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Abstract: Glacial lakes mapping using satellite remote sensing data are important for studying the
effects of climate change as well as for the mitigation and risk assessment of a Glacial Lake Outburst
Flood (GLOF). The 3U cubesat constellation of Planet Labs offers the capability of imaging the whole
Earth landmass everyday at 3–4 m spatial resolution. The higher spatial, as well as temporal resolution
of PlanetScope imagery in comparison with Landsat-8 and Sentinel-2, makes it a valuable data source
for monitoring the glacial lakes. Therefore, this paper explores the potential of the PlanetScope
imagery for glacial lakes mapping with a focus on the Hindu Kush, Karakoram and Himalaya
(HKKH) region. Though the revisit time of the PlanetScope imagery is short, courtesy of 130+ small
satellites, this imagery contains only four bands and the imaging sensors in these small satellites
exhibit varying spectral responses as well as lower dynamic range. Furthermore, the presence of
cast shadows in the mountainous regions and varying spectral signature of the water pixels due to
differences in composition, turbidity and depth makes it challenging to automatically and reliably
extract surface water in PlanetScope imagery. Keeping in view these challenges, this work uses state
of the art deep learning models for pixel-wise classification of PlanetScope imagery into the water
and background pixels and compares the results with Random Forest and Support Vector Machine
classifiers. The deep learning model is based on the popular U-Net architecture. We evaluate U-Net
architecture similar to the original U-Net as well as a U-Net with a pre-trained EfficientNet backbone.
In order to train the deep neural network, ground truth data are generated by manual digitization
of the surface water in PlanetScope imagery with the aid of Very High Resolution Satellite (VHRS)
imagery. The created dataset consists of more than 5000 water bodies having an area of approx.
71 km2 in eight different sites in the HKKH region. The evaluation of the test data show that the
U-Net with EfficientNet backbone achieved the highest F1 Score of 0.936. A visual comparison with
the existing glacial lake inventories is then performed over the Baltoro glacier in the Karakoram range.
The results show that the deep learning model detected significantly more lakes than the existing
inventories, which have been derived from Landsat OLI imagery. The trained model is further
evaluated on the time series PlanetScope imagery of two glacial lakes, which have resulted in an
outburst flood. The output of the U-Net is also compared with the GLakeMap data. The results show
that the higher spatial and temporal resolution of PlanetScope imagery is a significant advantage in
the context of glacial lakes mapping and monitoring.
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1. Introduction

Mapping and monitoring glacial lakes in the high mountain ranges are essential due to the
vulnerability of the downstream population to the glacial lakes outburst floods (GLOF). The changes
in the number and size of glacial lakes are also linked to climate change and it is, therefore, important
to map these variations in order to study the impact of climate change [1]. The high mountain ranges
of Hindu Kush, Karakoram and Himalaya (HKKH) contain a large number of glaciers and glacial
lakes. The majority of the glaciers in the HKKH have shown negative mass balance in the past decades
and the thinning and retreat is higher in the eastern Himalaya as compared to the Karakoram range [2].
The retreating glaciers, as well as the warming climate, has increased the number and size of glacial
lakes. The number of GLOF events have also increased in response to the glacier retreat and thinning.
Glacial lakes are of different types e.g., moraine dammed lake, glacial erosion lake, supraglacial lake
and ice-blocked lake [3]. The outburst flood is often triggered by an avalanche depositing into the lake
or by the failure of moraine or ice dammed lakes [4,5]. The number of lakes as well as the potentially
dangerous lakes in this region have been increasing [4,6]. Many of the lakes are at a high elevation
without any suitable access. A recent GLOF event in the Chitral district of the Hindu Kush range was
caused by a newly formed glacial lake at an elevation of 4500 m [7]. Lakes have also been formed due
to the glacier surge in which the glacier blocks the river path and creates a glacier dammed lake [8,9].
In the recent past, the surge of the Khordopin glacier and the Shishper glacier in the Karakoram range
have created such lakes and the release of water from these lakes caused flooding in the downstream
area [8,10,11]. Therefore, it is essential to find automatic methods for mapping surface water using
remote sensing imagery.

In the optical remote sensing domain, the freely available imagery from Sentinel-2, Landsat-8 and
ASTER can potentially be utilized for the purpose of surface water mapping [12–16]. Among these data
sources, the Sentinel-2A,2B offers the highest spatial resolution of 10 m along with a shorter revisit time
of five days. However, the clouds may prevent a clear image for a longer duration, which may restrict
frequent monitoring of the glacial lakes. On the other hand, the cubesat constellation from Planet Labs
provides daily global coverage with 3 m spatial resolution and is, therefore a very important data source
for mapping and monitoring glacial lakes [10,17]. The Planet Labs small satellite constellation consists
of 130 + 3U cubesats with a majority of the satellites in Sun Synchronous orbit, capturing scenes in four
bands i.e., blue (455–515 nm), green (500–590 nm), red (590–670 nm) and near-infrared (780–860 nm).
The PlanetScope imagery has a scene footprint of approx. 24.4 km × 8.1 km. The satellites capture
scenes after an approximately one-second interval, resulting in a small overlap between consecutive
scenes. The main challenges involved in working with the PlanetScope imagery as compared to
Sentinel-2 or Landsat-8 is that the PlanetScope imagery consists of only four bands, the imaging
sensors in the small satellites have a lower dynamic range and the spectral responses of these satellites
show variations even after the sensor calibration as shown in Figure 1. Therefore, the focus of
this study is on the exploration of 4-band PlanetScope imagery for surface water extraction and its
accuracy assessment in the context of glacial lakes mapping and monitoring in the HKKH region.
The PlanetScope imagery has previously been used in surface water mapping [18], water velocity
computation [19], bathymetry [20,21] and benthic habitat monitoring [22]. Planet Labs offer limited free
data access to researchers and academicians through their education and research program. The data
used in this work have been acquired through this education and research program.

The extraction of water in multi-spectral satellite imagery is often implemented using the
Normalized Difference Water Index (NDWI) [23] or Modified Normalized Difference Water Index
(MNDWI) [24]. These indexes are based on the decrease in the reflectance of water in the NIR and
SWIR wavelengths as compared to the visible spectrum. NDWI is computed using the normalized
difference of the Green and the NIR bands. MNDWI is computed from the normalized difference of
the Green and MIR [23] or the SWIR bands and tends to perform better than NDWI in the built-up
areas. Previous studies on the glacial lakes extraction have also exploited NDWI and MNDWI for
water extraction in multi-spectral remote sensing satellite imagery [25,26]. NDWI has also been used
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for the extraction of water in the PlanetScope imagery [18]. Normalized differences using different
band combinations have also been studied for water fraction mapping [27]. The threshold used for
classifying water from the rest of the pixels is often tuned based on the scene. The selection of the
NDWI or MNDWI threshold is not a trivial task because lakes, even in close proximity, can have
a varying spectral signature depending on the turbidity, composition and depth of lake water [28].
The cast shadows pose as one of the main challenges in the mapping of the water pixels in the
mountainous regions. In such mountainous terrain, the slope derived from the DEM has also been
utilized to remove errors due to shadows [29]. The pixel-based image classification techniques [30,31]
and object-based segmentation [32] have also been used for mapping of surface water. The global
surface water explorer [30] is an automated system that can be used for global mapping of surface water.
However, it is based on the Landsat series, so it has limitations in monitoring glacial lakes dynamics
because of a longer revisit time. Due to difficulties in the automated mapping of the glacial lakes,
there exists no continuously-updated glacial lake inventory for this region. The previous glacial lake
inventories have been developed using manual digitization or require significant human intervention
making frequent updates difficult [29,33–36].
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Figure 1. Top of atmosphere reflectance of four different PlanetScope scenes acquired over lake Imja
Tsho near Mount Everest. The Top of Atmosphere (TOA) reflectance is computed by multiplying the
coefficients given in the metadata file with the 16-bit radiance value. The atmospheric effects are not
compensated in TOA reflectance. The scene id shows the date and time (in UTC) of acquisition along
with the satellite Id. Local time is given along with scene id. The reflectance values are calculated for
5 × 5 pixels neighborhood corresponding to the location in the lake. The surface reflectance product is
not used due to the known issues in computing the surface reflectance of the low surface reflecting
water bodies.

The recent dawn of deep learning has produced remarkable results in various disciplines and
domains [37–39]. The common deep learning architectures for image recognition consists of multiple
convolution layers and are known as Convolutional Neural Networks (CNN). The convolutional
filters are learned from the labeled data during the training process. CNN have been used for various
classification, segmentation and object detection tasks in remote sensing imagery [40]. For pixel-wise
image classification or semantic segmentation, the input to the CNN is an image and the output is
often an image of the same size with class labels for each pixel. This type of CNN are often called
fully convolutional networks as they contain convolution layers throughout the network instead of
the fully connected layers. The U-Net architecture [41] originally presented for biomedical image
segmentation has achieved state-of-the-art results for different image segmentation problems like
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building segmentation, roads extraction and other tasks related to remote sensing image segmentation.
U-Net model has also been used by some of the top-performing architectures in the recent DeepGlobe
challenge [42], Spacenet challenges [43] and IGARSS Data Fusion contest [44] comprising of road
extraction, building segmentation, landcover and semantic 3D reconstruction from satellite imagery.
Due to the difficulties in the automated mapping of surface water, in this work, we explore the potential
of CNN in automated extraction of surface water in 4-band PlanetScope imagery in the context of the
glacial lake monitoring in HKKH.

2. Materials and Methods

2.1. Data

Training deep neural networks usually requires a large number of labeled data. In this work,
we have generated the labeled data by manual digitization of the surface water in the PlanetScope
imagery with the assistance of Very High Resolution Satellite (VHRS) imagery from Google Earth and
ESRI World Imagery basemaps. The aid of the VHRS imagery in the digitization process was essential
because the precise mapping of lake boundary is difficult in PlanetScope imagery as compared to
VHRS imagery. Mapping of supraglaical lakes is especially challenging due to smaller size, mixing
with snow and cast shadows. The PlanetScope imagery with approximately daily coverage is available
from the year 2017. Therefore, the selection of the sites in the HKKH region for digitization was
based on the availability of the very high-resolution imagery from recent years during the summer
to early winter months. Emphasis has been placed on including a variety of landscapes containing
different glacial lake types. The PlanetScope imagery from the same date as the very high-resolution
imagery was downloaded. In some cases, the PlanetScope imagery from different dates was used
because PlanetScope imagery of the same date did not have complete coverage of the area of interest.
An image is a mosaic of multiple PlanetScope scenes covering each location and in several cases,
the mosaic consists of images from multiple satellites. When there was overlap between multiple
PlanetScope scenes, data from only one scene were used for overlapping pixels. The locations of the
digitized images are shown in Figure 2, while details are given in Table 1. Here, the PlanetScope Top of
Atmosphere (TOA) radiance product was used. The total number of digitized polygons was 5177 in an
area of approx. 4200 km2 and the lakes area was approx. 71 km2. The minimum mapping unit was set
to one pixel, which the digitizer can recognize as a water pixel in PlanetScope imagery. So, if there is a
small water body visible in VHRS imagery but not recognizable as water pixel in PlanetScope imagery,
it has been removed.

Table 1. Details of the labeled data as shown in Figure 2. Scenes show the number of PlanetScope
scenes mosaicked together to cover the area of interest.

Location Date Area (km2) Polygons Scenes

Training Sites

1 13 November 2016 257 108 2
2 17, 19, 20 October 2017 1210 1748 30
3 11 October 2019 121 53 3
4 25 May 2019 222 723 6
5 11, 14 July 2017 353 824 6
6 1 July 2017 282 407 3
7 5 August 2018 1620 1109 24
8 17 October 2017 178 46 4

The errors in the ortho-rectification due to topography and the sensor orientation leads to the
difference in the positions of the water pixels in the PlanetScope imagery and the VHRS imagery.
While the errors due to sensor orientation can be modeled as a shift or an affine transformation,
the distortions due to topographic errors can vary over the image and will depend on the angle of the
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image ray vector to the nadir. So, the higher the off-nadir angle, the higher can be the difference in the
corresponding pixels in the VHRS image and the PlanetScope image. Thus, the shift in the digitized
polygons was visually inspected and corrected by overlaying the polygons on the PlanetScope imagery.
The NDWI and the false-color composites were also employed to help the digitizer in delineating the
lake boundaries and determining the shift between the VHRS imagery and the PlanetScope imagery.
Some samples of the digitized water bodies are shown in Figure 3.
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Figure 2. The locations of the images used for creating the datasets overlaid on ESRI Terrain basemap.
Digitized polygons in each location are shown on the respective PlanetScope False Color Composite
FCC bands 4-3-2. The details of the images and digitized area are given in Table 1.

The polygons created by the digitization process were used to generate a binary image mask in
which the foreground pixels (‘1’) represent water while the background pixels (‘0’) represent non-water
pixels. If the water polygon covers more than 50 % of the area of the pixel, then it was set to ‘1’.
An important point to consider here is that all the pixels which belong to water should be ‘1’ in the
output mask used for training the CNN. The water pixels belonging to the rivers and streams were
difficult to delineate. Therefore, we have masked out the image pixels belonging to rivers and streams.
The non-overlapping image tiles of size 256 × 256 were created from the PlanetScope labeled images,
which resulted in 6555 tiles, out of which 20% (1311) image tiles were selected as validation data and
20% (1311) image tiles were selected as test data randomly.

2.2. VGG U-Net Model

The CNN used in this work is based on the U-Net architecture, which contains encoder and
decoder units connected using a shortcut connection, as shown in Figure 4. The encoder units consist
of a typical VGG (network designed by the Visual Geometry Group) type [45] convolution layers
followed by batch norm [46] and the ReLU (Rectified Linear Units) activations and then a max-pooling
layer which downsamples the spatial size of the image. These encoder units extract multi-scale features
from the input image. The decoder units then generate the segmentation mask from these features.
The shortcut connection concatenates the features from the encoder unit with the corresponding
decoder unit, which helps in better localization and information exchange using features at different
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stages of the network. The downsampling is performed by the maxpooling operation with a stride of
2, while the upsampling is performed by increasing the spatial size by a factor of 2 using the bilinear
interpolation. We did not observe improvement by using transposed convolution layers, which can
learn the upsampling coefficients. The number of feature maps for each convolution layer are shown
in Figure 4. We experimented with several different network sizes and the network shown here
was selected after evaluating models with different depth and width. We didn’t use the pre-trained
VGG16 network in the U-Net due to its large size (138 million parameters), which results in overfitting.
Our evaluation showed that relatively smaller networks (in terms of the number of parameters and
memory footprint) showed better performance on this dataset.

Figure 3. Samples of the digitized lakes (green polygons) shown over the corresponding PlanetScope
FCC bands: 4-3-2.

Figure 4. U-Net architecture with Visual Geometry Group (VGG)-style convolution layers. The input
is a 4-band PlanetScope image. The output is a 2-band image containing the probability of each class
for each pixel. The shortcut connection is used to concatenate the activations from encoder units with
the corresponding decoder units.
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2.3. EfficientNet U-Net Model

It is often preferable to use a pre-trained model instead of using a customized model, as the
pre-trained models are trained on large datasets, which reduces the training time as well as overfitting.
For satellite imagery, models trained on datasets like Eurosat [47], BigEarthNet [48] and SpaceNet [43]
can be used for transfer learning. However, to the best of our knowledge, no publically available
pre-trained models exist for 4-bands PlanetScope imagery. Therefore, we used the pre-trained
EfficientNet [49] as the backbone of the U-Net architecture as it has recently produced state-of-the-art
results with fewer parameters and lesser training time. The EfficientNet is built upon the idea of
uniformly scaling up the network size i.e., depth, width and resolution. This produces a family of
networks known as EfficientNets. The baseline model with around five million parameters is model
B0, while the largest model is B7, with 66 million parameters. The EfficientNet’s main building blocks
are the inverted bottleneck block [50], which also contains squeeze-and-excitation networks [51].
We evaluated the EfficientNet models starting from the baseline model B0 to larger size models.
We noticed that the larger models did not further improve accuracy. Therefore, we used EfficientNet
B0 as the backbone of the U-Net architecture as shown in Figure 5. The decoder layers are similar to the
original U-Net architecture. The first convolution layer of the EfficientNet was changed to incorporate
4-band PlanetScope imagery.

Figure 5. EfficientNet U-Net architecture used for training and testing. The input is a 4-band
PlanetScope image. The output is a 2-band image containing the probability of each class for each pixel.
The encoder part of the networks is an EfficientNet B0 network, while decoder units contain two 3 × 3
convolutions. The first convolution layer of the EfficientNet was modified to input 4-band imagery.
Due to the large number of layers in the EfficientNet model, a simplified block diagram is shown here.

2.4. Training

The training was performed on an Nvidia RTX 2070 GPU with 8GB memory. The initial learning
rate was set to 0.01, which was then reduced by a factor of 0.1 when the loss starts to plateau. The batch
size was set to 16. The parameters of the convolution layers i.e., weights were initialized using He’s
method [52] in the customized U-Net model and the decoder part of the EfficientNet U-Net. The input
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image tiles are randomly picked from the training dataset. As the number of water pixels were fewer
then the background pixels, we used weighted loss in which higher weight was assigned to water pixels
during loss computation. The data augmentation was performed using random flipping and mirroring
and brightness change. The hyper parameter weight decay and momentum had values 0.0005 and 0.9,
respectively. The network has been trained for 100 epochs. We further utilized label smoothing [53,54],
which showed improvement in the accuracy of the network. The performance of the network was
evaluated on validation data after each epoch and the trained network with the best performance
on the validation data was chosen for evaluation on the test dataset. The inference using the trained
network was performed by extracting overlapping patches of size 256 × 256 from the PlanetScope
images. The border pixels are ignored for each patch. The class labels were assigned by summing up
the individual probabilities from each overlapping patch. The network design, training and inference
are performed using PyTorch library [55]. The inference on a complete PlanetScope scenes took less
than a minute on RTX2070 GPU.

2.5. Random Forest

Random Forest (RF) has been a popular classifier for the detection of glacial lakes in remote
sensing imagery [56–58]. Therefore, to compare the performance of the CNN, RF Classifier was trained
to classify PlanetScope images into water and background classes. An RF classifier builds an ensemble
of trees by a random subset of the samples and the features. Each tree was built using the Gini Index or
the Information Gain criterion. The training data available were rather large; therefore, we tested with
a different number of samples for training the RF classifier. After evaluation, we chose 20,000 samples
of each class for building the RF classifier. The number of trees was set to 200. Out-of-bags samples
were used for validation. The input to the classifier consists of 4-bands of each pixel as well as the
normalized difference of band 4 with the other three bands. After training, the RF classifier was used
to predict the class label for each pixel of the test images.

2.6. Support Vector Machines

Support vector machine (SVM) classifier is a maximum margin classifier, which computes the
decision boundary by keeping maximum distance from the support vectors or the samples closest
to the decision boundary. SVM has been a popular machine learning classifier, widely used in
different applications. The nonlinear decision boundary in SVM is computed using the kernel trick,
which implicitly performs the transformation of the samples into a higher-dimensional space as well
as the dot product of the samples. Similar to the RF classifier, we used normalized differences of band
4 with the other three bands as additional features as inputs for the classifier. The number of samples,
kernel function and the gamma value of the kernel function were tuned to achieve best performance
on the test data. Using fewer samples of water pixels in comparison to background pixels increased the
accuracy of the classifier. After evaluation, we chose 1000 samples (pixels) of water and 5000 samples
of background. The third degree polynomial kernel with gamma value 1 was selected after evaluation.
The training and prediction of the SVM classifier was done using LibSVM [59].

2.7. Lake Area Uncertainty

The uncertainty in the estimated area of the lakes depends on the number of pixels on the
perimeter of the lake. Here, we assumed ±1 pixel uncertainty at the perimeter of the lake. If G is the
spatial resolution of the image and P is the perimeter of the lake, then the uncertainty in the lake area
is computed using the formula [60]:

Aer(1σ) = 0.6872 × P
G

× G2. (1)
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2.8. Evaluation Metrics

The evaluation on the test data was performed using the Precision (Equation (2)), Recall
(Equation (3)), F1-Score (Equation (4)) and Kappa Coefficient (Equation (5)). The F1-Score is the
harmonic mean of Precision and Recall. Precision and Recall are computed using the True Positives
(TP), False Positives (FP) and False Negatives (FN), which can be computed using the confusion matrix.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 Score = 2 × Precision × Recall
Precision + Recall

(4)

Kappa Coe f . =
N × ∑ xii − ∑(xi+ × x+i)

N2 − ∑(xi+ × x+i)
(5)

The Kappa Coef. was also computed using the confusion matrix, where N is the total number of
pixels, xii are the diagonal elements of the confusion matrix, xi+ and x+i are the sum of the rows and
columns of the confusion matrix. These evaluation metrics are computed by taking in to account all
the pixels of the 1311 tiles of the test data. Thus, a single confusion matrix is computed using all pixels
of the test data and the evaluation metrics are then computed using this confusion matrix.

3. Results

3.1. Evaluation on the Test Data

The trained U-Net models (VGG U-Net and the Efficient U-Net), RF and SVM classifiers were
used for prediction on the test data. The accuracies of the models are evaluated using metrics Precision,
Recall, F1 Score and the Kappa Coef. as given in Table 2. The EfficientNet U-Net model achieved the
highest F1 Score and Kappa Coef. of 0.936 and 0.935, respectively, while the VGG UNet achieved an F1
Score and Kappa Coef. of 0.930 and 0.929, respectively. Due to the better performance of the EfficientNet
U-Net, we further used this model for inference on PlanetScope images. The RF classifier achieved an
F1 Score and Kappa Coef. of 0.754, while SVM achieved an F1 Score of 0.775 and Kappa Coef. of 0.771
This shows that the deep learning models achieve significantly better accuracy as compared to the RF
and SVM classifiers. The comparison of the ground truth polygons, EfficientNet U-Net and the RF
classifier are shown in Figure 6. There is a significant number of false positives in the shadows and an
underestimation of the lake boundary by the random forest classifier as shown in Figure 6. For a visual
comparison, the predicted binary masks are converted to polygons and compared with the ground
truth polygons as shown in Figure 7. The results show that in the majority of the lakes, the predicted,
as well as the ground truth polygons, overlap to a large extent. The smaller supraglacial ponds have
occasionally been missed by the U-Net model.

Table 2. Quantitative assessment of the predicted labels on the test data using F1 score and Kappa
coefficient. The test data consists of 1311 tiles of size 256 × 256.

Method Precision Recall F1 Score Kappa Coeff.

VGG U-Net 0.920 0.940 0.930 0.929
EfficientNet U-Net 0.914 0.958 0.936 0.935

Random Forest 0.702 0.826 0.754 0.754
SVM 0.753 0.799 0.775 0.771
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Figure 6. The predicted masks from the U-Net, RF and SVM classifiers shown along with the
corresponding ground truth masks for 16 tiles (out of 1311) of the test data.
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      a)                                  b)                                  c)                              d)                                e)

Figure 7. Visualization of the predicted water pixels and comparison with the labeled data for nine
tiles of the test data. (a) PlanetScope FCC bands 4-3-2. (b) Predicted and labeled polygons overlaid on
the PlanetScope FCC. (c) Labeled binary mask. (d) U-Net Predicted binary mask. (e) Visualization of
the True Positives, True Negatives, False Positives and False Negatives.
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3.2. Mapping Supraglacial Lakes on the Baltoro Glacier and Comparison with Existing Glacial Lake Inventories

We then mapped supraglacial lakes on the Baltoro glacier (Figure 8) and compared the results
with existing glacial lake inventories of the recent past having an overlap with the PlanetScope data
availability. Figure 9, shows the variations in the supraglacial lakes within a time difference of around
two weeks. Visual analysis shows several differences in the supraglacial lakes within a short time
difference. Figure 10 shows supraglacial lakes with a time difference of one year. The variations over a
year were much more significant and some relatively larger supraglacial lakes also show variations in
terms of number and size. The trained U-Net model was able to automatically extract the majority
of the supraglacial lakes. The sizes of the supraglacial lakes on the Baltoro glacier mapped using
PlanetScope imagery of different dates are given in Table 3. We then used the following inventories
for comparison: (1) glacial lakes inventory of High Mountain Asia [36], (2) A dataset of glacial lakes
in High Mountain Asia (Hi-MAG) from 2008 to 2017 [61] and (3) glacial lakes in the China–Pakistan
Economic Corridor (CPEC) [62]. These three inventories have been derived from Landsat-8 imagery
(recent years). The minimum mapping area of (1) is 0.0054 km2 (2) is 0.0081 km2 and (3) is 0.01 km2.
These inventories have relied on manual [36] or semi-automatic [61,62] techniques for delineation
of glacial lakes using Landsat imagery. The comparison of the supraglacial lakes is presented in
Figure 11 and Table 4, which shows that several lakes have been missed in the inventory [36] and
the inventories [61,62] have not detected lakes on the Baltoro glacier even though the data in Table 3
suggest that a significant number of lakes have an area greater than the minimum mapping area
of these inventories. Figure 12 shows the area along with each lake having area > 0.01 km2. Here,
it should be mentioned that the entire Earth landmass is currently not covered by the PlanetScope
daily imagery. The area acquired changes due to the change in the number of operational satellites as
well as due to the position and orientation of the satellites. The entire area of the Baltoro glacier is not
covered by a single PlanetScope scene and several scenes were required to cover the entire Baltoro
glacier. Therefore, due to partial coverage, we could not use the PlanetScope imagery from the same
date as used in these inventories.

a)                                                                                                                 b)

Baltoro Glacier

Figure 8. Baltoro glacier: (a) ESRI World Imagery, (b) glacier extent according to GAMDAM inventory.

Table 3. Temporal variations in the area and number of supraglacial lakes on the Baltoro glacier.

Supraglacial Lakes 14 July 2017 27 July 2017 7 August 2017 14–15 July 2018 12–16 July 2019

Area ( km2) 2.25 ± 0.26 1.96 ± 0.22 1.83 ± 0.23 2.22 ± 0.23 2.61 ± 0.29
No. of Lakes > 0.001 km2 440 384 395 443 5355
No. of Lakes > 0.01 km2 41 29 31 33 39
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Figure 9. Intra seasonal variations in the supraglacial lakes on the Baltoro glacier. These images
were acquired with approx. two weeks time difference. Mapped glacial lakes using the U-Net
model are shown in the middle. Lake boundaries are displayed on the False Color Composite
PlanetScope imagery.
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Figure 10. Annual variations in the supraglacial lakes on the Baltoro glacier. These images were
acquired with approx. one year time difference. Mapped glacial lakes using the U-Net model are
shown in the middle. Lake boundaries are displayed on the FCC PlanetScope imagery.
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Table 4. Supraglacial lakes on the Baltoro glacier available in: (1) glacial lakes inventory of High
Mountain Asia [36], (2) a dataset of glacial lakes in High Mountain Asia (Hi-MAG) from 2008 to
2017 [61] and (3) glacial lakes in the China–Pakistan Economic Corridor (CPEC) [62]. All of these
inventories used Landsat-8 data.

Inventory HMA 2018 [36] Hi-MAG 2017 [61] CPEC Glacial Lakes [62]
Minimum Mapping Area 0.0054 km2 0.0081 km2 0.01 km2

Area ( km2) 0.183 ± 0.062 0.017 ± 0.010 0
No. of Lakes > 0.01 km2 9 1 0

35
.7

5
35

.7
0

76.20 76.30

35
.7

5
35

.7
0

76.20 76.30

Glacial Lakes HMA 2018 - 04.08.2018

35.75
35.70

76.20 76.30

76.20 76.30

Glacier (GAMDAM) Lake

35.75
35.70

76.20 76.30

76.20 76.30

76.20 76.30

Hi-MAG 2017

PlanetScope U-Net 14.07.2017

76.20 76.30

76.20 76.30

PlanetScope U-Net - 14,15.07.2018 

Glacial Lakes CPEC 24.09.2016

PlanetScope U-Net -  14.07.2017

PlanetScope 14.07.2017

PlanetScope 14.07.2017
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Figure 11. Comparison of the mapped supraglacial lakes with the glacial lake inventory of HMA [36],
Hi-MAG database [61] and glacial lakes inventory of CPEC [62]. Surprisingly, the Hi-MAG and CPEC
inventories have not detected supraglacial lakes on the Baltoro glacier. We could not find the exact
dates of the images used by Hi-MAG inventory for creating the polygons. In this image, we only show
lakes with an area > 0.01 km2 for U-Net model.

Figure 12. Two areas over Baltoro glaciers are shown in detail along lake sizes (for lakes with area
> 0.01 km2). Keeping in view the uncertainty in the lake area estimation, some of these lakes have area
close to 0.01 km2, which is often used as the minimum mapping area for glacial lakes.

3.3. Comparison with GLakeMap Automated Pipeline

We then visually compare the glacial lakes mapping with the results from “GLakeMap” automated
pipeline for mapping glacial lakes using Sentinel-1 and Sentinel-2 data [56]. The GLakeMap uses
rule-based segmentation to extract segments from the Sentinel-1/2 images and DEM data and then
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classifies those segments using a Random Forest classifier. The minimum mapping area in GLakeMap
is 0.01 km2 and the method was tested on eight different sites across the globe. Figure 13 shows the
comparison of the outlines from GLakeMap (Sentinel-1/2) and the U-Net (PlanetScope) models over
an area in Bhutan. The relatively larger lakes are mapped quite well by both U-Net and GLakeMap.
However, the U-Net model has also extracted smaller lakes quite well.
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Figure 13. Comparison of the outlines from U-Net and GLakeMap [56]. The PlanetScope data and
Sentinel-2 data used here are from 06.11.2017. This location is part of the labeled dataset shown in
Figure 2. However, the date of the PlanetScope imagery was different in the data shown in Figure 2.

3.4. Examples of Lake Outburst and Lake Area Mapping

The trained U-Net model was then qualitatively evaluated on PlanetScope images of two different
glacial lakes time-series imagery. First, we considered the GLOF event in the Chitral district of the
Hindu Kush Range in July 2019 caused by a newly formed glacial lake on the end moraine of the
Rogheli glacier at an elevation of around 4500 m as shown in Figure 14. The PlanetScope imagery
shows the formation of the lake which is detected by the trained model in the PlanetScope image from
18 June 2019 as shown in Figure 14. The GLOF event occurred on 7 July 2019 at around 5:00 pm [7].
The PlanetScope image from 8 July 2019 shows the lake has drained. The maximum surface area of
the lake extracted by the deep learning model is 0.052 km2. The early detection of the lake in such a
scenario is challenging due to a mixture of frozen and meltwater. The training data used in this work
contained some similar instances in which the lake contains partially frozen water. Therefore, the deep
learning model was able to extract the lake in the PlanetScope scene of 18 June 2019. In the earlier
scenes, the formation of the lake can be visually identified but wasn’t detected by the U-Net.

The trained U-Net is then tested on the PlanetScope scenes of the glacial lake formed by the
Shishper glacier surge. The Shishper glacier in the Karakoram range started to surge in Spring 2018
with maximum velocity reaching up to 20 m/day. The surging glacier blocked the outflow of the
Muchowar glacier resulting in the formation of the lake as shown in Figure 15. The lake grew to a size
of around 0.18 km2 in May/June 2019. The lake drained in late June 2019 through a subglacial stream,
causing moderate flooding in the downstream area but the damage was mitigated by protection walls
built by the authorities anticipating the potential flood. The surface of the lake as shown in Figure 15,
partially contained debris and ice, which makes it difficult to precisely map surface water. Visual
analysis of the results show that the U-Net is able to extract surface water and separate it from debris
reasonably well.
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Figure 14. Top: The location of the lake shown on a Sentinel-2 FCC Bands: (11,8,4). The PlanetScope
scenes from four different dates along with the predicted mask are shown. The histogram shows the
change in the surface area of the lake.
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Figure 15. Top: The Shishper glacier shown on a Sentinel-2 FCC Bands: (11,8,4). The glacier boundaries
from GAMDAM inventory [63] are shown for reference. The PlanetScope scenes from four different
dates along with the predicted mask are shown. The histogram shows the change in the surface area of
the lake.

4. Discussion

The results presented above show that the deep learning-based model can be employed in practice
for the automatic extraction of glacial lakes in PlanetScope imagery. The results show that even with
the variations in the images from different PlanetScope satellites, the deep learning model was able to
generalize and perform well on the unseen PlanetScope images of a different area. We have observed
some false positives on pixels on the cloud edges during our evaluation as shown in Figure 16. This can
perhaps be solved by using the cloud masks provided in the PlanetScope supplementary data or to
include clouds in the training data. False positives were also observed due to cast shadows in the
images of Baltoro and Shishper glacier. We have also observed that some lakes with muddy brown
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color were not extracted by the U-Net, which shows that the training data need expansion to include
all possible types of lakes that may occur. Another important point to consider here is that the larger
lakes are sometimes easier to map than the relatively smaller lakes and the larger lakes have a higher
weightage on the resulting metrics because it contains more pixels i.e., the evaluation metrics are
influenced more by the larger lakes. Therefore, one may consider computing evaluation metrics for
different lake sizes.
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Figure 16. Some misclassification errors were observed in the prediction by the U-Net model. The pixels
on the perimeter of the clouds were detected as water pixels. In addition to this some cast shadows
have also been detected as water pixels as shown in the image on the right.

In the generation of the labeled data, the relative displacement of water bodies between the
VHRS imagery and PlanetScope imagery was a major issue and required a lot of time to correct.
Due to a lower resolution of the PlanetScope imagery, it was very difficult sometimes to determine
this shift and as a result, even the labeled data will have some inaccuracies. When generating the
labeled data, delineating the boundary of very shallow water bodies is also very difficult and the
delineation is dependent on the interpretation of the digitizer. Some small lakes were missed in the
original digitization process, but the trained U-Net was able to extract those lakes. Thus, we used the
U-Net model to track errors in the digitization process and correct those errors and train the network
again. The precise delineation of the supraglacial lakes is very challenging due to their smaller size,
mixture with snow and debris and cast shadows. The changes in the extent of the supraglacial lakes
within a short time period also makes it difficult to use and compare images of different dates.

The GLOF event in the Chitral district shows the importance of frequent mapping of the glacial
lakes because new lakes can be formed, which may suddenly drain after some time. Such events have
occurred in the past and it is imperative to monitor such situations using remote sensing datasets.
The automation of the whole process is essential as this region spreads over a large area and it is
not possible to visually inspect the whole area. It should be mentioned that the occurrence of GLOF
depends on various factors. In this work, we only attempted to map the lake area in a dynamic scene
without any consideration of the outburst probability. The damming of the glacial lakes in one of the
important factors in designating a glacial lake as a potentially dangerous lake. Such classification of
the lakes was also not studied in this work.

In the case of the Shishper glacier surge the volume of the lake changed over time and frequent
mapping helps to determine the water quantity and compute simulations of water discharge and
possible flood scenarios. It should be mentioned that, due to the presence of clouds, no PlanetScope
scenes were available on the day the lake in Chitral and Shishper drained. Therefore, due to the
limited availability of cloud-free images in parts of HKKH, any solution to monitor surface water
from remote sensing satellites should also incorporate both optical and microwave satellite data in the
future, especially due to the recent progress by the commercial companies to develop a constellation of
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Synthetic Aperture Radar (SAR) satellites [64]. The inclusion of the microwave remote sensing data for
glacial lakes mapping is inevitable.

The labeled data generated in this work covered only the HKKH region. Assessing the
transferability of the model to a different study area is also interesting. Here, we map the glacial
lakes in the Peruvian Andes using the PlanetScope imagery and the trained U-Net model as shown in
Figure 17. For a comparison, the glacial lake outlines of Cordillera Blanca (Peru) [65], which have been
derived from visual interpretation of satellite imagery are also shown as a reference. A visual analysis
of the results shows that the trained U-Net model generalizes well to the other areas.
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Figure 17. Mapping of the glacial lakes in the Peruvian Andes using PlanetScope imagery and the
U-Net model, which was trained on the data from the Hindu Kush, Karakoram and Himalaya (HKKH)
region. For a comparison, lake outlines from Emmer et al. [65] are also shown.

5. Conclusions

In this paper, we explored the potential of PlanetScope imagery for glacial lakes mapping
in HKKH. Due to inherent difficulties in mapping surface water in mountainous regions,
deep learning-based model was used for mapping of surface water. A dataset consisting of more than
5000 water bodies covering an area of approx. 71 km2 in eight different sites in HKKH was created.
The results on the test images showed that the U-Net model with EfficientNet backbone achieved
higher accuracy (F1 Score of 0.936) than the U-Net with VGG style layers, RF and SVM classifiers.
The results further showed that there are few false positives in the predicted water masks while the
majority of the water pixels are correctly identified by the trained model. The trained U-Net model is
then used for mapping the supraglacial lakes on Baltoro glacier and the results showed that U-Net
model extracted more lakes than the recently published glacial lakes inventories. This shows that
even with 4-bands imagery from PlanetScope small satellites, glacial lakes can be reliably extracted.
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These results are especially significant as most of the earlier work has relied on multispectral remote
sensing imagery with a higher number of bands. A comparison with the GLakeMap results also
showed that the U-Net model can detect glacial lakes using PlanetScope imagery with high accuracy.
The higher spatial and temporal resolution of PlanetScope imagery can significantly improve the
mapping of the glacial lakes. The trained U-Net was then evaluated on the PlanetScope time-series
imagery of two different glacial lakes with varying water surface area. The changing water area was
well-mapped by the U-Net model in PlanetScope scenes. This shows that the trained model also works
well on PlanetScope images, which were not part of the original digitized dataset. The GLOF event in
the Chitral district shows the importance of frequent mapping of the glacial lakes. The newly formed
ice/moraine dammed lake on the Rogheli glacier suddenly drained, causing significant damage to
the infrastructure downstream. Early detection of the lake in such a scenario would help expedite
the mitigation efforts, which may reduce the damage due to the outburst flood. Planet Labs plan to
launch PlanetScope satellites with 8-band imaging capabilities in 2020, this may further improve the
accuracy of glacial lake mapping in PlanetScope imagery but will require training data from the newer
generation satellites.
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