennas as a function

of spacing relative to wavelength with length L = 0.4781λ and radius a = 0.001λ.

Figure 3.9: Imaginary part of mutual impedance between two collinear dipole antennas as a

function of spacing relative to wavelength with length L = 0.4781λ and radius a = 0.001λ.

The results in Fig. 3.8 and 3.9 are in very good agreement with those presented in [2].
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3.1.2 Mutual Coupling Compensation

The following subsections present results for the the mutual compensation technique that

has been applied to different array configurations shown in the above sections. The un-

compensated, compensated, and pattern multiplication patterns are compared. From these

patterns it can be observed that the compensation technique explained in section 2.6 works

effectively.

3.1.2.1 Two element Uniform Linear Array (ULA)

Figure 3.10: Two parallel antennas of length λ/2 with a = λ/200.

A two-element dipole antenna array similar to that of [15] with length λ/2 and radius λ/200

is used as shown in Fig. 3.10. The antennas are center fed with a magnetic frill source.

The antenna element spacing is varied from 0.1λ to 0.5λ. The source internal impedance

Z0 is 50 Ω and the original excitation voltage sources are Vg1 = 1 V and Vg2 = 1∠135◦V . The

compensated voltages are tabulated in Table 3.1. The results are in close agreement with [15]

and [14]. The resultant far field patterns in Figs. 3.11(a-e) show the far field patterns due

to the uncompensated voltages, compensated voltages and pattern multiplication method in

the plane perpendicular to the dipole axis. It can be observed that the array patterns due to

the compensated voltages is almost the same as that of the isolated pattern results computed

using pattern multiplication method. When the antennas are spaced closely, there is strong

coupling between the antennas. This is evident from Fig. 3.24a as well as the compensated

voltages in Table 3.1. The pattern due to the compensated voltage is in close approximation

with that of the array factor pattern. As the distance between the dipoles increases the
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mutual coupling decreases, therefore, at d = 0.5λ the compensated voltages in Table 3.1

become closer to the original voltages.
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Figure 3.11: Radiation patterns for two parallel dipole antennas with different element separa-

tions. (a) d = 0.1λ (b) d = 0.2λ (c) d = 0.3λ (d) d = 0.4λ (e) d = 0.5λ.

Table 3.1: Compensation voltages V ′s1 and V ′s2 for the two element dipole array for different

element separations.

Antenna separation d(λ) V
′
s1, (V ) V

′
s2, (V )

0.1 0.870∠31.58◦ 0.566∠104◦

0.2 1.06∠23.7◦ 0.524∠134◦

0.3 1.20∠15.3◦ 0.692∠151◦

0.4 1.27∠6.81◦ 0.893∠153◦

0.5 1.25∠− 1.01◦ 1.05∠149◦
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3.1.2.2 Five Element Uniform Linear Array

Figure 3.12: Five dipole antennas of length λ/2, a = λ/200 and spacing d.

A five element uniform linear array of dipoles as shown in Fig. 3.12 is studied in two

different configurations similar to that in [15] and [14]. Same parameters for length, radius

and internal source impedances are used as in the case of two-element dipole arrray except

for excitation voltages and element spacing. In the first case, d = 0.5λ is used as element

spacing and main-beam direction is excited at ϕ = 45◦. The excitation voltages are shown

in Table 3.3 [15]. For the second case, d = 0.3λ and ϕ = 60◦. The resultant far field

patterns in the plane perpendicular to the dipole axis are shown in Figs. 3.13 and 3.14. The

compensated voltages for both cases are tabulated in Table 3.2 which are in close agreement

with [15] and [14].
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Figure 3.13: Radiation pattern for five-element dipole array with separation d = 0.5λ and main-

beam direction ϕ = 45◦.

Table 3.2: Compensation voltages for the five-element dipole array with different inter-element

separations d and main-beam directions ϕ.

Voltages ϕ = 45◦, d = 0.5λ ϕ = 60◦, d = 0.3λ

V ′s1 0.803∠19◦ 0.770∠− 5.34◦

V ′s2 1.12∠− 113◦ 1.19∠− 71.96◦

V ′s3 1.30∠110◦ 1.29∠− 127◦

V ′s4 1.37∠− 26.8◦ 1.29∠159◦

V ′s5 1.28∠− 168◦ 1.25∠116◦
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Figure 3.14: Radiation pattern for five-element dipole array with separation d = 0.3λ and main-

beam direction ϕ = 60◦.

Table 3.3: Excitation voltages for the five-element dipole array with different inter-element sepa-

rations d and main-beam directions ϕ.

Voltages ϕ = 45◦, d = 0.5λ ϕ = 60◦, d = 0.3λ

Vs1 1∠0◦ 1∠0◦

Vs2 1∠− 127.28◦ 1∠− 54◦

Vs3 1∠− 254.56◦ 1∠− 108◦

Vs4 1∠− 381.84◦ 1∠− 162◦

Vs5 1∠− 509.12◦ 1∠− 216◦

The results infer that when d = 0.3λ, there is strong mutual coupling which is evident

from Table. 3.2 and its corresponding excitation voltages.
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3.2 Non-Identical Arrays

3.2.1 Mutual Impedance

The mutual impedance for two element non-identical arrays is calculated in this section.

Similar to Section 3.1, three different configurations are studied. Two dipoles of unequal

lengths are considered such that L1 = λ/2 and L2 = λ/3. The radius a for both the wires is

same, a = 0.001λ. The mutual impedance of unequal length dipoles for infinitely thin wires

has been studied in [13]. It should be noted that in [13], the author considers infinitely thin

wires where as in this thesis a finite wire radius is considered hence the mutual impedances

presented in [13] and here are not exactly the same but in close approximation in the overall

trend. Figure 3.15 to Fig. 3.20 show the geometry of the arrays considered and the computed

mutual impedances.

3.2.1.1 Non Staggered Array

Figure 3.15: Two parallel dipole antennas in non-staggered arrangement of lengths λ/2 and λ/3

as a function of spacing relative to wavelength with radius a = 0.001λ.
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Figure 3.16: Mutual impedance curves between two parallel antennas in non-staggered arrange-

ment of lengths λ/2 and λ/3 as a function of spacing relative to wavelength with a = 0.001λ.

3.2.1.2 Staggered Array

Figure 3.17: Two parallel dipole antennas of lengths λ/2 and λ/3 in staggered arrangement as a

function of spacing relative to wavelength with a = 0.001λ, horizontal separation d and staggered

by h = λ/4.
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Figure 3.18: Mutual impedance curves between two parallel antennas of lengths λ/2 and λ/3

with a = 0.001λ, staggered by h = λ/4.

3.2.1.3 Collinear Array

Figure 3.19: Two antennas of lengths λ/2 and λ/3 in collinear arrangement as a function of

spacing relative to wavelength with radius a = 0.001λ.
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Figure 3.20: Mutual impedance curves for two dipole antennas of lengths λ/2 and λ/3 in a

collinear arrangement with radius a = 0.001λ.

3.2.2 Mutual Coupling Compensation

3.2.2.1 Two element Non-Staggered Array

The compensation for two element non-identical array as shown in Fig. 3.21 is computed in

this section. The dipoles are excited with a magnetic frill source at their center. The original

excitation voltage sources are Vg1 = 1 V and Vg2 = 1∠135◦V , respectively. The antenna

element spacing is varied from 0.1λ to 0.5λ. The compensated voltages are tabulated in

Table 3.4. The resultant far field patterns in Figs. 3.22(a-e) show the far field patterns due

to the uncompensated voltages, compensated voltages and pattern multiplication method in

the plane perpendicular to the dipole axis, i.e., the H-plane. As compared to the identical

two element dipole case in Fig. 3.11 and Table 3.1, it can be noted that the mutual coupling

is weaker here since L2 is shorter than L1 we expect less coupling.
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Figure 3.21: Two parallel antennas in non-staggered arrangement of lengths λ/2 and λ/3 as a

function of spacing relative to wavelength with radius a = 0.001λ, and separation d.

Table 3.4: Compensation voltages V
′
s1 and V

′
s2 of two-element non-identical non-staggered dipole

array for different antenna separations.

Antenna separation d(λ) V
′
s1, (V ) V

′
s2, (V )

0.1 0.8199∠−6.46◦ 0.7517∠128.0◦

0.2 0.8307∠−0.65◦ 0.7723∠135.2◦

0.3 0.8752∠3.56◦ 0.8314∠140.7◦

0.4 0.9360∠5.29◦ 0.9117∠142.9◦

0.5 0.9921∠4.92◦ 0.9877∠142.3◦
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(e)

Figure 3.22: Radiation pattern of two-elements non-identical non-staggered dipoles with different

element separations. (a) d = 0.1λ (b) d = 0.2λ (c) d = 0.3λ (d) d = 0.4λ (e) d = 0.5λ.

3.2.2.2 Two Elements Staggered Array

The compensation for two elements non-identical staggered array as shown in Fig. 3.23 is

computed in this section. The dipoles are staggered by h = λ/4. With excitation source

voltages Vg1 = 1 V and Vg2 = 1∠135◦V and element spacing varied from 0.1λ to 0.5λ,

the compensated voltages are tabulated in Table 3.5. The resultant far field patterns in

Figs. 3.24(a-e) show the far field patterns due to the uncompensated voltages, compensated

voltages and pattern multiplication method in the plane perpendicular to the dipole axis.

As compared to the identical two element dipole case in Fig. 3.11 and Table 3.1, it can be

noted that the mutual coupling is weaker here since L2 is not in line with L1, which results

in weak coupling.
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Figure 3.23: Two parallel dipole antennas of lengths λ/2 and λ/3 in staggered arrangement as a

function of spacing relative to wavelength with radius a = 0.001λ, and staggered by h = λ/4.

Table 3.5: Compensation voltages V
′
s1 and V

′
s2 for two-elements non-identical staggered dipole

array for different antenna separations.

Antenna separation d(λ) V
′
s1, (V ) V

′
s2, (V )

0.1 0.9278∠−4.83◦ 0.8893∠129.1◦

0.2 0.9230∠−0.81◦ 0.8902∠134.5◦

0.3 0.9453∠1.71◦ 0.9221∠137.9◦

0.4 0.9782∠2.62◦ 0.9670∠139.1◦

0.5 1.0081∠2.27◦ 1.0082∠138.5◦
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Figure 3.24: Radiation pattern of two-element non-identical staggered dipoles with different

element separations. (a) d = 0.1λ (b) d = 0.2λ (c) d = 0.3λ (d) d = 0.4λ (e) d = 0.5λ.

3.2.2.3 Two element Collinear Array

When the dipoles are in a collinear arrangement as shown in Fig. 3.25. With the excitation

voltage sources Vg1 = 1 V and Vg2 = 1∠135◦V and element spacing varied from 0.1λ to 0.5λ,

it can be observed from Table 3.6 that the mutual coupling is extremely weak. The values

are approximately equal to the original excitation values which infers to the weak coupling.

This is also evident from the mutual impedance shown in Fig. 3.20. In this case the three

patterns are almost identical and therefore not plotted here.
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Figure 3.25: Two antennas of lengths λ/2 and λ/3 in collinear arrangement as a function of

spacing relative to wavelength with a = 0.001λ.

Table 3.6: Compensation voltages V
′
s1 and V

′
s2 of two-element non-identical collinear dipole array

for different antenna separations.

Antenna separation d(λ) V
′
s1, (V ) V

′
s2, (V )

0.1 0.9339∠−2.2◦ 0.9018∠132.7◦

0.2 0.9502∠0.19◦ 0.9274∠135.9◦

0.3 0.9707∠0.97◦ 0.9558∠136.8◦

0.4 0.9869∠0.93◦ 0.9777∠136.7◦

0.5 0.9965∠0.56◦ 0.9905∠136.2◦

3.2.2.4 Three element Staggered Array

This section presents three dipole elements with lengths L1 = λ/2, L2 = λ/4 and L3 = λ/3.

The dipoles are uniformly excited with V = 1 V and have similar radii a = 0.001λ. The

three wires are arranged as shown in Fig. 3.26.
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Figure 3.26: Three staggered dipole antennas of different lengths L1 = λ/2, L2 = λ/4, L3 = λ/3.

The elements are equally spaced with d = 0.1λ along y-axis. The center of the first dipole

is at origin where as the other two dipoles are staggered along z-axis. The far-field radiation

patterns in the three principle planes are shown below,
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Figure 3.27: Radiation pattern of three element staggered array in xy-plane at 300 MHz.
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Figure 3.28: Radiation pattern of three element staggered array in yz-plane at 300 MHz.
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Figure 3.29: Radiation pattern of three element staggered array in xz-plane at 300 MHz.
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3.3 Compensation of Circular Arrays

The compensation for dipoles arranged in a circular array has been studied and presented

in this section. Identical dipoles have been used in two different cases. In the first case,

four dipole elements are arranged in a circle. Since there are only four antennas this means

the antennas will be placed at ϕ = 0◦, 90◦, 180◦, and 360◦. When viewed from the top

the arrangement appears to be similar to a square array. In the second case, three dipole

elements are arranged in a circle with equal angles apart similar to a triangle.

3.3.1 Square Array

Four dipole elements arranged around a circle with equal angles apart is shown in Fig. 3.30.

The radius of the circle is λ/4. All elements are uniformly excited with V = 1V where as

the elements have L = 0.5λ , a = 0.001λ and N = 9.

(a) (b)

Figure 3.30: Circular array of four half-wave dipoles with radius of circle λ/4. a) Side view. b)

Top view.

Figure 3.31 shows the far-field pattern of the square array, in the plane perpendicular to

the axis of the dipoles, when all elements are uniformly excited with 1V . Since the excitation

is same and all elements are identical we expect that the effect of every element on the other

is balanced due to symmetry and hence mutual coupling is automatically compensated.
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Here we can see that the three curves are identical and that the original patterns i.e (

uncompensated patterns) are the same as the array factor. Note that all patterns computed

in this work are normalized.
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Figure 3.31: Radiation pattern of four element circular array in XY plane at 300 MHz with

uniform excitation.

The current distribution is shown in Fig. 3.32 below. The current distribution is sym-

metric on the four antennas. The original uncompensated currents are observed when the

four antennas are uniformly excited with V = 1 V . The compensated currents are computed

when the four antennas are excited by V
′

= 0.19∠58◦. The isolated currents are that of a

single antenna when it is excited by V = 1 V in isolation. Since the distribution of these

three currents are identical the normalized pattern produced by them will be identical as

shown in Fig. 3.31.
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Figure 3.32: Current distribution of the four dipole array when all antennas are uniformly excited.

Now when the excitation is changed to progressive phase excitation with V1 = 1∠0◦, V2 =

1∠30◦, V3 = 1∠60◦ and V4 = 1∠90◦, it can be observed that coupling between the elements

causes different patterns as shown in Fig. 3.33 below.
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Figure 3.33: Radiation pattern of four element circular array in XY plane at 300 MHz with

progressive phase excitation.

Figure 3.33 is the main motivation behind this thesis. The pattern multiplication method

can predict the far-field pattern of identical arrays but without mutual coupling. We expect

the radiated pattern to be the same as the one predicted by the pattern multiplication

method but due to mutual coupling we get a completely different pattern. This phenomenon

is illustrated distinctively in Fig. 3.33. The pattern after compensation is in close agreement

to that of the pattern multiplication which is a manifestation of how simple and easy a

technique can be applied to compensate for thin wire antennas. The current distribution

is shown in Fig. 3.34. It can be seen that the currents are not symmetric because of the

progressive phase excitation. The original uncompensated currents are observed when the

four antennas are excited with V1 = 1∠0◦, V2 = 1∠30◦, V3 = 1∠60◦ and V4 = 1∠90◦.

The compensated currents are computed when the four antennas are excited with V
′
1 =

0.29∠83◦, V
′
2 = 0.23∠94◦, V

′
3 = 0.16∠136◦ and V

′
4 = 0.056∠177◦. The isolated currents are

that of a single antenna when it is excited by V = 1 V in isolation similar to that in Fig.

3.32.
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Figure 3.34: Current distribution of the four dipole array when antennas are excited with a

progressive phase.

3.3.2 Triangular Array

This section presents three dipoles arranged in a circle to form a triangular array. The same

configuration has been used as that of the square array except that now only three elements

are used. The setup can be seen in Fig. 3.35.
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(a) (b)

Figure 3.35: Triangular array of three dipole antennas. a) Side view. b) Top view.

When the array is uniformly excited it is observed that mutual coupling effect is not

apparent as it has been compensated due to symmetry and can be seen in the far-field

pattern shown in Fig. 3.36.
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Figure 3.36: Radiation pattern of three element triangular array in xy-plane at 300 MHz with

uniform excitation.

When the array is excited with phase progression with V1 = 1∠0◦, V2 = 1∠30◦ and

V3 = 1∠60◦ mutual coupling effect shows itself as shown in the three patterns of Fig. 3.37.
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Figure 3.37: Radiation pattern of three element triangular array in XY plane at 300MHz with

progressive phase excitation.

Once again the compensation for mutual coupling can be seen evidently which conforms

the success of this method.

3.4 Compensation of 3-Dimensional Circular Arrays

In the previous sections, compensation for planar arrays was discussed. Now, 3-dimensional

(3D) arrays are studied as shown in Fig. 3.38. Seven dipoles are arranged in two circles.

Four dipoles are place along a circle in the lower ring and three dipoles in the upper circular

ring i.e., displaced along z-axis.
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Figure 3.38: Three-dimensional dipole array with seven elements. Four dipoles are placed along

a circle of radius 0.5λ and three dipoles along a radius of 0.4λ which are displaced in the z-axis by

h = λ/4.

The dipoles are identical having length L = λ/2 and radius a = λ/500. The lower circular

ring has a radius of 0.5λ and the upper has a radius of 0.4λ. The center of the dipoles in

the lower ring are at z = 0 plane where as the center of the upper dipoles are at z = λ/4

plane. All elements are uniformly excited and the far-field patterns in the three principle

planes are shown in Figs. 3.39 to 3.41.
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Figure 3.39: Radiation pattern in xy-plane for a 3-Dimensional dipole array at 300 MHz.
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Figure 3.40: Radiation pattern in yz-plane for a 3-Dimensional dipole array at 300 MHz.
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Figure 3.41: Radiation pattern in xz-plane for a 3-Dimensional dipole array at 300 MHz.

3.5 Comparison with commercial software

All the results shown in this thesis are simulated using MATLAB. In order to verify the

computed results with commercial software, HFSS was used. In this section the far-field

patterns for the three-dimensional array and square array are compared. In the 3D case the

setup is similar to Fig. 3.38. The dipole was first resonated at 1 GHz and then used in an

array setup as shown in Fig. 3.38. The array was uniformly excited with 1 V using lumped

ports with 50 Ω port impedance. The simulation was run with a medium mesh size. In order

to resonate the dipole the length was shortened to 0.45λ and radius a = 3/400λ was used.

The far-field patterns with mutual coupling from HFSS are plotted and compared with those

obtained from MATLAB as shown in Figs. 3.42 to 3.44.
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Figure 3.42: Radiation pattern comparison of HFSS and MATLAB in xy-plane for a 3-

Dimensional dipole array at 300 MHz with mutual coupling.
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Figure 3.43: Radiation pattern comparison of HFSS and MATLAB in yz-plane for a 3-

Dimensional dipole array at 300 MHz with mutual coupling.
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Figure 3.44: Radiation pattern comparison of HFSS and MATLAB in xz-plane for a 3-

Dimensional dipole array at 300 MHz with mutual coupling.

The patterns are not exactly similar but close enough to a good approximation because

in MATLAB magnetic frill current has been used as the excitation source where as in HFSS

a lumped port has been used for the excitation of the antennas which results in the discrep-

ancies.

Next, the square array case studied in Section 3.3 has been compared with HFSS. The

setup is shown in Fig. 3.45.

67



Figure 3.45: Circular array of four dipole elements in HFSS.

Figure. 3.46 shows a comparison between HFSS and MATLAB for the radiation pattern

in the xy-plane when the dipoles are excited with a uniform phase progression similar to

that in Section 3.3. The pattern obtained has mutual coupling effect.
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Figure 3.46: Radiation pattern comparison of HFSS and MATLAB in xy-plane for a square array

excited with uniform phase progression operating at 300 MHz with mutual coupling.
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Now, when the array is excited with the compensated voltages obtained from MATLAB

the results are compared in Fig. 3.47.
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Figure 3.47: Compensated radiation patterns comparison of HFSS and MATLAB in xy-plane for

a square array excited with uniform phase progression operating at 300 MHz.

Figure 3.47 shows the compensated patterns in HFSS and MATLAB in comparison with

the pattern multiplication method. The contrast between Fig. 3.46 and 3.47 is evident which

depicts the effect of mutual coupling and its adverse effects.

The mean square error for the polar plots in Fig. 3.33 has been calculated in the Fig.

3.48 below.
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Figure 3.48: Mean Square Error for the compensation of circular array of four dipoles.

The error has been calculated for every degree in φ where the reference line is zero line.

It can be seen that from 0◦ to 50◦ the error in the compensated pattern is less than 10%

and then the error is zero till 250◦. The maximum error is between 250◦ and 350◦ which is

again less than 20%. These errors are in the back lobe of the radiation pattern where as in

the main beam perfect compensation has been achieved. Whereas, the error in the original

pattern is more than 100% between 200◦ to 360◦.
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Chapter 4

Conclusions

In this dissertation mutual coupling for thin wire antennas has been compensated. With

the same antenna design mutual coupling can be compensated successfully by just modify-

ing excitation voltages. Piecewise sinusoidal Galerkins method is the best known moment

method procedure for thin wire antennas and scattering problems in free-space. Magnetic

Frill modeling of the source is also an accurate model which has been used in this work. Com-

pensation for identical, non-identical, circular, and 3-Dimensional arrays has been achieved.

The results have been verified using commerical software HFSS which are in good agree-

ment. However, there are some limitations to the method that has been implemented in this

dissertation, which are listed below:

� It can be used to compensate for mutual coupling in compact antenna arrays that are

less than or equal to λ/2 in length.

� Applicable to transmitting antennas, not receiving antennas but can be extended.

� Applied to thin wire antennas but can be extended.

� An approximate method, because we use thin wire antennas, and solve by numerical

methods (which are approximate themselves).

� Accuracy of the solution depends on the accuracy of S parameters.

� S parameters depends on accurate computation of impedance (Moment Matrix).

Future research work will focus on using exicitations of different amplitudues in planar arrays,
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e.g., binomial, triangular, uniform etc and study the effect of these different excitations on

the compensation. Increasing the number of elements in the array and studying the effects of

coupling and compensation. Implementing this technique for receiving antenna arrays such as

massive MIMO systems. This technique can be extended to receiving antennas by studying

the effect of mutual coupling as a function of direction of arrival. Accurate estimation

of direction of arrival is important for massive MIMO systems. In conclusion, this study

provides a fundamental understanding of the effects of mutual coupling in antenna arrays

and facilitates the design of corresponding compensation techniques in practical arrays.
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Appendix A

Thin wire approximation

Consider a wire as shown in Fig. A.1 of length L and radius a illuminated by an incident

plane wave. Since it is a highly conducting wire having a conductivity σ −→∞ we can say

that the skin depth is zero since δ = 1√
πµoσf

. Then we can deduce that all the current is

flowing on the surface of the conductor and inside the fields are zero. A surface equivalent

model can be seen in Fig. A.2.

Figure A.1: A wire scatterer of length L and radius a illuminated by an incident plane wave.
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The equivalent surface current Js on (the fictitious surface) S in Fig. A.2 is actually the

same as the physical current that is induced on the surface of the perfectly conducting wire

in the original problem shown in Fig. A.1. Tangential component of the E-field is continuous

and for PEC it is equal to zero.

Etan = 0 on S

This Js, radiating into the unbounded medium (εo, µo), cancels the incident field at internal

points ( to S ), to give the null field inside S and gives the correct fields outside S.

Figure A.2: Surface equivalence model with equivalent surface current density Js in free space.

Then

Einc
tan + Es

tan(Js) = 0 on S (A.1)

Es
tan(Js) = −Einc

tan on S (A.2)

Js is a surface current distribution and can vary with z and ϕ if it is a thick antenna.However,

if the antenna is very thin i.e., a � λ and a � L then the current has no variation in ϕ
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direction and varies only along z. When E-field has only z-component then the following

equation should be solved.

Es
z(Jz) = −Einc

z on S (A.3)

Furthermore, it is not feasible to calculate E-field produced by a current on the surface right

at the surface because it is difficult to solve numerically and the integral goes to infinity.

Hence, in order to remove the numerical complication due to singularity the surface current

density is reduced to a line current by shrinking it to the axis of the wire. Henceforth, Eq.

A.3 reduces to the following equation

Es
z(I

′

z) = −Einc
z on S (A.4)

The left hand side of Eq. A.4 is the z-component of the E-field produced by a current I
′
z ,

which flows on the axis of the wire, at a matched point which is on the surface of the wire

at ρ = a. This equivalent filamentary line source can be seen in Fig. A.3.

Figure A.3: Equivalent filamentary line source for a z-directed wire when wire radius a� λ [1].

Equation A.4 is called EFIE( Electric Field Integral Equation). This is the exact equation

which is solved approximately using method of moments. It can be written as,∫
I(z

′
)K(z, z

′
)dz

′
= −Ei

z (A.5)
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Here K(z, z
′
) is the Kernel of the integral equation in A.5. The integral in (A.5) is the

z-component of the electric field produced by the current I(z
′
) on the axis of the antenna, at

a point on the surface of the antenna. This point has cylindrical co-ordinates of ρ = a, φ = 0

and z. The right hand side of (A.5) is the z-component of the incident field at the same

point on the surface of the antenna. This field may be due to an incident plane wave or it

may be produced by a voltage source at the center of the antenna. In this work we assume

a voltage source as the excitation. We model this source by a magnetic frill current.

The unknown current can be written as

I(z′) =
N∑
n=1

InFn(z′) (A.6)

where Fn(z′) denotes the nth (known) expansion function or basis function, and In is the un-

known expansion coefficient to be found. Possible expansion functions include entire domain

sinusoidal functions, sub-domain pulses, and triangular or piecewise sinusoidal functions as

shown in Fig. A.4.
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(a)

(b)

(c)

Figure A.4: Expansion functions. a)“Staircase” approximation to an actual current distribution.

b) Set of overlapping triangular functions. c) Set of overlapping piecewise sinusoidal functions [1].

The basis function should reasonably approximate the unknown function over the given

interval. Together the basis functions should be able to satisfy the integral equation and the

boundary conditions. These are the functions which can be used to represent the current

on the thin wire. Now we know that the current is zero at the ends of the wire and has

an approximate sinusoidal distribution with maximum at the centre. The weighted sum of

basis functions is used to represent the unknown current in MoM. One of the most useful

functions in moment method solutions of thin wire problems is the piecewise sinusoid shown

in Fig. A.5.
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Figure A.5: Piecewise sinusoidal expansion function [1].

It may be expressed mathematically for z-directed segments by,

Fn(z) = ẑ
sinβ(z − zn−1)
sinβ(zn − zn−1)

zn−1 ≤ z < zn (A.7)

Fn(z) = ẑ
sinβ(zn+1 − z)

sinβ(zn+1 − zn)
zn ≤ z < zn+1 (A.8)

Once we decide on the expansion functions Fn(z′), we put Eq. A.6 into Eq. A.5 to get

−
L/2∫

−L/2

K(z, z′)
N∑
n=1

InFn(z′)dz′ = Ei
z(z)

or

−
N∑
n=1

In

 L/2∫
−L/2

K(z, z′)Fn(z′)dz′

 = Ei
z(z) (A.9)

Note that the quantity in the square brackets is the z-component of the electric field (at a

point z on the surface S) due to a known electric current distribution Fn(z′) along the z-axis.

If Fn(z′) is a sub-domain basis function (that exists only in a portion 4z′n), then the above

integral will reduce to ∫
4z′n

K(z, z′)Fn(z′)dz′

If we enforce Eq. A.9 at discrete points zm (point-matching):

−
N∑
n=1

In

∫
4z′n

K(zm, z
′)Fn(z′)dz′ = Ei

z(zm) (A.10)
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If Fn is the piecewise sinusoidal function of Fig. A.5, the integral in (A.10) is given by [17],

Ez = −j30Im(
e−jβR1

R1

+
e−jβR2

R2

+ 2 cos βH
e−jβr

r
) (A.11)

Here Im is a constant equal to the maximum value of Fn at its center. R1 is the distance

between the top of Fn and the field point z. R2 is the distance from the bottom of Fn to the

point z, and r is the distance from the center of Fn to z as shown in Fig. B.1. H is the half

length of the domain of Fn.
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Appendix B

Formulation of the Z matrix for N-segment so-

lution

Figure B.1: Wire segment along z-axis [2].
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In this work we use Galerkin’s method. Then elements of the generalized impedance matrix

are given in general for z-directed segments by,

Zmn = −
zm+1∫
zm−1

Im · Es
ndz

= −

 zm∫
zm−1

sin β(z − zm−1)
sin(β∆zm)

+

zm+1∫
zm

sin β(zm+1 − z)

sin(β∆zm)

 j30

sin(β∆zn)

·
[
e−jβRn−1

Rn−1
− 2 cos(β∆zn)

e−jβRn

Rn

+
e−jβRn+1

Rn+1

]
dz

(B.1)

where,

The quantities Rn−1, Rn, and Rn+1 are shown in Fig. B.1 and defined below.

Rn−1 =
√
ρ2 + (z − zn−1)2 , Rn =

√
ρ2 + (z − zn)2

Rn+1 =
√
ρ2 + (z − zn+1)2

(B.2)

∆zn = zn − zn−1 = zn+1 − zn, ∆zm = zm − zm−1 = zm+1 − zm (B.3)

Equation (B.1) maybe evaluated without difficulty by numerical integration. However,

when ρ = a and a is quite small (i.e., wires of very small radius) it may be preferable to

carry out the integration in the form of sine “Si” and cosine “Ci” integrals.

Si(x) =

x∫
0

sint

t
dt (B.4)

Ci(x) = −
∞∫
x

sint

t
dt (B.5)

When this is done, the elements of Zmn are given by Zmn = Rmn + jXmn where,
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Rmn =
15

sin(β∆zm) sin(βzn)

[cos β(zn−1 − zm−1){Ci(v0) + Ci(u0)− Ci(u1)− Ci(v1)}

+ sin β(zn−1 − zm−1){Si(v0)− Si(u0) + Si(u1)− Si(v1)}

+ cosβ(zn+1 − zm−1){Ci(v4) + Ci(u4)− Ci(u5)− Ci(v5)}

+ sin β(zn+1 − zm−1){Si(v4)− Si(u4) + Si(u5)− Si(v5)}

− 2 cos(β∆zn) cos β(zn − zm−1){Ci(v2) + Ci(u2)− Ci(u3)− Ci(v3)}

− 2 cos(β∆zn) sin β(zn − zm−1){Si(v2)− Si(u2) + Si(u3)− Si(v3)}

+ cos β(zn−1 − zm+1){Ci(v6)− Ci(v1) + Ci(u6)− Ci(u1)}

+ sin β(zn−1 − zm+1){Si(v6)− Si(u6) + Si(u1)− Si(v1)}

+ cos β(zn+1 − zm+1){Ci(v8)− Ci(v5)− Ci(u5) + Ci(u8)}

+ sin β(zn+1 − zm+1){Si(v8)− Si(u8) + Si(u5)− Si(v5)}

− 2 cos(β∆zn) cos β(zn − zm+1){Ci(v7)− Ci(v3)− Ci(u3) + Ci(u7)}

− 2 cos(β∆zm) sin β(zn − zm+1){−Si(u7) + Si(v7) + Si(u3)− Si(v3)}]

(B.6)

u0 = β[
√
ρ2 + (zn−1 − zm−1)2 + (L)(zm−1 − zn−1)] (B.7a)

u1 = β[
√
ρ2 + (zn−1 − zm)2 + (L)(zm − zn−1)] (B.7b)

u2 = β[
√
ρ2 + (zn − zm−1)2 + (L)(zm−1 − zn)] (B.7c)

u3 = β[
√
ρ2 + (zn − zm)2 + (L)(zm − zn)] (B.7d)

u4 = β[
√
ρ2 + (zn+1 − zm−1)2 + (L)(zm−1 − zn+1)] (B.7e)

u5 = β[
√
ρ2 + (zn+1 − zm)2 + (L)(zm − zn+1)] (B.7f)

u6 = β[
√
ρ2 + (zn−1 − zm+1)2 + (L)(zm+1 − zn−1)] (B.7g)

u7 = β[
√
ρ2 + (zn − zm+1)2 + (L)(zm+1 − zn)] (B.7h)

u8 = β[
√
ρ2 + (zn+1 − zm+1)2 + (L)(zm+1 − zn+1)] (B.7i)

and L = +1. The vi’s are found in similar manner as (B.7) with L = −1. Xmn can be

obtained by replacing Ci(x) by -Si(x) and Si(y) by Ci(y) in the expression for Rmn. The

piecewise sinusoidal Galerkin method is the best known moment procedure for thin wire

antenna and scattering problems in free space. The piecewise sinusoidal Galerkin method

applies equally well to arbitrary configurations of wires [2].
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Appendix C

Source Modeling

Consider Fig. C.1a which shows a coaxial line feeding a monopole on a ground plane. We can

replace the ground plane and the coaxial aperture with a frill of magnetic current assuming

a purely dominant mode distribution (TEM) in the coaxial aperture, as shown in Fig. C.1b

Since the assumed form of the electric field in the aperture is,

Eρ′(ρ
′) =

1

2ρ′ln(b/a)
(C.1)

the corresponding magnetic current distribution is,

Mφ′ =
−1

ρ′ln(b/a)
(C.2)

from which it can be shown that the electric field on the axis of the monopole is,

Ei
z(0, z) =

1

2ln(b/a)

(
e−jβR1

R1

− e−jβR2

R2

)
(C.3)

where,
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(a) (b)

Figure C.1: a) Coaxial line feeding a monopole through a ground plane. b) Mathematical model

of (a) [1].

R1 =
√
z2 + a2 (C.4a)

R2 =
√
z2 + b2 (C.4b)

if the frill center is at the coordinate origin [1]. Elements of the generalized voltage matrix

are given in general by ,

Vm = −
zm+1∫
zm−1

Im · Ei
zdz

Vm = −

 zm∫
zm−1

sin β(z − zm−1)
sin(β∆zm)

+

zm+1∫
zm

sin β(zm+1 − z)

sin(β∆zm)


· 1

2ln(b/a)

[
e−jβR1

R1

− e−jβR2

R2

]
dz

(C.5)
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