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SOME RELATED FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS ON
TWO METRIC SPACES

BICER O.}, OLGUN M.2, ALYILDIZ T.2, ALTUN L.3

The definition of related mappings was introduced by Fisher in 1981. He proved some theorems
about the existence of fixed points of single valued mappings defined on two complete metric spaces
and relations between these mappings. In this paper, we present some related fixed point results for
multivalued mappings on two complete metric spaces. First we give a classical result which is an
extension of the main result of Fisher to the multivalued case. Then considering the recent technique
of Wardowski, we provide two related fixed point results for both compact set valued and closed
bounded set valued mappings via F-contraction type conditions.
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1 INTRODUCTION AND PRELIMINARIES

The well-known Banach contraction mapping principle plays crucial role in the functional
analysis and ensures the existence and uniqueness of a fixed point on a complete metric space.
By considering this principle several authors generalized it in different ways and this thought
has opened that there exist various types of contractions using different mappings in two met-
ric spaces. Some of authors wonder whether each of two contraction mappings on two com-
plete metric spaces has a fixed point and what is the relation between them.

After 1981, Fisher and others gave the definition of related mappings and proved that they
have fixed points which are related to each other [4-7].

Definition 1. Let (X,d) and (Y, p) be two metric spaces, T : X — Y and S : Y — X are two
mappings. If there exist x € X and y € Y such that Tx = y and Sy = x, then the pair (T, S) is
called related mappings.

Fisher [4] proved the theorem given in the following and then most of authors generalized
it using different contractions on metric spaces.

Theorem 1. Let (X,d) and (Y, p) be two complete metric spaces, T : X — Y and S :Y — X
mappings satisfying the following equations:

d(Sy,STx) < cmax{d(x,Sy),d(x,STx),p(y, Tx)},

p(Tx, TSy) < cmax{p(y,Tx),p(y, TSy),d(x,Sy)}
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forallx € X andy € Y, where0 < ¢ < 1. Then ST has a unique fixed point z € X and TS has
a unique fixed pointw € Y. Further T and S are related mappings.

Let (X, d) be a metric space. P(X) denotes the family of all nonempty subsets of X, C(X) de-
notes the family of all nonempty closed subsets of X, CB(X) denotes the family of all nonempty
closed and bounded subsets of X, and K(X) denotes the family of all nonempty compact sub-
sets of X. It is clear that, K(X) C CB(X) C P(X). For A, B € CB(X), let

H(A, B) = max { sup D(x, B), sup D(y, A) },
x€A yEB

where D(x,B) = inf{d(x,y) : y € B} and D(y, A) = inf{d(x,y) : x € A}. Then H is called
generalized Pompeiu-Hausdorff distance on C(X) and it is well known that H is a metric on
CB(X), which is called Pompeiu—Hausdorff metric induced by d. In 1969, Nadler [9] gave the
definition of multivalued contraction using Hausdorff metric and proved that every multival-
ued contraction mapping has a fixed point in complete metric spaces.

Theorem 2 ([1]). Let (X,d) be a metric space, A and B are nonempty subsets of X. If A is
compact then there exists p € A such that D(A, B) = D(p, B).

Remark 1. Let (X, d) be a metric space, x € X, and A is a nonempty compact subset of X. Then
there exists a € A such thatd(x,a) = D(x, A).

Lemma 1 ([9]). Let (X, d) be metric space, A,B € CB(X) and a € A. Then there existsb € B
such that
d(a,b) < gH(A,B) (1)

forallq > 1.

Theorem 3 ([9]). Let (X, d) be a complete metric space and T : X — CB(X) be a mapping. If
there exists ¢ € (0,1) such that
H(Tx, Ty) < cd(x,y)

forall x € X, then T has a fixed point.

In 2012 Wardowski [8] introduced a new concept of F-contraction on complete metric space.
Let F : (0,00) — R be a function. Consider the following conditions:

(F1) F is strictly increasing, i.e., for all o, f € (0,00) such that « < B, F(a) < F(B);

(F2) for each sequence {a,} of positive numbers lgn ay = 0if and only if 1211 F(ay) = —oo;
n—oo n—o00

(F3) there exists k € (0,1) such that lim a*F(x) = 0;

a—0t
(F4) F(inf A) = inf F(A) forall A C (0, 0) with inf A > 0.

I denotes the set of all functions satisfying (F1)—(F3) and F .« denotes the set of all functions
satisfying (F1)—(F4). It is clear that f . C F.

Definition 2 ([2,3]). Let (X, d) be a metric space and T : X — CB(X) be a mapping. Then T is
a multivalued F-contraction if F € [ and there exists T > 0 such that

Vx,y € X [H(Tx,Ty) > 0= 1+ F(H(Tx, Ty)) < F(d(x,y))].
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Theorem 4 ([2,3]). Let (X, d) be a complete metric space and T : X — CB(X) be a multivalued
F-contraction. Then T has a fixed point in X.

The main purpose of this paper it to present some related fixed point results for multival-
ued mappings on two complete metric spaces.

2 MAIN RESULT

First we present the multivalued version of Theorem 1.
Let (X,d) be a metric space, T : X — CB(Y) and S : Y — CB(X) be two mappings. Then
for u € X we denote STu by
STu = U Sw.

weTu
Similarly we can denote the set TSv for v € Y. If there exists a point u € X such that u € STu,
then u is called fixed point of ST.

Theorem 5. Let (X, d) and (Y, p) be two complete metric spaces, T : X — CB(Y) andS:Y —
CB(X) be two mappings satisfying the following inequalities

H1(Sy,Sz) < cmax{D;(x,Sy), D1(x,5z2),0(y,z)}, (2)
Hy(Tx, Tw) < cmax{Dy(y, Tx), Dy(y, Tw),d(x,w)}, 3)

forallx € X,y €Y,z € Tx andw € Sy, where0 < c < 1, Hy and H; are Pompeiu-Hausdorff
metrics on CB(X) and CB(Y)) respectively. Then ST has a fixed pointu € X and TS has a fixed
pointv € Y. Further, u € Sv andv € Tu.

Proof. Let xg be an arbitrary point in X. As Sy and Tx are nonempty forallx € Xandy € Y,
we can choose y; € Txg and x; € Sy;. If x; € STxy and y; € TSy;, then x; and y; are fixed
points of ST and TS respectively. Now assume that x; & STx; or y1 € TSy;.

Let g > 1 such that gc < 1. Applying inequalities (1) and (3), there exists y, € Tx; such that

qHa(Txo, Tx1) < qemax{Da(y1, Tx0), D2(y1, Tx1),d(x0, x1) }
gc max{H(Txo, Tx1),d(xo,x1)} < ged(xo, x1)

p(y1,y2) <
<

from which it follows that
Py, y2) < qed(xo, x1)-
Now applying inequalities (1) and (2), there exists x, € Sy, such that

d(x1,x2) < qH1(Sy1,Sy2) < gcmax{D1(x1,Sy1), D1(x1,Sy2), 0(y1,¥2)}
S qc max{H1 (Syll S]/Z)/ P(ylz ]/2)} = qCP(]/lz ]/2)
from which it follows that
d(x1,x2) < qep(y1,y2)-
By applying inequalities (1) and (3), there exists y,,.1 € Tx; such that

qHy(Tx,—1, Txy) < gcmax{D2(yn, Txy—1), Da(yn, Txn), d(xp_1,%xn)}
gemax{Hy(Tx,_1, Txy),d(x,_1,%n)} < qecd(x,_1,%n)

oW Ynr1) <
<
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for all n € IN, and similarly, applying inequalities (1) and (2), there exists x,,11 € Sy, 11 such
that

qH1(SYn, Syn+1) < qemax{D1(xn, Syu), D1(Xn, SYn+1), 0(Yn, Yns1)}
ge max{ H1(SYun, SyYn+1), 0(Yn,Yn+1)} = 9c0(Yn, Yn+1)

from which it follows that

(Y, Yns1) < gH2(Tx, 1, Txn) < ged(x,1,%0) < -+ < (qe)"Ld(xg, x1) (4)

d(xn, xp41) <
<

and
A(xn, Xn1) < (90)(Yn, Yus1) < (96)%d(xn—1,%0) < -+ < (g0)"2d(x0, 21). (5)
Letting n — oo in (4) and (5) we obtain

lim d(x,, x,+1) =0  and lim o(yn, Yy+1) = 0.

n—00 n—00
In order to show that {x, } and {y, } are Cauchy sequences consider m, n € IN such that m > n.
From (5) and triangular inequality we write

m—1 m—1 ) 00 )
d(xn, xm) <Y d(xi,xi41) < Y (90)2d(x0,x1) < d(x0,x1) Y (q0)3,
i=n i=n i=n

where gc € (0,1). From the convergence of the series Y (gc)'*? we obtain that {x, } is Cauchy
i=—2
sequence in X. Similarly using (4), we can see that {y, } is Cauchy sequence in Y. Since (X, d)

and (Y, p) are complete metric spaces, the sequences {x,} and {y,} converge to some point
u € X and v € Y respectively.

Now suppose u ¢ Svorv ¢ Tu. If u ¢ Sv, then there exists a number 1y € IN such that
D;(Sv, x,41) > 0 for n > ng. Therefore, applying inequality (2), we have

D1(Sv,xy11) < Hi(Sv,Syu41) < cmax{D1(x,, Sv), D1(xn, Syni1), 0(0, Yns1)}
< cmax{D1(xn, Sv),d(xn, Xp11), p(V, Y1) }-
Letting n — oo we get
D1(Sv,u) < ¢D1(u, Sv),

which is a contradiction. Therefore we get u € Sv. If v ¢ Tu, then similar contradiction can be
obtained and we get v € Tu.

Hence, we can write u € Sv C STuand v € Tu C TSv, so u and v are fixed points of ST
and TS respectively. O

Now we introduce the concept of multivalued related F-contractions on two metric spaces,
then we provide some results for such mappings.

Definition 3. Let (X, d) and (Y, p) be two metric spaces, T : X — CB(Y) and S : Y — CB(X)
be two mappings. We say that T and S are multivalued related F-contractions if there exist
F € [ and T > 0 such that

Hi(Sy,Sz) > 0= t+ F(H1(Sy,Sz)) <
Hy(Tx, Tw) > 0= 7+ F(Hy(Tx,Tw)) <
forallx € Xandy €Y,z € Tx and w € Sy, where

Mi(x,y) = max{Di(x,Sy), Di(x,52),0(y,2)},
My (x,y) = max{D;(y, Tx), D2(y, Tw),d(x,w)}.

F(Mi(x,y)), 6)
F(Mz(x,y)) (7)
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Before we give our main results, we recall the following. Let X and Y be two metric spaces.
Then, a multivalued mapping T : X — P(Y) is said to be upper semicontinuous (lower semi-
continuous) if the inverse image of closed sets (open sets) is closed (open). A multivalued
mapping is continuous if it is upper as well as lower semicontinuous. If T : X — P(Y) is
an upper semicontinuous and {x,}, {y»} be two sequences in X and Y respectively such that
Xp — X, Yp — yand y, € Tx,, theny € Tx.

New we can present the following assertion.

Theorem 6. Let (X,d) and (Y, p) be two complete metric spaces, T : X — K(Y) and S : Y —
K(X) be two multivalued related F-contractions. If T and S are upper semicontinuous or F is
continuous, then ST has a fixed point u € X and TS has a fixed pointv € Y. Further, v € Tu
and u € So.

Proof. Let xg be an arbitrary point in X. As Sy and Tx are nonempty forallx € X andy € Y,
we can choose y; € Txp and x; € Syj. Since Tx; is compact then there exists y, € Tx; such
that

p(y1,y2) = Da(y1, Tx1).

If Dy(y1, Tx1) =0, theny; € Tx; C TSy; and x1 € Sy; C STx; and thus the proof is complete.
Now suppose that D, (y1, Tx1) > 0. From (F1) and (7), there exists T > 0 such that

F(D2(y1, Tx1)) < F(H2(Txo, Tx1)) < F(Ma(x0,y1)) — T < F(d(x0,%1)) — 7.
Therefore we obtain

F(p(y1,y2)) < F(H2(Txo, Tx1)) < F(d(x0,x1)) — T. (8)

In a similar way, since Sy, is compact then there exists x, € Sy, such that

d(x1, xz) = Dl(x1, S]/z)

If D1(x1,Sy2) = 0, then x1 € Sy, C STxq and y» € Tx; C TSy, thus the proof is complete.
Now suppose that D1 (x1, Syz) > 0. From (F1) and (6), there exists T > 0 such that

F(D1(x1,Sy2)) < F(H1(Sy1,Sy2)) < F(Mi(x1,1)) =7 < F(p(y1,42)) — .

Therefore we obtain

F(d(x1,x2)) < F(H1(Sy1,Sy2)) < F(o(y1,¥2)) — T ©)

By applying inequalities (8) and (9), we can construct two sequences {x,} and {y, } such that
Xn € Syy and y,41 € Tx, for all n € IN satisfying

F(d(xXn, %11)) < F(0(yn,Yni1)) — T < F(d(xqo1, %) — 27
: (10)
< F(p(y1,2)) — (21— 1)T < F(d(x0,x1)) — 2n7.

Letting n — oo and using (F2), we get

lim d(xp,x,41) =0 and  lim p(yu, yyui1) = 0.

n—o0 n—o0
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Now denote oy, = d(x,, x,11) forn =0,1,2,- - -. From (F3) there exists k € (0,1) such that

lim a«fF(a,) = 0.

n—o0

By (10), the following holds for all n € IN
afF(ay) — afF(ag) < —2aknt < 0. (11)

Letting n — oo in (11), we get
lim nak =0. (12)

n—o0
From (12) there exists 117 € IN such that naX < 1 for all n > 1. So we have
1

0(;/1 S 1
nk

(13)

for all n > ny. In order to show that {x,} is Cauchy sequence consider m,n € N such that
m > n. From (13) and triangular inequality we can write

d(xn,xm) < Z xl/ xl+1 Z Z

»\)—-| —

By the convergence of the series Z we have that {x,} is Cauchy sequence in (X,d). Sim-
i=1 lk
ilarly we can see that {y, } is Cauchy sequence in (Y, p). Since (X,d) and (Y, p) are complete

metric spaces, the sequences {x,} and {y,} converge to some point u € X and v € Y respec-
tively.

Now suppose T and S are upper semicontinuous. Since x, € Syu, Yn+1 € TXn, Xp — U
and y, — v, we have u € Sv and v € Tu. Therefore u and v are fixed points of ST and TS,
respectively.

Now suppose F is continuous and u ¢ Svor v ¢ Tu. If u ¢ Sv, then there exists np € IN
such that D1(Sv, x,41) > 0 for n > ng. Therefore, applying inequality (6) and (F1), we have

F(D1(Sv,xp11)) < F(H1(S0,Syp41)) < F(Mi(xp,0)) — 7T
< F(max{D1(xs, 5v), D1(xn, Syn+1),0(0, yni1)}) — T
< F(max{Di (s, 59),d(xn, %n1), p(0, Y 11)}) — 7.

Letting n — oo and using the continuity of F, we get
F(D1(Sv,u)) < F(Dy(u,Sv)) —
which is a contradiction. Therefore we get u € Sv. If v ¢ Tu, then similar contradiction can be

obtained and we get v € Tu. Hence, we can write u € Sv C STu and v € Tu C TSv, so u and v
are fixed points of ST and TS respectively. O
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The following example shows that the compactness of Tx and Sy can not be relaxed in
Theorem 6.

Example 1. Let (X,d) and (Y, p) be two metric spaces such that X = [0,1], Y = [—1,0] and
d = p with
0, x =y,
d(x,y) =
Y { T+|x—yl, x#y.

Define two mappings T : X — P(Y) and S : Y — P(X) by

Qy, xe€lx, { Ix, y¢€ly,
Tx = and Sy =
{ IY/ X € QX/ 4 QX/ y € QY/

where Q4 and I, are rational and irrational numbers in A, respectively. Note that (X,d) and
(Y, p) are complete metric spaces. Moreover, every subsets of X as well as Y are closed but
noncompact because of 1; and 1, are discrete topologies. This also shows that T and S are
upper semicontinuous. Furthermore, the spaces X and Y are bounded and so Tx and Sy are
closed and bounded. Now define F : (0,00) — R by

Ina, a <1
F — 4 — 4
() { a, oa>1,

then it is clear that F € F \F «. Now we show that the inequalities (6) and (7) are satisfied with
T = 1. First note that, ifx € X,y € Y and z € Tx with Hy(Sy,Sz) > 0, thenx € Ix andy € Iy
orx € Qx and y € Qy. Hence, we have to consider the following two cases.

Case 1. Letx € Ix andy € Iy. Then for all z € Tx = Qy, we have H;(Sy,Sz) =1 > 0 and

T+ F(Hi(Sy,5z)) =1+ F(1) =1 <14y —z| =p(y,2z) = F(p(y,2)) < F(Mi(x,y)).
Case 2. Letx € Qx and y € Qy. Then forallz € Tx = Iy, we have H1(Sy,Sz) =1 > 0 and
T+ F(Hi(Sy,5z)) =1+ F(1) =1 <14y —z| =p(y,2) = Flp(y,2)) < F(Mi(x,y)).

Therefore (6) holds. Similarly, we can see that (7) holds. As a consequence, all conditions of
Theorem 6 except of the compactness of Tx and Sy are satistied, but TS and ST do not have
tixed points.

Remark 2. Considering the family | . in Theorem 6, we can relaxed the compactness condition
on Tx and Sy as closed and boundedness. Therefore, it gives us the following theorem.

Theorem 7. Let (X,d) and (Y, p) be two complete metric spaces, T : X — CB(Y) and S :
Y — CB(X) be two multivalued related F-contractions with F € [ .. If T and S are upper
semicontinuous or F is continuous, then ST has a fixed point u € X and TS has a fixed point
v € Y. Further,v € Tu and u € Sv.

Proof. Let xop € X. As Sy and Tx are nonempty for all x € X and y € Y, we can choose
y1 € Txp and x1 € Syp. If Da(y1, Tx1) = 0 then y; € Txy. So we obtain y; € Tx; C TSy, and
x1 € Sy; C STx; mean that x; and y; are the fixed points of ST and TS respectively. Now let
Dy (y1, Tx1) > 0. Since Dy(y1, Tx1) < Ha(Txg, Tx1), we have

F(Dz(yl, Tx1)> S F(Hz(TXO, Tx1)> S F(Mz(XO,y1>> — T S F(d(xo,xl)) — T.
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From (F4) we write

F(Da(ys, T)) = inf Flp(y1,y)) < Fd(xo,31)) ~ . (14)

From (14) there exists y € Tx; such that

F(o(y1,v2)) < F(d(xo,31)) — .

In the similar way, if D1(x1,Sy2) = 0, then x; € Sy,. So we get x; € Sy, C STxj and y, €
Tx; C TSy; mean that x; and y; are the fixed points of ST and TS respectively. Otherwise,
since D1(x1, Sy2) < H1(Sy1,Sy2), we have

F(D1(x1,Sy2)) < F(H1(Sy1,Sy2)) < F(M(x1,y1)) — T < F(p(y1,¥2)) — T.

Hence, from (F4) we obtain

E(Di(x1,892)) = inf F(d(x,x)) < F(p(yn,y2)) — T (15)

xGSyz

Therefore, from (15) there exists x, € Sy, such that
F(d(x1,x2) < Fo(y1,52)) — T
The rest of the proof can be completed as in the proof of Theorem 6. O

If we choose X =Y, S = T and d = p in the above theorems we obtain the following fixed
point results.

Corollary 1. Let (X,d) be a complete metric space, T : X — K(X) be a mapping such that for
allx,y € Xandz € Tx

H(Ty,Tz) >0 = v+ F(H(Ty,Tz)) < F(M(x,y))
holds, where F € F, T > 0 and
M(x,y) = max{D(x, Ty), D(x, Tz),d(y, z)}.
If T is upper semicontinuous or F is continuous, then T? has a fixed point in X.

Corollary 2. Let (X,d) be a complete metric space, T : X — CB(X) be a mapping such that
forallx,y € X andz € Tx

H(Ty,Tz) >0 = 7+ F(H(Ty, Tz)) < F(M(x,y))
holds, where F € F ., T > 0 and
M(x,y) = max{D(x, Ty), D(x, Tz),d(y,z)}.

If T is upper semicontinuous or F is continuous, then T? has a fixed point in X.
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OsHaueHHs OB’ sI3aHMX Biaob6paxkeHb 6yAo BBeaeHO Dimrepom y 1981 p. Bin aAoBiB Aesiki Teo-
peMu TIpo iCHyBaHHsI HEPyXOMIX TOUOK OAHO3HAUHMX BiAOOpakeHb, BM3HAUEHNMX Ha ABOX IIOBHIMX
METPUYHUX IIPOCTOPaX, i BIAHOIIIEHHS MiX IIVIMU BiAOOpakeHHSIMI. Y il pobOTi MM TIOAAEMO Ae-
SIKi pe3yAbTaTy IIPO IIOB’sI3aHy HEPYXOMY TOUKY AASI HaraTO3HaUHMX BiAOOpaXkeHb Ha ABOX IIOBHIMX
MeTpuUHUX ImpocTtopax. CiouaTKy MU AQ€EMO KAACUUHIMI pe3yAbTAT, SIKUI € IPOAOBXEHHSIM OCHOB-
HOTO pe3yabraTy dimrepa A0 6araTo3HayHOro BuIAAKy. IToTiMm, posrasiaaroun HOBY TexHiky Bap-
AOBCBKOT0, 32 AOTIOMOT'OI0 YMOB TUITY F-CTMCKY MM IPOMOHYEMO ABa pe3yAbTaTy PO OB SI3aHy He-
PYXOMY TOUKY SIK AASI KOMITAKTO3HAUHMX BiAOOpakeHb, Tak i AAsT BiaOOpaskeHb, 3HAUEHHSIMI STKIX
€ 3aMKHeHi 06MeXXeHi MHOXIHIL.

Kontouosi cnosa i ¢ppasu: Hepyxoma TOUKa, TIOBHMI MeTPWIHIMI POCTip, F-cTmck.



