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Abstract

Cognitive radio is an intelligent and adaptive radio that improves the utilization of the
spectrum by its opportunistic sharing. However, it is inherently vulnerable to primary
user emulation and jamming attacks that degrade the spectrum utilization. In this
paper, an algorithm for the detection of primary user emulation and jamming attacks
in cognitive radio is proposed. The proposed algorithm is based on the sparse coding
of the compressed received signal over a channel-dependent dictionary. More
specifically, the convergence patterns in sparse coding according to such a dictionary
are used to distinguish between a spectrum hole, a legitimate primary user, and an
emulator or a jammer. The process of decision-making is carried out as a machine
learning-based classification operation. Extensive numerical experiments show the
effectiveness of the proposed algorithm in detecting the aforementioned attacks with
high success rates. This is validated in terms of the confusion matrix quality metric.
Besides, the proposed algorithm is shown to be superior to energy detection-based
machine learning techniques in terms of receiver operating characteristics curves and
the areas under these curves.

Keywords: Cognitive radio, Jamming detection, Machine learning, Physical layer
security, Primary user emulation detection, Residual components, Sparse coding,
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1 Introduction
Due to the rapid growth in wireless technology and services, the scarcity of the wireless
spectrum has become a major problem [1]. To meet the requirements of future wireless
networks and to alleviate this spectrum scarcity problem, cognitive radio (CR) is one of
the most promising solutions. CR allows spectrum sharing between the primary users
(PUs) and secondary users (SUs). More specifically, it enables SUs to opportunistically
utilize empty spectrum bands without harming the PUs by following these steps: (i) deter-
mining whether the channel is occupied or not, (ii) choosing the best part of the spectrum
based on their quality of service (QoS) requirements, (iii) coordinating with other users
to access the spectrum, and (iv) leaving the channel whenever a PU starts to transmit its
data [2].
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Although CR is a promising solution to address the spectrum shortage problem, it
is inherently vulnerable to both traditional and new security threats [3]. This is due
to the wireless nature and unique characteristics of CR. Traditional security threats
include eavesdropping, spoofing, and jamming attacks [4], while new security threats
include spectrum sensing data falsification (SSDF) and primary user emulation attack
(PUEA) [3, 5].
An eavesdropper tries to “hear” the secret communication between legitimate nodes

while a spoofer can modify, intercept, and replace the messages between the legitimate
parties. On the other hand, a jammer can generate intentional interference signals to
degrade the quality of communication for both PUs and SUs. Thus, a jammer can also
prevent an SU from efficiently utilizing the white spaces of the spectrum by causing false
alarms regarding spectrum occupancy [4].
In an SSDF attack, an illegitimate node provides false sensing information to degrade

the performance of the collaborative spectrum sensing approach, where collaborative
approaches include the interaction of multiple CRs to improve the sensing performance
in the fading environment. On the other hand, PUEA is based on emulating the char-
acteristics of the PU transmission to deceive the SUs about spectrum occupancy. PUEA
prevents them from utilizing the existing spectrum holes and can even cause interference
to the PUs in some cases [6].
Popular PUEA types include malicious and selfish attacks. The malicious attackers

objective is to degrade the CR performance by preventing them from opportunistic
exploitation of spectrum. Particularly, a malicious attacker destroys the operations of the
CR network. Thus, it can stop CRs from sensing and can also disengage the already used
spectrum by them. On the other hand, a selfish attacker aims at exploiting the space of the
spectrum by preventing other secondary users from using it. More specifically, it focuses
on enhancing its consumption of the spectrum by degrading the overall fairness of the
system.
The focus of this work is to detect false alarm about the spectrum occupancy that is

caused by illegitimate nodes. An illegitimate node can transmit a signal similar to that of
a PU, considered as a primary user emulator (PUE), or can send an unstructured signal,
considered as a jamming attack. In the literature, several solutions are proposed for ille-
gitimate node detection. For instance, the power level of the signal through the energy
detection (ED) algorithm can decide on the source of the signal [7] using a pre-defined
threshold. In [8], the authors presented a Markov random field-based belief propagation
framework with ED for PUEA detection. Firstly, SUs employ the energy-based algorithm
and calculate the belief values about the real source of the signal. Afterwards, the belief
values are shared between different users. Finally, the average belief value is compared
with the pre-defined threshold. If the average is less than the threshold, it is assumed
that the signal source is fake; otherwise, the source of the signal is assumed to be real.
These approaches are simple; however, they are shown to create high levels of false alarm
rates. Cross-layer techniques are also effective for illegitimate node detection. In [9], the
authors proposed a cross-layer approach for jamming attack and PUEA detection in CR
networks by using information from physical layer spectrum sensing, statistical analysis
of routing information, and prior knowledge about PUs. This technique is effective for
detecting PUEA and jamming attack. However, there is an excessive overhead in analyzing
and comparing information from physical and network layers.
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The wireless channel and inherent physical characteristics of communication devices
are also effective for illegitimate node detection [10–13]. For instance, wireless channel-
based detection schemes are proposed in [10–12] for PUEA detection. These techniques
are based on the fact that the channel between different transmitter-receiver pairs is dif-
ferent due to its spatial decorrelation nature. In [13], the inherent physical layer features
of devices based on hardware impairments are exploited for PUEA detection. Never-
theless, these techniques require excessive software and hardware overheads for their
implementation.
Localization-based detection is also popular for PUEA detection. The basic idea is to

infer the position of the signal’s source by using the received signal and compare it with a
database of pre-known locations of legitimate PUs. However, databasemanagement is not
applicable in all scenarios [14, 15]. Similarly, the authors in [16] used the time difference
of arrival-based position estimation approach for PUEA detection. However, this requires
a strict synchronization between the receiver and the transmitter.
Machine learning (ML)-based solutions also received considerable attention for CR

security. In [17], an anomaly detection framework for CR networks based on the charac-
teristics of radio propagation is proposed. However, it does not consider specific attacks
and is designed only for the detection of general anomalies. In [18], the authors proposed a
technique based on support vector data description (SVDD) and zoom fast Fourier trans-
form (zoom FFT). In the first step, the pilot and symbol rate are estimated using zoom
FFT. Afterwards, a boundary around the PU objects is constructed using the SVDD clas-
sifier which is used to distinguish between PU and PUE. However, this method does not
perform well in low signal-to-noise ratio (SNR) operating conditions. Furthermore, the
method fails when the PUE is extremely intelligent (the only information unknown by
the PUE is the channel). In [19], the authors proposed an ML-based algorithm for PUEA
detection that exploits the signal strength and boundaries around the position of PU for
the correct detection. This method is good in terms of complexity, but it suffers from
performance degradation.
Recently, compressive sensing (CS)-based approaches were applied in spectrum sens-

ing where CS offers several benefits. For example, it can alleviate the need for high
sampling rate analog-to-digital converters [20–22]. This results in a reduction of the
overall complexity, energy consumption, and memory requirements. Following its suc-
cess in various application areas [20], CS has been applied to the problem of PUEA
detection. Works along this line include PUEA detection based on CS and received sig-
nal strength [23]. This approach needs multiple sensors throughout the network. Hence,
it increases the overall complexity. Another example considers exploiting belief prop-
agation and CS for PUEA detection [24]. However, this requires a centralized node
for its implementation. In [25], the authors proposed an algorithm for jamming attack
detection in wide-band CR. In the first step, CS is performed to estimate a wide-band
spectrum. Afterwards, an ED algorithm is applied to identify the occupied spectrum sub-
bands. Lastly, waveform parameters of the sub-bands are compared with the known user
database to determine the jamming attack. However, this method also requires database
management.
In this paper, we propose an algorithm for PUEA and jamming attack detection cor-

responding to the narrow-band spectrum using the convergence patterns of the sparse
coding over channel-dependent sampled dictionary. This convergence is characterized by
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the sparse coding residual signal energy decay rates. The proposed algorithm does not
require a centralized node or strict synchronization between transceiver ends. Moreover,
it does not require information from multiple sensors for the implementation. Further-
more, it eliminates the need for estimating the sparse coding error tolerance or the
sparsity level, as typically required in CS-based approaches. The reason is that the sparse
recovery in the proposed algorithm is just used for energy convergence rate revelation
rather than accurate signal reconstruction. The main contributions of this paper are as
follows:

• First, the decaying pattern of sparse coding is used for PUEA detection. This is
achieved by exploiting the convergence patterns of the sparse coding over a PU
channel-dependent dictionary. In this context, these patterns guide on identifying a
spectrum hole, a PU, and a PUE through ML approaches.

• Second, jamming attack detection is also performed based on the decay pattern of
sparse coding. Here, the idea is that the noise and jamming signals are not
compressible because they are not structured. So, residual energy decay patterns with
a channel-dependent dictionary along with the non-compressive nature of jamming
signals are used for efficient jamming attack detection via ML classification.

The rest of this paper is organized as follows. Preliminary information and the system
model are presented in Section 2. Section 3 provides the proposed algorithm, while the
complexity analysis is presented in Section 4. Section 5 presents the simulation results
and discussions. Finally, the paper is concluded in Section 6.
Notation: Uppercase bold-faced, lowercase bold-faced, and lowercase plain letters rep-

resent matrices, vectors, and scalars, respectively. The symbols ‖.‖0 and ‖.‖2 denote the
number of nonzero elements and the 2-norm of a vector, respectively. The 〈·, ·〉, †, and
C symbols represent inner product, Moore-Penrose pseudoinverse, and complex number
field.

2 Preliminaries and systemmodel
This section reviews background information related to CS, sparse recovery, and ML
approaches.

2.1 Compressive sensing and sparse recovery

Using a random sensing matrix, CS merges data measurement and compression into
a unified operation. CS applies to compressible signals, i.e., either the explicitly sparse
signals or the ones admitting sparsity in a certain domain [26].
Let us assume a signal vector y ∈ C

N . A compressed version of y can be obtained
by applying a measurement matrix � ∈ C

M×N as yc = �y, where M � N . Hence, a
reduction in dimensionality from N-to-M is achieved. A high-dimensional version of the
original signal can be reconstructed from this low dimensional measurement via sparse
recovery [26].
Generally speaking, let us assume that a signal y admits sparse coding over a dictionary

(
D ∈ C

N×K )
. The signal can be represented in terms of D as y ≈ Dw, where w ∈ C

K is a
sparse coefficient vector. The calculation of w can be cast as follows.

argminw
∥∥y − Dw

∥∥2
2 s.t. ‖w‖0 < S, (1)
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where S denotes the sparsity level of the signal. Sparse recovery is an NP-hard problem.
However, sparse recovery methods offer efficient approximate solutions. As shown in (1),
the �0 pseudo-norm is principally used to exactly quantify the sparsity level. However,
its minimization is mathematically intractable and highly complex. Therefore, there exist
only approximate solutions to �0 minimization, such as the matching pursuit and orthog-
onal matching pursuit (OMP) approaches. Alternatively, this problem can be overcome
by relaxing the �0 norm minimization condition to minimizing the �1 norm which is a
loose bound on sparsity. Still, �1 minimization is convex and accepts linear programming.
Thus, replacing �0 minimization with �1 minimization offers a significant reduction to
the computational complexity of sparse coding. However, �1 minimization requires infor-
mation about the noise level of the signal being recovered. Thus, in this work, we adopt
approximate �0 minimization through the OMP algorithm.1

The intrinsic sparsity of the signal can be revealed by a dictionary. This dictionary can
be formed of fixed basis functions such as Fourier basis, Gabor functions, wavelets, and
contourlets. Alternatively, it can be generated as a learned dictionary. In this setting, a dic-
tionary is obtained by training over training data signals Y ∈ C

N×L [28]. This dictionary
learning process can be formulated as

argminW ,D‖W i‖0 s.t. ‖Y i − DW i‖22 < ε ∀ i, (2)

where ε represents error tolerance. Since the problem is non-tractable and non-convex,
most of the dictionary learning algorithms perform the learning by iteratively alternating
between a sparse representation stage and a dictionary update stage. As an example, the
K-SVD algorithm [28] is one of the widely used algorithms for the dictionary learning
process.
The abovementioned dictionary learning is a computationally demanding process.

Therefore, developing efficient alternatives to the classical dictionary learning approach
is needed for CR-related applications [21]. In this context, the use of sampled dictionaries
is an efficient alternative. One can obtain a sampled dictionary by picking a set of ran-
domly selected data vectors that serve for the sparse coding without the need for applying
an expensive learning process. Thus, this offers a compromise in terms of computational
complexity at a tolerable loss in the representational power of the dictionary. In [22], the
use of sampled dictionaries is justified by their usage to represent data points in a specific
class, which have a general similarity. Similarly, sampled dictionaries are used in this work
to represent signals.

2.2 Residual components in pursuit sparse coding

A widely used sparse representation algorithm is OMP. This algorithm is based on iter-
atively obtaining the coefficients in a sparse coefficient vector (w). Particularly, each
iteration identifies the location and adjusts the value of a nonzero element in w. This is
achieved by selecting one atom (column) from a dictionaryD and adjusting its respective
weight.
To implement the above-explained atom selection and coefficient update processes,

algorithms such as OMP define a so-called residual signal r. Conceptually, r represents
signal portions that have not yet been represented by the selected dictionary atoms.

1The proposed algorithm is not limited to OMP, and it can be implemented with any sparse recovery algorithm [27]. We
prefer to use the OMP algorithm since it is computationally efficient and simple.
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Hence, sparse coding initializes r with the signal itself, as r ← x. In the first iteration,
the sparse representation algorithm loops through all dictionary atoms and selects the
one most similar to the current residual r. Once this atom is selected, the correspond-
ing weight is calculated. To this end, the next residual is calculated by subtracting the
resultant one-atom sparse approximation from the original residual. Then, the residual
is considered as a new signal for which another dictionary atom is selected and another
coefficient is calculated and the process continues until a certain halting condition is met.
The interesting point to consider in the above-explained sparse coding approach is that

the energy of the residual components should dramatically decrease as sparse coding pro-
gresses. Intuitively, this is becausemore atoms are selected, and thus, more signal portions
are excluded from the residual.

2.3 Machine learning for classification

The successful works of the ML algorithms in many application areas such as computer
vision, fingerprint identification, image processing, and speech recognition led these algo-
rithms to become appealing for the area of wireless communication [29]. These ML
algorithms are categorized under three categories called supervised, unsupervised, and
reinforcement learning. Supervised learning-based ML algorithms are widely used for
classification problems when the number of present classes is known and the information
of the classes that samples belong to in the training stage is available.
Amongst many supervised learning-based algorithms, the feed-forward neural network

has received growing interest in classification problems since it can recognize classes
accurately and quickly [30]. This network can be used with a single-layer and multi-layer.
Although single-layer algorithms are computationally good, these algorithms can only be
used for simple problems. Alternatively, the multi-layer-based algorithms that include the
usage of one or more hidden layers are used. Even though these algorithms increase com-
putational complexity, they are able to solve more complex problems. Besides the effect of
the extra layers, the number of neurons that are used in hidden layers is also effective on
the accuracy and complexity performances. Therefore, it is quite significant to set these
hyper-parameters optimally.Moreover, the complexity and accuracy performances can be
increased by feature extraction (with the domain knowledge). Along this line, CS is used
to extract features in this work with the aim of increasing the performance of the ML.

2.4 Systemmodel

The system model used is intended to characterize the existence of legitimate and illegit-
imate source nodes. Thus, it consists of a PU node, an SU node, and an illegitimate node
as presented in Fig. 1. In this setting, an SU node opportunistically exploits the spectrum
in the presence of an illegitimate node that can launch either PUEA or jamming attack.
A jammer transmits a random signal, while a PU node and a PUE transmit structured
signals that mimic the legitimate PUs.
We can represent the transmitted signal as x = As, where A is a coefficient matrix

with a size of N × N . Each component is denoted by ai,j with i, j = 1, . . .N , and s =
[s1(t), . . . , sN (t)]T represents the transmitted data vector. Any coordinate of s is given as
si(t) = ∑∞

k=−∞ dku(t − kTs)ej2π fc,ot , where Ts is the symbol duration, fc,o represents the
center frequency, d represents digitally modulated data symbols, u(t) represents the pulse
shaping filter, and o = 1, 2, . . . ,N .
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Fig. 1 The basic system model: a PUE and a jammer want to degrade SU’s spectrum utilization by sending
fake signals

The signal at the receiver sent by any node can be written as

y = hx + n, (3)

where h is a multipath Rayleigh fading channel between any transmitter-receiver pair and
n is additive white Gaussian noise. Due to the spatial decorrelation concept, the channel
between different transmitter-receiver pairs is assumed to be different [31].

3 The proposed algorithm for PUEA and jamming attack detection
The objective of this work is to differentiate between the following hypotheses:

y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n H0 : there is no PU,
hPUxs + n H1 : a PU is present,
hixs + n H2 : a PUE is present,
hixn + n H3 : a jammer is present,

(4)

where n is additive white Gaussian noise and y is the received signal. Besides, hPU denotes
the channel corresponding to the legitimate PU, hi is the channel corresponding to PUE
or jammer, xn represents the (unstructured) jamming signal, and xs is a structured signal.
In this work, two goals are set. The first is to detect PUEA, i.e., to differentiate between
the H0, H1, and H2 hypotheses. The second goal is to detect jamming attacks, i.e., to
differentiate betweenH0,H1, andH3.
To meet the abovementioned goals, a compressed version of the received signal is

observed by the CS algorithm and its sparse coding is calculated with respect to a PU
channel-depended dictionaryDPU . As detailed in Section 2, sparse coding iteratively min-
imizes the energy of a residual (‖r‖2). For each iteration, we calculate the value of ‖r‖2.
Then, we quantify the rate of its decay using the gradient operator (|G|). It is noted that
the speed of this decay depends on the harmony between the received signal and the
dictionary.
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The convergence profile of this residual or gradient versus iteration can be used to
distinguish between the aforementioned hypotheses. The idea behind this approach is
that the unstructured signals (noise and jamming) are not compressible, while structured
signals are compressible. Hence, different signals have different ‖r‖2 and |G| profiles
that help to distinguish between different hypotheses. Following the same logic, dif-
ferent signals have different patterns based on the similarity between the dictionary
atoms and signals. In other words, residual energy patterns show how much dictio-
nary atoms can guarantee accurate and sparse representation for signals that can also
help in distinguishing between various hypotheses. Intuitively speaking, a signal that
is compressible in the given dictionary has a faster decay speed compared to other
signals. Thus, if the dictionary is channel-dependent, it will also affect the pattern cor-
responding to ‖r‖2 and |G|, which can be used also to differentiate between different
hypotheses.
To this end, we analyze the usefulness of ‖r‖2 and |G| in distinguishing between the

aforementioned hypotheses in (4) with the following test. We use a test set of 103 quadru-
plets of synthetically generated received signals (y) that correspond to the hypotheses
H0,H1,H2, andH3, respectively. In other words, one signal is mere noise, the other one
is the signal received from the legitimate PU, the third one is a PUE signal that mimics
the PU signal, and the fourth one is an unstructured jamming signal. These signals are
generated as described in Section 5.
For each quadruplet, we calculate a PU-dependent dictionary (DPU) based on the

known PU channel (hPU). In this work, a channel-dependent dictionary is obtained by
convolving a set of randomly selected data (X) with the channel corresponding to the
legitimate PU. Formally stated,DPU = hPU ∗X, where ∗ denotes convolution. Afterwards,
we perform an iterative sparse coding operation on a compressed version of each signal
in the quadruplet withDPU while calculating ‖r‖2. Next, we calculate the gradient of each
residual vector as |G|.
The average values of ‖r‖2 and |G| in the above-explained test are presented in Fig. 2.

In view of this figure, it is seen that one can differentiate between the four hypotheses
based on |G| and ‖r‖2 using ML approaches. For example, the gradient of H1 has faster
decay as compared toH0,H2, andH3 as presented in Figs. 2f–h, respectively. The reason
for exhibiting a faster decay is that the received signal inH1 (corresponding to PU) is the
only one compressible in the given dictionary.
Based on the above discussion, we present the proposed algorithm. It is divided into

two main stages. First, is a classifier training stage, where one uses a comprehensive
set of training signals. We can either concatenate ‖r‖2 and its absolute gradient |G|
into a unified feature vector or use them separately as classification features. These fea-
tures are used to make training data sets f i0, f i1, f i2, and f i3 according to the hypotheses
explained in (4).
For the case of PUEA detection, the training set contains f i0, f

i
1, and f i2 corresponding

to the hypotheses H0,H1, and H2, respectively. On the other hand, for the case of jam-
mer detection, the training set contains f i0, f

i
1, and f i3 corresponding to the hypotheses

H0,H1, and H3, respectively. Afterwards, these training vectors, along with their class
labels are fed to theML training stage, where a classifier model is trained accordingly. The
workflow of the training set preparation stage is pictorially described in Fig. 3a. In this
figure, Yi

n represents the set of compressed received signals yi0, y
i
1, and yi2 for the case of
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Fig. 2 The averages of {r}2 versus sparse coding iteration for received signals under hypothesesH0,H1,
H2, andH3 are in (a), (b), (c), and (d), respectively, while the averages of |G| versus sparse coding iteration
are presented in (e), (f), (g), and (h), respectively

PUEA detection or yi0, y
i
1, and yi3 for the case of jamming attack detection. Similarly, Fin

represents the set of training vectors.
After classifier training, the testing stage represents the run-time operation of the pro-

posed algorithm. This process is explained in Fig. 3b. For each incoming test signal, y,
sparse coding is performed over DPU and feature vector f is obtained. Afterwards, f is
fed into the learned classifier. Finally, this classifier will decide on the hypothesis cor-
responding to the current signal of interest. An analysis of this idea is provided in the
Appendix.
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Fig. 3 An illustration of the proposed algorithm for (a) training stage and (b) testing stage

4 Complexity analysis
In this section, we roughly quantify the computational complexity of the proposed
algorithm. This complexity is primarily required by sparse coding and ML.
The OMP computational complexity at the kth iteration is O

(
MK + KS + KS2 + S3

)

while the overall complexity is O
(
MKS + KS2 + KS3 + S4

)
, where S represents the

sparsity level [32]. Thus, the overall computational complexity of sparse coding with
a sparsity level of M is O

(
KM2 + KM2 + KM3 + M4). This can be simplified as

O
(
2KM2 + KM3 + M4). Note that sparse coding is used during both the training and the

testing phase in the proposed algorithm.
The computational complexity of ML is divided into two main stages which are training

and testing. The computational complexity of two-layer neural network per sample is
O(e(lk + ml)) for training stage, where e denotes the number of epochs, while k, l, andm
represent the number of neurons at the input, hidden, and output layers, respectively. The
total complexity of training stage is O(ep(lk + ml)) for p number of samples. Moreover,
the computational complexity of training per sample is roughly double as compared to
the complexity of testing per sample [33]. It is worth to note that k = 2M, since ‖r‖2 and
|G| are concatenated into a unified feature vector in the simulations.

5 Results and discussion
This section presents numerical experiments to assess the performance of the proposed
algorithm comparing it with the ED approach.

5.1 Parameter setting

The simulations are conducted with different modulation settings based on the system
model specifications presented in Section 2. The modulation types used include quadra-
ture amplitude modulation (QAM), pulse amplitude modulation (PAM), frequency-shift
keying (FSK), and phase-shift keying (PSK). Moreover, the proposed algorithm uses a
100 × 400 dictionary. For each received signal, a channel realization [34] is generated for
the PU and uncorrelated channel realizations are generated for illegitimate node based on
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Table 1 Synthetic received signal simulation parameters

Parameter Value

Channel model Rayleigh

No. of taps 7

Channel delay unit Sample period

Signal length 100

Oversampling rate 10

Pulse shaping Square-root-raised-cos.

Raised cos. symbol span 50

Raised cos. roll-off factor 0.2

Correlation factor 0.9

channel decorrelation concept [31]. The assumed model of hPU is hPU = ρh + (1 − ρ),
where ρ is the correlation factor and h is Rayleigh fading channel [35]. The details of the
simulation parameters are presented in Table 1.
We use a standard two-layer feed-forward network [30] for that consists of a hidden

layer and an output layer with sigmoid functions. The number of hidden neurons is set
to 64 while the number of output neurons is set to the number of elements in the target
vector which is 3 (corresponding to the number of classes in PUEA or jamming attack
detection). For the case of PUEA detection, the vectors f i0, f

i
1, and f

i
2 are used for training.

For jamming attack detection, f i0, f
i
1, and f i3 are used as input vectors. Energy decay rate

Table 2 Confusion matrices for PUEA detection
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and gradient vectors ‖r‖2 and |G| are used as feature vectors. Here, the dimension of both
‖r‖2 and |G| is 1 × M. Therefore, the feature vector dimension 1 × 2M.
It is noted that we take 4000 samples from each class in the training stage for all cases

and 1000 samples from each class in the testing stage for each of the SNR values. Also, the
neural network is trained over the SNR values ranging between − 5 dB and 15 dB with a
step size of 5 dB.

5.2 Performance analysis

This section presents the performance analysis of the proposed algorithm in terms of con-
fusion matrices, receiver operating characteristics (ROC) curves, and area under ROC
(AUROC) curves. For the jamming detection scenario, it is assumed that the illegiti-
mate node broadcasts non-structured signals. On the other hand, it is assumed that PUE
signal’s parameters are identical to that of PU signal.
To examine the performance of the classification, confusion matrices are often used.

They present the number of both correctly and incorrectly classified observations. Thus,
diagonal elements present the number of those observations correctly classified while
off-diagonal elements indicate the number of incorrectly classified observations.
Table 2 presents the confusion matrices for the case of PUEA detection for differentM

and SNR values, where M is the number of samples in the compressed received signal.
It is observed from Table 2 that the overall performance of the proposed algorithm is

Table 3 Confusion matrices for jamming attack detection
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Fig. 4 Comparison of the proposed algorithm with the ED-based ML algorithm for PUEA detection using
ROC curves

satisfactory for PUEA detection, especially at high SNR. Besides, the performance also
improves with the increase in the values of M. Table 3 presents the confusion matrices
for the case of jamming detection for different M and SNR values. It is seen from the
table that the classification accuracy based on the proposed algorithm improves with the
increase inM and SNR similar to PUEA case.
It is also observed from Tables 2 and 3 that the performance of the proposed jammer

detection outperforms PUEA detection. This is because the jammer detection benefits

Fig. 5 Comparison of the proposed algorithm with the ED-based ML algorithm for jamming attack detection
using ROC curves
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Table 4 AUROC values for PUEA

PU Hole PUE

ED-based 0.9089 0.9560 0.8719

Proposed 0.9152 0.9828 0.8943

from both the non-compressive nature of the jamming signal and the channel-dependent
dictionary while the PUEA detection benefits only from the channel-dependent dictio-
nary.
In classification, if a signal belongs class i and is correctly classified in to belong to

the same class, then it is said to be as true positive (TP). If it is wrongly classified to
belong to a different class j, then it is said to be a false negative (FN). If, however, the
signal does not belong to class i and is wrongly classified as such, then it is counted as
false positive (FP). Finally, if it does not really belong to i and is classified to belong to j,
then it is a true negative (TN). To this end, the true positive rate (TPR) or recall can be
defined as TPR = TP/(TP + FN), whereas the false positive rate (FPR) can be defined
as FPR = FP/(FP + TN). ROC curves and AUROC curve values show the capability of
a classifier to distinguish between different classes. ROC is a probabilistic curve which is
plotted with a TPR on the vertical axis and FPR on the horizontal axis. Ideally, the TPR
equals 1 and the FPR equals 0. Generally speaking, the closer the ROC curve is to the top-
left corner, the better the performance. Similarly, the higher values of the AUROC curve
shows better performance. In this work, there are three classes (H0, H1, H2 or H0, H1,
H3) and ROC curve for each class is plotted separately.
Figures 4 and 5 present a performance comparison of the proposed algorithm with the

ED-basedML algorithm for PUEA and jamming attack detection, respectively. In the case
of ED-based ML, the energy of the received signals is used for the detection of different
hypotheses while using ML structure similar to the one used for the proposed algorithm.
It is observed from Figs. 4 and 5 that the ROC curves of the proposed algorithm are closer
to the top-left corner compared to ROC curves of the ED-based algorithm for PUEA
and jamming attack detection. Moreover, Tables 4 and 5 also show that the values of
AUROC of the proposed algorithms are higher compared to the AUROC values of the
ED-based algorithms to detect different hypothesis presented in (4). For example, the
proposed algorithm outperforms the ED-based algorithm by 2.24% in the case of PUEA
and 6.88% in case of jamming attack detection in terms of AUROC values. This is because
the energy patterns in the residual and gradient vector enhance the detection capability
of the proposed algorithm compared to the ED-based algorithm.
From an ML point-of-view, a trained model (classifier in this work) should not memo-

rize the inputs used in its training. To investigate this quality in the trained ML classifier
model in the proposed algorithm, Fig. 6 shows the training and testing losses versus
epochs for the PUEA detection whenM = 100. In view of this figure, it is evident that the
accuracy of the training sets converges to the test set. These results signify the absence of
overfitting, thereby validating the generalizability of the proposed model. In other words,

Table 5 AUROC values for jamming attack

PU Hole Jammer

ED-based 0.9097 0.9542 0.8820

Proposed 0.9830 0.9637 0.9508
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Fig. 6 Model loss graph for the PUEA detection whenM = 100

the trained model does not memorize the training data. Here, it should be noted that we
include the loss graph only for M = 100 case of PUEA to avoid repetition. For the other
values ofM and for the jammer case, we observe the similar behavior in loss graphs.

6 Conclusions
In this paper, the convergence patterns of sparse recovery are exploited for the purpose
of PUEA and jamming attack detection. Sparse recovery was conducted over a legitimate
PU channel-dependent dictionary. Consequently, the signal from the legitimate node has
smooth convergence as compared to the signal from the illegitimate node. Essentially, this
awes to the fact that this signal is the only one compressible in the domain exclusively
defined by this sparsifying dictionary. Besides, the non-compressive nature of a jamming
signal with sparse coding over a PU channel-dependent dictionary was also exploited
to detect jamming attacks. This detection algorithm made use of ML-based approaches.
Numerical experiments showed the effectiveness of the proposed algorithm and its supe-
rior performance compared to ED-based ML algorithms. These results were validated
in terms of confusion matrices, ROC curves, and values of AUROC curves, as quality
metrics. In terms of AUROC curve values, the proposed algorithm outperformed the
ED-based algorithm by 2.24% in the case of PUEA and 6.88% in case of jamming attack
detection.

A Appendix residual energy gradient decay analysis
The proposed algorithm is based on the convergence patterns in the sparse coding of the
compressed received signal. More specifically, the proposed algorithm uses a channel-
dependent dictionary to identify different characteristics of gradients and residuals to
detect PUEA and jamming attack.
In this work, we employ the computationally efficient OMP for sparse coding. Let us

focus on its first iteration for the sake of simplicity. At the start of the first OMP iteration,
the signal itself is used to initialize the zero-th residual r0. Afterwards, OMP chooses an
atom (d) from the atoms of the given dictionary DPU that have the strongest similarity to
the r0. This similarity is characterized by the projection corresponding to each atom as
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E = dd†. The updated residual after the selection of atom can be given as

r1 = r0 − Er0. (A1)

For simplicity, the least-squares refinement of OMP is ignored. With each iteration,
the residual magnitude is decreasing and the pattern of the concatenated residual values
(‖r1‖22

)
is used for classification.

To this end, the first element in G can be represented as

G(1) = ‖r1‖22 − ‖r0‖22 = 〈r1, r1〉 − 〈r0, r0〉 . (A2)

Using this gradient magnitude property, we can differentiate the casesH0,H1,H2, and
H3. The general received signal can be given as y = hx+ n, and we can write the G(1) as
follows:

G(1) = ‖y − Ey‖22 − ‖y‖22. (A3)

For the first hypothesis,H0, x = 0. Thus, y is merely noise and can be written as

G(1)H0 = ‖n − En‖22 − ‖n‖22,
= 〈n − En,n − En〉 − 〈n,n〉 ,
= 〈n,n〉 − 2 〈n,En〉 + 〈En,En〉 − 〈n,n〉 . (A4)

With respect to the properties of projection, we know that 〈En,n〉 = 〈En,En〉 = ‖En22‖.
Hence, (A4) can be written as

G(1)H0 = −‖En‖22. (A5)

Following the same logic, G(1) forH1,H2, andH3 can be expressed as follows

G(1) = 〈hx + n − E(hx + n),hx + n − E(hx + n)〉
− 〈hx + n,hx + n〉 ,

= a − 2b + c − d, (A6)

where a, b, c, and d are defined next. Specifically, a can be written as

a = 〈hx + n,hx + n〉 ,
= 〈hx + hx〉 + 〈hx + n〉 + 〈hx + n〉 + 〈n + n〉 ,
= 〈hx + hx〉 + 2 〈hx + n〉 + 〈n + n〉 . (A7)

Assuming that the noise is independent of hx, 〈hx + n〉 = 0, we can write (A7) as

a = 〈hx + hx〉 + 〈n + n〉 . (A8)

By its turn, b can be expressed as

b = 〈hx + n,E(hx + n)〉 ,
= 〈hx + n,Ehx + En〉 ,
= 〈hx,Ehx〉 + 〈hx,En〉 + 〈n,Ehx〉 + 〈n,En〉 ,
= 〈Ehx,Ehx〉 + 〈hx,En〉 + 〈n,Ehx〉 + 〈En,En〉 ,
= 〈Ehx,Ehx〉 + 〈En,En〉 , (A9)

where 〈hx,En〉 = 〈n,Ehx〉 = 0.
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Moreover, c can be expressed as

c = 〈E(hx + n),E(hx + n)〉 ,
= 〈Ehx + En,Ehx + En〉 ,
= 〈Ehx,Ehx〉 + 〈En,En〉 . (A10)

Lastly, d can be given as

d = 〈hx + hx〉 + 〈n + n〉 = a. (A11)

Based on (A8), (A9), (A10), and (A11), and making the appropriate substitution, G(1)
can be written as

G(1) = a − 2b + c − d,

= −2 〈Ehx,Ehx〉 − 2 〈En,En〉
+ 〈Ehx,Ehx〉 + 〈En,En〉 ,

= − 〈Ehx,Ehx〉 − 〈En,En〉 . (A12)

Finally, the generic expression of the gradient magnitude for hypotheses H1, H2, and
H3 can be expressed

G(1)H1,H2,H3 = −‖Ehx‖2 − ‖En‖2, (A13)

where h corresponds to hPU in case of PU or hi in case of PUE/jammer as explained in
(4). Moreover, x will be structured in case of PU and PUE, while unstructured in the case
of a jamming attack.
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