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Abstract: Cancer is the second leading cause of death worldwide. The etiology of the disease
has remained elusive, but mutations causing aberrant RNA splicing have been considered one
of the significant factors in various cancer types. The association of aberrant RNA splicing with
drug/therapy resistance further increases the importance of these mutations. In this work, the impact
of the splicing factor 3B subunit 1 (SF3B1) K700E mutation, a highly prevalent mutation in various
cancer types, is investigated through molecular dynamics simulations. Based on our results,
K700E mutation increases flexibility of the mutant SF3B1. Consequently, this mutation leads to
i) disruption of interaction of pre-mRNA with SF3B1 and p14, thus preventing proper alignment
of mRNA and causing usage of abnormal 3’ splice site, and ii) disruption of communication in
critical regions participating in interactions with other proteins in pre-mRNA splicing machinery.
We anticipate that this study enhances our understanding of the mechanism of functional
abnormalities associated with splicing machinery, thereby, increasing possibility for designing
effective therapies to combat cancer at an earlier stage.

Keywords: cancer; somatic mutations; aberrant RNA splicing; SF3B1; missense mutations; molecular
dynamics simulations

1. Introduction

Cancer is considered a complex disease caused by a combination of predisposing genetic variants
and environmental factors [1]. Moreover, the genetic background of the mutation and/or epigenetic
alterations further increase the risk of development of the disease. The somatic mutations affecting
the “pre-mRNA splicing machinery” are particularly critical as they cause aberrant splicing [2–4] that
leads to formation of proteins with altered functions. Various studies have shown that these altered
proteins are dominantly involved in processes such as tumor metabolism, apoptosis, cell cycle control,
invasion, metastasis, and angiogenesis [5,6].

Processing of an intron-containing pre-mRNA consists of three steps: i) intron excision, ii) 3’-end
processing, and iii) transportation of mature transcripts from nucleus into the cytoplasm [7].
The splicing process is carried out by a complex ribonucleoprotein (RNP) called spliceosome [8,9]
which is composed of five small nuclear ribonucleoproteins (snRNPs) (U1, U2, U4, U5, and U6)
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along with other related proteins [10]. SF3b complex is the major component of U2 small nuclear
ribonucleoprotein (U2snRNP) and it is responsible for reinforcing the interaction between U2 snRNA
and the branch site on pre-mRNA in the first transesterification reaction of splicing process [11–14].

SF3b is composed of seven subunits: SF3B1, SF3B2, SF3B3, SF3B4, SF3B5, SF3B6, and SF3B7 [15].
Among them, splicing factor 3B subunit 1 (SF3B1) is the largest component of the SF3b complex [16,17]
and it is composed of N-terminal helix-loop-helix domain (NTD) and C-terminal of 20 HEAT-repeat
domain (HD) [15,18]. SF3B1 interacts directly with SF3B3, SF3B7, and SF3B5, all of which facilitate
its binding to pre-mRNA. In addition, SF3B1 also interacts with SF3B6 (also known as p14) [15,19,20],
two of which form a complex with U2 auxiliary factor, U2AF65, to recognize and select the branch
splicing site properly [12,14,20]. In particular, the superhelical heat domain of SF3B1 provides a
platform for effective binding of interacting partners and/or RNAs to the complex [21].

The point mutations occurring in the heat domain of SF3B1 promote usage of alternative branch
points, hence abnormal 3’ splice sites. Consequently, this causes either (partial or complete) intron
retention or excision of an exon in pre-mRNA. Indeed, it has been shown that SF3B1 mutations
increased the number of transcripts with retained introns as seen in myelodysplastic syndrome [22] or
they caused production of transcripts that included a shorter copy of the exon as seen in chronic
lymphocytic leukemia [3]. In another study, it has been shown that mutations affecting SF3B1
gene caused alternative splicing of key genes such as UQCC, F8, ABCC5, and GUSBP11 in ER
(estrogen receptor)-positive breast cancer [23]. The abnormal transcripts follow two possible pathways:
1) translation of mRNA into proteins with truncated or missing domain(s) which consequently leads
to change, loss or gain of function of the protein [24] and 2) degradation by nonsense-mediated mRNA
decay (NMD) mechanism which leads to a reduction in the proteome content of the cell [25]. Therefore,
understanding the molecular mechanism behind aberrant splicing may help in preventing cancer
development or progression; however, the number of related studies is scarce. Recently, Borisek et al.
studied the impact of K335E, L378V, and N295D mutations on Hsh155, which is the yeast homolog
of human SF3B1, using atomistic molecular dynamics to investigate the mechanism underlying
constitutive/alternative/aberrant splicing [26]. In another recent study, Borisek et al. investigated the
impact of splicing modulators such as pladienolides, herboxidienes, and spliceostatins, which have
been shown to exert anti-tumor activity, using mutant Y36C and R38C of PHF5A as well as R1074H of
SF3B1, two of which are the components of SF3b [27].

In this study, we utilized computational biophysics tools to investigate the impact of K700E
mutation on structure and dynamics of SF3B1. Comparative analysis of molecular dynamics trajectories
of wild type and mutant protein revealed that the mutation i) increased the flexibility of the protein,
thus preventing proper alignment of pre-mRNA within the splicing machinery, ii) caused disruption
of interactions between p14 and pre-mRNA. K700E mutation is shown to be associated with various
cancer types including myelodysplastic syndrome (MDS), chronic lymphocyctic leukemia (CLL),
uveal melanoma (UV), and pancreatic cancer [28]. Therefore, our results can provide insights into the
molecular mechanism of aberrant splicing in various cancer types, highlighting the importance and
general applicability of our work.

2. Results

2.1. SF3B1 Gene Has the Highest Number of Mutations in the Pre-mRNA Splicing Network

We identified a somatic mutation to further study, namely SF3B1K700E, factoring in two aspects;
the associated gene’s centrality in pre-mRNA splicing machinery and the prevalence of the somatic
mutations it carries. To this end, we constructed a pre-mRNA splicing network and superimposed the
number of mutations obtained from latest version of COSMIC database on this network.

The network analysis revealed the top six genes with high centrality in the network which are
SF3B1, splicing factor 3A subunit 2 (SF3A2), DEAH-Box helicase 15 (DHX15), U2 auxiliary factor 2
(U2AF2), pre-mRNA-processing factor 19 (PRPF19), and serine/arginine-rich splicing factor 1 (SRSF1).
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SF3A2 is the only component in the SF3a complex that recognizes the U2/BS duplex [18,29]. DHX15
is required to catalyze the disassembly of spliceosome complex after the completion of splicing and
releasing mature mRNA to cytoplasm [30–32]. U2AF2 recognizes and binds to the polypyrimidine
(Py) tract on pre-mRNA [33]. PRPF19 (also known as PRP19) interacts with other components
of the NineTeen complex (NTC) that is essential for NTC stability [34], which is responsible for
strengthening interactions between mRNA and snRNAs [35]. SRSF1 (also known as SF2/ASF) regulates
pathways of mRNA metabolism such as pre-mRNA splicing [36], export [37], and translation [36].
The centrality metrics of SF3B1 including closeness, radiality, and eccentricity were equal to 0.58, 0.88,
and 5, respectively which are slightly lower than the other five genes. However, SF3B1 was the most
frequently mutated gene (associated with 34 highly pathogenic missense mutations) among other
genes included in the constructed pre-mRNA splicing network. SF3A2, DHX15, U2AF2, PRPF19), and
SRSF1 had 1, 13, 2, 6, and 2 highly pathogenic missense mutations, respectively.

To maximize the general applicability of our study, we favored the prevalence of mutation over
gene network centrality in deciding the mutation to further study. SF3B1 was a gene containing the
highest number of mutations while having comparably high centrality in the constructed pre-mRNA
splicing network to other genes as shown in Figure 1. Among the 34 highly pathogenic SF3B1 missense
mutations, SF3B1 K700E mutation was the most prevalent mutation in various cancer types whose
significance supported by previous experimental studies. Hence, we decided to study the impact of
K700E mutation on the structure and dynamics of by means of MD simulations.

Figure 1. Depiction of the extracted network’s component. It consists of 54 nodes and 382 edges.
In this component, nodes represent genes that are connected with 382 edges depending on different
experimental data. Nodes’ color is mapped according to the number of associated mutations whereas
nodes’ size is mapped according to their degree. An edge between every two nodes corresponds to
their experimental interaction as explained in the methods section.

2.2. K700E Mutation Affects the Stability of SF3B1, Pre-mRNA, and p14

K700E mutation is located in the heat domain of SF3B1 and is within the interaction distance from
pre-mRNA (See Figure 8). The distance between the side chain of K700 and pre-mRNA is smaller than
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0.20 nm. Therefore, we set out to investigate the impact of the mutation on the stability of pre-mRNA
and also SF3B1 using trajectories obtained from MD simulations. The results showed that the mutation
decreased the stability of pre-mRNA and SF3B1, which is evident from the right-shift in probability
distributions of RMSD in the mutant system as shown in Figure 2a,b. We also did the same analysis
for p14, which is shown to be involved in selection of the branch point on pre-mRNA, and observed a
similar impact as well.

(a) SF3B1 (b) pre-mRNA

(c) p14

Figure 2. Probability plots of root mean square deviation (RMSD) distributions of (a) SF3B1wt in blue
vs. SF3B1K700E in red. (b) pre-mRNA in the wild type structure in blue vs. mutant structure in red.
(c) p14 in the wild type structure in blue vs. mutant structure in red.

2.3. K700E Mutation Weakens Interactions Formed with Pre-mRNA

As shown in the above section, K700E mutation decreases stability of both SF3B1 and pre-mRNA,
which presumably impacts interactions formed between the heat domain of SF3B1 and pre-mRNA.
To test this, we calculated the number of contacts between K700 and pre-mRNA. The results showed
that contact number was smaller in the mutant protein than in the wild type as shown in Figure 3a.
Specifically, the number of contacts reached to zero after 250ns in the mutant protein. Presumably, this
drastic reduction in the number of contacts has resulted from disruption of electrostatic interactions
formed between pre-mRNA and K700. In the wild type, positively charged side chain of lysine “K700"
attracts negatively charged phosphate backbone atoms of pre-mRNA [38], whereas negatively charged
side chain of glutamic acid “E700" causes repulsion in the mutant system.

Additionally, we also calculated the number of interactions formed between pre-mRNA and p14,
in particular, side chains of residues (20–100), as they are shown to be cross-linked to adenosine
nucleotide at the branch point during splicing [29,39], hence known as RNA recognition motif
(RRM) [20]. The results showed that the number of contacts formed between p14 and pre-mRNA
decreased in the mutant protein as shown in Figure 3b.
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(a) pre-mRNA & K700E (b) pre-mRNA & p14RRM

Figure 3. Probability plots of distributions of the number of contacts formed between (a) pre-mRNA
and side chain of amino acid K700 in wild type shown in blue vs. E700 mutant shown in red, with
cutoff distance ≤0.3 nm. (b) pre-mRNA and side chains of p14 residues (20–100) in wild type shown in
blue vs. mutant shown in red, with cutoff distance ≤3 nm.

2.4. K700E Mutation Impacts the Global Dynamics of SF3B1

As shown in the previous section, K700E mutation increased the flexibility of both SF3B1 and
pre-mRNA. To further investigate the impact of the mutation on global dynamics of SF3B1, we
performed essential dynamics analysis. To do so, we projected trajectories of both wild type and
mutant SF3B1 systems along the first and the second eigenvectors as shown in Figure 4. With that,
we could capture more than 50% of overall dynamics in these systems. The results showed that both
replicates of the wild type system followed similar paths even though the first one sampled a wider
space than the second one. Presumably, the protein in the second replicate might be trapped (See
blue in Figure 4) in one of the many local energy minima present on the rugged potential energy
surface. On the other hand, the two replicates followed completely different paths (See green and red
color in Figure 4) in the mutant system which might be due to the increase in the protein flexibility
upon mutation.

We further computed the RMSF values per Cα atoms of the protein along the first and the second
eigenvectors of both wild type and mutant SF3B1 which cumulatively account for more than 50% of
overall motion in the systems studied. The results showed that residues 900–1125 displayed relatively
higher fluctuation in the first and the second replicate of the mutant system (See red and green color
in the first eigenvector) as shown in Figure 5. On the other hand, we observed relatively higher
fluctuation for residues 750–900 and 1125–1300 in the wild type system (See blue color in the second
eigenvector); however, the contribution of these residues to the overall dynamics is smaller (15%) than
did by the first eigenvector (37%).
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Figure 4. 2D projection of SF3B1 trajectories for two replicates of the wild type protein (black and
blue) and two replicates of the mutant system (red and green) along the first two eigenvectors of
SF3B1K700 system.

Figure 5. Root mean square fluctuation (RMSF) per Cα atoms of the first two eigenvectors of SF3B1
obtained for two replicates of the wild type protein (black and blue) and two replicates of the mutant
system (red and green).
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2.5. K700E Mutation Changes the Correlation between Residues in SF3B1 Protein

To investigate how the differences observed between global dynamics of wild type and mutant
protein are reflected in the correlation patterns of SF3B1 residues, we made dynamic cross correlation
analysis (Figure 6). As shown in Figure 7a it produced an NxN heatmap, where N corresponds to
the number of Cα atoms in the protein. Moreover, each element in the matrix represents the degree
of cross correlation, which is color-coded, between each atom. The negative and positive correlation
is represented by pink and cyan, respectively. The results showed that the region that is made up of
residues 455–832, which is indicated by red rectangle in Figure 7a, shows strong positive correlation
in the wild type system. On the other hand, this correlation is lost in the mutant protein. Moreover,
the negative correlation was seen between residues (455–832) and residues (932–1300), which is
indicated by blue rectangle in Figure 7a, is also decreased in the mutant protein. Thereafter, we mapped
the two regions, which are indicated by red and blue rectangles in Figure 7a, on the 3D structure of
SF3B1 and showed that the two regions surround the pre-mRNA from its N- and C-terminus as shown
in Figure 7a. To investigate how these regions interact with pre-mRNA throughout the trajectories,
we aligned both wild type and mutant protein individually and examined the positioning of the
pre-mRNA within the substructure as shown in Figure 7a. Therein, the initial and the last structure
taken from trajectories are shown in red and blue, respectively. In the wild type system, both initial
and last position of pre-mRNA and K700 residue are almost superimposed onto each other as shown
in Figure 7a, whereas pre-mRNA deviated from its initial position in the mutant system as shown in
Figure 7b. This dynamic change reflects the impact of the mutation on dynamics and orientation of the
pre-mRNA within the SF3b complex.

(a) Wild type (b) Mutant

Figure 6. Dynamic cross correlation map for SF3B1 is shown in (a) for the wild type system. As can
be seen, there is a high positive correlation within the region 455–832, which is colored in red, and a
high negative correlation between two highlighted regions sequences as 455–832 in red and 932–1300
in blue. (b) For the mutant system, the positive correlation decreased drastically within the region
455–832, which is colored in red, and low negative correlation between the two regions 455–832 in red
and 932–1300 in blue.
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(a) Wild type (b) Mutant

Figure 7. 3D structure of the two highlighted regions surrounding pre-mRNA in wild type system
(a) and mutant system (b). α helical region (455–832) in orange, α helical region (932–1300) in green,
both of pre-mRNA and K700E residue are shown in red representing the initial frame of simulation
and blue color representing the last frame. The structural image was created using VMD [40].

3. Discussion

Identification of aberrant splicing, as one of the significant cancer drivers, has brought SF3B1 into
prominence due to its crucial role in recognition of the proper branch sites during splicing process.
The superhelical heat domain of SF3B1 is particularly critical for fulfilling its function and has been
shown to be mutated in various cancer types. Therefore, there is an urgent need for understanding
the impact of these mutations on structure and dynamics of splicing factor, SF3B1, which will help
improve drug discovery studies that target mutant protein.

As a first step in that direction, we provided a mechanistic insight into the mechanism of altered
branch point usage elicited by K700E mutation. We showed that the mutation affected interactions of
pre-mRNA with SF3B1 and p14, which is in line with functional studies that demonstrate that point
mutations in SF3B1 alter branch point selection [41] and also interactions between mutant SF3B1 and
other spliceosome components [42,43].

Herein, it is important to emphasize that the altered interaction of p14 with pre-mRNA is novel
and warrants follow-up in vitro models. Moreover, findings of dynamic cross correlation analysis
provide an insight into the impact of mutation on interactions between SF3B1 and other proteins
that are not part of the spliceosome. For instance, it has been shown that PPP1R8 interacts with
SF3B1 through amino acids between 223-491 [44] and the cross correlation analysis showed that
the interaction network among residues 455-832 changed upon mutation. Therefore, it is likely
that the mutation distorts interaction also between SF3B1 and PPP1R8, thus leading to problems in
(dis)assembly and catalytic steps of splicing. The information regarding network modulation can also
be used to determine novel sites on SF3B1 to which small therapeutic molecules can bind and revert the
mutant protein to its original function. Alternatively, this knowledge can also help improve existing
drug discovery strategies that target mutant SF3B1 as in the case of riboside analog 8-azaguanine [45],
H3B-8800 [46], and E7107 [47]. Among them, E7107 has been shown to enhance antitumor response
when combined with the proteasome inhibitor, bortezomib, in triple-negative breast cancer, thus
highlighting the possible usage of mutant SF3B1 inhibitors in combination therapies.

Our work, though need experimental validations, sheds light on the unknown mechanism of
altered branch point usage caused by SF3B1-K700E mutation. Considering that the mutation is
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frequently seen in myelodysplastic syndrome (MDS), chronic lymphocytic leukemia (CLL) and breast
cancer our results can be used to study other cancer types, and mutant SF3B1 can be considered a
potential drug target for cancer therapy. Consequently, this demonstrates the general applicability of
the study.

4. Materials and Methods

Previous studies showed that mutant genes, which are involved in cancer [48], encode abnormal
proteins that interfere with various vital biological processes such as cell proliferation, transcription,
splicing, immune response [49], cell communication, and apoptosis [50].Among them, aberrant splicing
is considered one of the most significant driving factors for development and progression of cancer [51],
as it leads to production of proteins with altered function. Therefore, “pre-mRNA splicing” is selected
as the target biological process in this study.

As mentioned above, (SF3B1)K700E mutant has been shown to be associated with various cancer
types. As such, we wanted to investigate if it is among those having higher centrality and associated
with the highest number of mutations in the gene network that is involved in pre-mRNA splicing
before assessing the impact of the mutation in silico. To do so, we first identified the genes that
participate in pre-mRNA splicing and then constructed the corresponding network as explained below.

4.1. Identification of Genes Participating in Pre-mRNA Splicing and Constructing the Related Gene Network

To ensure the general applicability of our findings around the mutation studied and to optimize the
use of our limited computing resources, we created a generic pipeline to prioritize the genes/mutations
that will be studied through molecular dynamics experiments. To this end, we devised a method that
factors in two aspects; (1) the prevalence of the mutation in various cancer types, and (2) the centrality
of the mutant gene in the target functional context, namely pre-mRNA splicing.

We first used Reactome database [52] to get the list of genes that are involved in mRNA splicing.
First, we got 3734 genes which were decreased down to 86 upon filtering based on species as “homo
sapiens” and the type as “protein”. STRING database [53] was used to construct a network of genes
from these 86 proteins. It consisted of five connected components; four small isolated components
consist of 5, 3, 3, and 2 nodes which are connected by 10, 2, 2, and 1 edges, respectively which is shown
in Figure 1. The complete network has 67 nodes connected by 397 edges and 12 disconnected nodes
(Figure S1), where the nodes represent genes and edges represent experimental interactions taken from
different studies such as crystallography and purification assays, cross-linking, and expression level
measurements.

We used NetworkAnalyzer plugin [54] within Cytoscape software platform [55] to compute
topological parameters and centrality metrics for individual genes (i.e., nodes) on the constructed
pre-mRNA splicing network, including closeness, radiality, and eccentricity. Thereafter, we also
included somatic mutation frequency data coming from COSMIC database (September 2019 release,
the latest version) [56] in our calculations to determine the gene with the highest number of mutations.
COSMIC database was filtered based on the following criteria:

1. For practical reasons, we chose breast cancer, one of the most common cancer type, with large
number of samples in COSMIC.

2. Only the histological type of “Carcinoma” was used as it is the most common histological type
covering the majority of the breast malignancies [57,58].

3. Only “Substitution-Missense” somatic mutations are included. According to COSMIC statistics,
82% of breast carcinoma patients have somatic mutations of type “Substitution-Missense”.

4. Only somatic mutations that are predicted strictly as pathogenic mutations are included.
Functional Analysis through Hidden Markov Models (FATHMM) is a predictive tool for the
mutation’s impact and classifies any mutation as one of the following classes; pathogenic, neutral
or not specified. In addition, FATHMM scores are given in the form of p-value that ranges from 0 to
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1. By default, the pathogenic mutations have scores greater than 0.5. For our purposes, we further
increased the threshold for the pathogenic mutations to 0.9 to avoid false positive predictions.

From the filtered somatic mutation dataset, we computed the number of mutations associated
with each gene, and then we superimposed these data on the constructed pre-mRNA splicing. SF3B1
emerged a gene containing the highest number of mutations; K700E being the most frequent one,
while having comparably high centrality in the constructed pre-mRNA splicing network to other genes
as shown in Figure 1.

4.2. Assessment of the Impact of the Mutation by Means of Molecular Dynamics Simulations

In 2015, Maguire et al. analyzed available exome and whole genome sequencing data that
belong to 1293 tumor samples and showed that SF3B1-K700E mutation appeared in 17 of 23 mutant
samples [23]. Later, in 2018, Seiler et al. reanalyzed whole-exome sequencing data, which included
33 cancer types, to identify SF3B1-related somatic mutations. Consequently, a group of mutations
was identified as hotspots regarding SF3B1, namely, R625C/H, E622D/Q, N626D/H/Y, K666E/N/T,
K700E, G742D, L833F, E860K, and E862K [59]. Therefore, we utilized the most recent version of
COSMIC database which includes almost all studies that report on the SF3B1-K700E mutant involved
in breast cancer. In this way, we could i) identify the most frequent mutation among other hotspot
mutations that are associated with the target gene in breast cancer and also ii) include a larger and more
recent pool of samples. The results showed that K700E was detected in 45 samples while an unknown
mutation was detected in 21 samples among 115 samples studied. Moreover, each of G83=/L982=
(synonymous substitution), K666Q, R625C, and T935K mutations were detected only in 2 samples, and
each of the remaining 44 mutations were detected in only one sample. Therefore, K700E substitution
mutation (lysine⇒ glutamic acid at position 700) was found to be the one with the highest frequency
(40%) among other mutations associated with SF3B1. Consequently, K700E mutation was selected to
be used in subsequent molecular dynamics (MD) simulations.

4.2.1. System Setup

Cryogenic electron microscopy (cryo-EM) structure of the human spliceosome (PDB ID:5Z56) at
resolution 5.1 Å [18], which corresponded to Bact state, was retrieved from Protein Data Bank (PDB).
The complex contains 52 proteins, three snRNAs, and synthetic pre-mRNA with a molecular weight
of ca. 1.8 mega-Daltons. Due to the size of the system, we did not include all of SF3b complex’s
components available in the cryo-EM structure, instead five chains, namely, SF3B1, SF3B3, SF3B5,
SF3B6, SF3B7, and pre-mRNA (See Figure 8) were used in MD simulations since they directly interact
with SF3B1. We used SWISS-MODEL web-server [60] to model the missing parts of the SF3B1 except
the first 81 residues. We did not include both SF3B2 and SF3B4 in the final complex for the following
reasons: i) they did not have any direct interactions with SF3B1, ii) SF3B2 has 895 residues but only
183 of them are available, and iii) SF3B4 has 424 residues, but only 78 residues are resolved in the
experimental structure. We exploited CHARMM-GUI [61] to prepare both wild type and the mutant
systems. CHARMM36 force field [62] was used to model protein and RNA, whereas water molecules
were represented by TIP3P water model [63]. After including water molecules, wild type system has
1089028 while the mutant one has 1089281 atoms. The thickness of water layer was set to 16 Å in each
direction to prevent interaction with the periodic images of the system. The system was neutralized
with 0.15 M KCl.
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Figure 8. The depiction of the 3D structure of five domains of the SF3b complex included in this study.
They are taken from the cryogenic electron microscopy (cryo-EM) structure of human spliceosome
complex (PDB:5z56) [18]. Each domain is shown in a different color. SF3B1, SF3B3, SF3B5, SF3B6,
SF3B7, and pre-mRNA are shown in blue, red, yellow, grey, orange, and green, respectively. The image
was created using VMD [40].

4.2.2. Simulation Protocol

Molecular dynamics simulations were performed by using GROningen MAchine for Chemical
Simulations (GROMACS) [64] package. Equilibration of the system was performed by using the
NVT ensemble, whereas the NPT ensemble was used in the production step to maintain constant
pressure and temperature throughout the simulation. We used Nose-Hoover and Parrinello-Rahman
coupling algorithms with 1 ps and 5 ps coupling times to maintain the temperature at 310 ◦K and 1
bar, respectively. LINCS algorithm was used to constrain the bond lengths in hydrogen atoms [65].
The Particle Mesh Ewald (PME) method was used to compute long-range electrostatic interactions [66].
For van der Waals and short-range electrostatic interactions, we set the cut off value to (12 Å). The time
step for integration was set to 2 femtoseconds. MD simulations were performed for 2 microseconds in
total. Three replicates, each of which started with a different initial velocity distribution, were used for
both wild type and the mutant system to check the reliability of the results. The two replicates were
run for 500 nanoseconds (ns), whereas the last one was run for 100 ns. For the analyses, we used two
trajectories each of which was around 500 ns.

4.2.3. Simulation Analysis Tools

We used GROMACS package for MD trajectories analysis as it provides many tools and GRaphing
and Advanced Computation and Exploration of data (Grace) tool for data plotting.



Biomolecules 2020, 10, 680 12 of 17

Root Mean Square Deviation (RMSD)

Root mean square deviation is the most commonly used similarity measurement tool [67] which
is given by the following equation:

RMSD =

√
1
n

n

∑
i=1

d2
i , (1)

where n represents pairs of equivalent atoms and di is the distance between the two atoms in the ith
pair. Here, the RMSD is calculated by using the backbone atoms of the selected groups. Also, the initial
structure in corresponding trajectories was used as the Reference [68].

Calculation of Number of Contacts

The number of contacts between pre-determined groups is computed by using “gmx mindist"
module implemented in GROMACS. We used 0.3 nm as the cut-off value to calculate the number of
contacts between the mutated residue and pre-mRNA while 3 nm was used to calculate the number
of contacts between side chain residues of p14 (residues 20–100) and pre-mRNA as p14 is defined in
previous studies as a marker of branch point [12,13].

Principal Component Analysis (PCA)

To determine the dominant motion of a structure, principal component analysis is computed by
obtaining the covariance matrix of Cα atoms with respect to the reference structure. Covariance matrix
is computed using “gmx covar” module in GROMACS.

Cij = 〈Mij∆ri∆rj〉, (2)

where Cij corresponds to covariance matrix of Cα atoms i and j. Mij∆ri∆rj refers to positional change
from time-averaged structure for each coordinate of all Cα atoms i and j. Diagonalization of covariance
matrix is performed using “gmx covar” module in GROMACS. It results in a set of eigenvalues δ2 and
their corresponding eigenvectors (v).

Cv = δ2v. (3)

We used “gmx anaeig” module to analyze the first two eigenvectors that represent the directions
and relative magnitudes [69] of more than 50% of the dominant motion of the system. Additionally, we
used “rmsf” module to plot root mean square fluctuation (RMSF) per atom of the first two eigenvectors.
Therefore, we can identify a particular residue (or a set of residues) that leads to fluctuation of the
overall chain. RMSF is given as RMSD from the average over time calculated per each residue and
with respect to the initial frame [64]. RMSF is expressed as

RMSF =

√√√√ 1
N

N

∑
n=1

(Xi(n)− Xi), (4)

where N corresponds to the number of frames obtained from simulation, Xi(n) corresponds to the
coordinates of backbone atom of Xiand Xi is given as the average coordinate obtained from simulation.

Dynamic Cross Correlation Map (DCCM)

Dynamic cross correlation (DCC) among Cα of SF3B1 residues is computed using Bio3d package
for biological structural analysis written in R programming language [70]. Bio3d library contains major
functions needed for structural bioinformatics. For this study, we used “dccm.xyz” and “plot.dccm”
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modules to generate dynamical cross correlation matrices and to plot them, respectively. DCC is
expressed as

DCC(i, j) =
< ∆ri(t).∆rj(t) >t√

< ‖ ∆ri(t) ‖2 >t

√
< ‖ ∆rj(t) ‖2 >t

, (5)

where ri(t) and rj(t) correspond to the coordinates of the ith and jth atoms as a function of time t, <.>
indicates the time ensemble average, ∆ri(t) = ri(t)− (< ri(t) >)t and ∆rj(t) = rj(t)− (< rj(t) >)t [71–73].

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/5/680/
s1, Figure S1: Depiction of the components of the constructed gene network that contains genes participating in
mRNA splicing mechanism.

Author Contributions: Conceptualization, A.S., B.E.S., M.K.O. and O.S.; methodology, A.S., B.E.S., M.K.O. and
O.S.; formal analysis, A.S.; data curation, A.S.; writing–original draft preparation, A.S.; writing–review and
editing, A.S., B.E.S., M.K.O. and O.S.; supervision, B.E.S., M.K.O. and O.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding

Acknowledgments: We thank Istanbul Medipol University for offering the High Performance Computing system
to perform classical molecular dynamics simulations. We also thank Metehan Ilter for his help through MD
trajectory analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hortobagyi, G.N.; de la Garza Salazar, J.; Pritchard, K.; Amadori, D.; Haidinger, R.; Hudis, C.A.; Khaled, H.;
Liu, M.C.; Martin, M.; Namer, M.; et al. The global breast cancer burden: Variations in epidemiology and
survival. Clin. Breast Cancer 2005, 6, 391–401. [CrossRef] [PubMed]

2. Alsafadi, S.; Houy, A.; Battistella, A.; Popova, T.; Wassef, M.; Henry, E.; Tirode, F.; Constantinou, A.;
Piperno-Neumann, S.; Roman-Roman, S.; et al. Cancer-associated SF3B1 mutations affect alternative splicing
by promoting alternative branchpoint usage. Nat. Commun. 2016, 7, 10615. [CrossRef] [PubMed]

3. Darman, R.B.; Seiler, M.; Agrawal, A.A.; Lim, K.H.; Peng, S.; Aird, D.; Bailey, S.L.; Bhavsar, E.B.; Chan, B.;
Colla, S.; et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3’ splice site selection through use
of a different branch point. Cell Rep. 2015, 13, 1033–1045. [CrossRef] [PubMed]

4. DeBoever, C.; Ghia, E.M.; Shepard, P.J.; Rassenti, L.; Barrett, C.L.; Jepsen, K.; Jamieson, C.H.; Carson, D.;
Kipps, T.J.; Frazer, K.A. Transcriptome sequencing reveals potential mechanism of cryptic 3’ splice site
selection in SF3B1-mutated cancers. PLoS Comput. Biol. 2015, 11, e1004105. [CrossRef]

5. Venables, J.P. Unbalanced alternative splicing and its significance in cancer. Bioessays 2006, 28, 378–386.
[CrossRef]

6. Ghigna, C.; Valacca, C.; Biamonti, G. Alternative splicing and tumor progression. Curr. Genom. 2008,
9, 556–570. [CrossRef]

7. Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.;
Hermjakob, H. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinform.
2017, 18, 142. [CrossRef]

8. Berget, S.M.; Moore, C.; Sharp, P.A. Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc.
Natl. Acad. Sci. USA 1977, 74, 3171–3175. [CrossRef]

9. Chow, L.T.; Gelinas, R.E.; Broker, T.R.; Roberts, R.J. An amazing sequence arrangement at the 5’ ends of
adenovirus 2 messenger RNA. Cell 1977, 12, 1–8. [CrossRef]

10. Wahl, M.C.; Will, C.L.; Lührmann, R. The spliceosome: Design principles of a dynamic RNP machine. Cell
2009, 136, 701–718. [CrossRef]

11. Gozani, O.; Feld, R.; Reed, R. Evidence that sequence-independent binding of highly conserved U2 snRNP
proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev. 1996,
10, 233–243. [CrossRef] [PubMed]

http://www.mdpi.com/2218-273X/10/5/680/s1
http://www.mdpi.com/2218-273X/10/5/680/s1
http://dx.doi.org/10.3816/CBC.2005.n.043
http://www.ncbi.nlm.nih.gov/pubmed/16381622
http://dx.doi.org/10.1038/ncomms10615
http://www.ncbi.nlm.nih.gov/pubmed/26842708
http://dx.doi.org/10.1016/j.celrep.2015.09.053
http://www.ncbi.nlm.nih.gov/pubmed/26565915
http://dx.doi.org/10.1371/journal.pcbi.1004105
http://dx.doi.org/10.1002/bies.20390
http://dx.doi.org/10.2174/138920208786847971
http://dx.doi.org/10.1186/s12859-017-1559-2
http://dx.doi.org/10.1073/pnas.74.8.3171
http://dx.doi.org/10.1016/0092-8674(77)90180-5
http://dx.doi.org/10.1016/j.cell.2009.02.009
http://dx.doi.org/10.1101/gad.10.2.233
http://www.ncbi.nlm.nih.gov/pubmed/8566756


Biomolecules 2020, 10, 680 14 of 17

12. Will, C.L.; Schneider, C.; MacMillan, A.M.; Katopodis, N.F.; Neubauer, G.; Wilm, M.; Lührmann, R.;
Query, C.C. A novel U2 and U11/U12 snRNP protein that associates with the pre-mRNA branch site. EMBO
J. 2001, 20, 4536–4546. [CrossRef] [PubMed]

13. Query, C.C.; McCaw, P.S.; Sharp, P.A. A minimal spliceosomal complex A recognizes the branch site and
polypyrimidine tract. Mol. Cell. Biol. 1997, 17, 2944–2953. [CrossRef] [PubMed]

14. Gozani, O.; Potashkin, J.; Reed, R. A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to
the branch site. Mol. Cell. Biol. 1998, 18, 4752–4760. [CrossRef]

15. Cretu, C.; Schmitzová, J.; Ponce-Salvatierra, A.; Dybkov, O.; De Laurentiis, E.I.; Sharma, K.; Will, C.L.;
Urlaub, H.; Lührmann, R.; Pena, V. Molecular Architecture of SF3b and Structural Consequences of Its
Cancer-Related Mutations. Mol. Cell 2016, 64, 307–319. [CrossRef]

16. Cass, D.M.; Berglund, J.A. The SF3b155 N-terminal domain is a scaffold important for splicing. Biochemistry
2006, 45, 10092–10101. [CrossRef]

17. Wang, C.; Chua, K.; Seghezzi, W.; Lees, E.; Gozani, O.; Reed, R. Phosphorylation of spliceosomal protein
SAP 155 coupled with splicing catalysis. Genes Dev. 1998, 12, 1409–1414. [CrossRef]

18. Zhang, X.; Yan, C.; Zhan, X.; Li, L.; Lei, J.; Shi, Y. Structure of the human activated spliceosome in three
conformational states. Cell Res. 2018, 28, 307. [CrossRef]

19. Schellenberg, M.J.; Edwards, R.A.; Ritchie, D.B.; Kent, O.A.; Golas, M.M.; Stark, H.; Lührmann, R.;
Glover, J.M.; MacMillan, A.M. Crystal structure of a core spliceosomal protein interface. Proc. Natl.
Acad. Sci. USA 2006, 103, 1266–1271. [CrossRef]

20. Spadaccini, R.; Reidt, U.; Dybkov, O.; Will, C.; Frank, R.; Stier, G.; Corsini, L.; Wahl, M.C.; Lührmann, R.;
Sattler, M. Biochemical and NMR analyses of an SF3b155–p14–U2AF-RNA interaction network involved in
branch point definition during pre-mRNA splicing. RNA 2006, 12, 410–425. [CrossRef]

21. Andrade, M.A.; Perez-Iratxeta, C.; Ponting, C.P. Protein repeats: Structures, functions, and evolution. J.
Struct. Biol. 2001, 134, 117–131. [CrossRef] [PubMed]

22. Visconte, V.; Avishai, N.; Mahfouz, R.; Tabarroki, A.; Cowen, J.; Sharghi-Moshtaghin, R.; Hitomi, M.;
Rogers, H.; Hasrouni, E.; Phillips, J.; et al. Distinct iron architecture in SF3B1-mutant myelodysplastic
syndrome patients is linked to an SLC25A37 splice variant with a retained intron. Leukemia 2015, 29, 188–195.
[CrossRef] [PubMed]

23. Maguire, S.L.; Leonidou, A.; Wai, P.; Marchiò, C.; Ng, C.K.; Sapino, A.; Salomon, A.V.; Reis-Filho, J.S.;
Weigelt, B.; Natrajan, R.C. SF3B1 mutations constitute a novel therapeutic target in breast cancer. J. Pathol.
2015, 235, 571–580. [CrossRef] [PubMed]

24. Fackenthal, J.D.; Godley, L.A. Aberrant RNA splicing and its functional consequences in cancer Cells. Dis.
Model. Mech. 2008, 1, 37–42. [CrossRef]

25. Dolatshad, H.; Pellagatti, A.; Liberante, F.G.; Llorian, M.; Repapi, E.; Steeples, V.; Roy, S.; Scifo, L.;
Armstrong, R.N.; Shaw, J.; et al. Cryptic splicing events in the iron transporter ABCB7 and other key
target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia 2016, 30, 2322. [CrossRef]

26. Borišek, J.; Saltalamacchia, A.; Gallì, A.; Palermo, G.; Molteni, E.; Malcovati, L.; Magistrato, A. Disclosing the
Impact of Carcinogenic SF3b Mutations on Pre-mRNA Recognition Via All-Atom Simulations. Biomolecules
2019, 9, 633. [CrossRef]

27. Borišek, J.; Saltalamacchia, A.; Spinello, A.; Magistrato, A. Exploiting Cryo-EM Structural Information and
All-Atom Simulations to Decrypt the Molecular Mechanism of Splicing Modulators. J. Chem. Inf. Model.
2019. [CrossRef]

28. Read, A.; Natrajan, R. Splicing dysregulation as a driver of breast cancer. Endocr.-Relat. Cancer 2018,
25, R467–R478. [CrossRef]

29. MacMillan, A.M.; Query, C.C.; Allerson, C.R.; Chen, S.; Verdine, G.L.; Sharp, P.A. Dynamic association of
proteins with the pre-mRNA branch region. Genes Dev. 1994, 8, 3008–3020. [CrossRef]

30. Arenas, J.E.; Abelson, J.N. Prp43: An RNA helicase-like factor involved in spliceosome disassembly. Proc.
Natl. Acad. Sci. USA 1997, 94, 11798–11802. [CrossRef]

31. Fourmann, J.B.; Schmitzová, J.; Christian, H.; Urlaub, H.; Ficner, R.; Boon, K.L.; Fabrizio, P.; Lührmann, R.
Dissection of the factor requirements for spliceosome disassembly and the elucidation of its dissociation
products using a purified splicing system. Genes Dev. 2013, 27, 413–428. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/emboj/20.16.4536
http://www.ncbi.nlm.nih.gov/pubmed/11500380
http://dx.doi.org/10.1128/MCB.17.5.2944
http://www.ncbi.nlm.nih.gov/pubmed/9111366
http://dx.doi.org/10.1128/MCB.18.8.4752
http://dx.doi.org/10.1016/j.molcel.2016.08.036
http://dx.doi.org/10.1021/bi060429o
http://dx.doi.org/10.1101/gad.12.10.1409
http://dx.doi.org/10.1038/cr.2018.14
http://dx.doi.org/10.1073/pnas.0508048103
http://dx.doi.org/10.1261/rna.2271406
http://dx.doi.org/10.1006/jsbi.2001.4392
http://www.ncbi.nlm.nih.gov/pubmed/11551174
http://dx.doi.org/10.1038/leu.2014.170
http://www.ncbi.nlm.nih.gov/pubmed/24854990
http://dx.doi.org/10.1002/path.4483
http://www.ncbi.nlm.nih.gov/pubmed/25424858
http://dx.doi.org/10.1242/dmm.000331
http://dx.doi.org/10.1038/leu.2016.149
http://dx.doi.org/10.3390/biom9100633
http://dx.doi.org/10.1021/acs.jcim.9b00635
http://dx.doi.org/10.1530/ERC-18-0068
http://dx.doi.org/10.1101/gad.8.24.3008
http://dx.doi.org/10.1073/pnas.94.22.11798
http://dx.doi.org/10.1101/gad.207779.112
http://www.ncbi.nlm.nih.gov/pubmed/23431055


Biomolecules 2020, 10, 680 15 of 17

32. Tsai, R.T.; Fu, R.H.; Yeh, F.L.; Tseng, C.K.; Lin, Y.C.; Huang, Y.H.; Cheng, S.C. Spliceosome disassembly
catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev. 2005, 19, 2991–3003. [CrossRef]
[PubMed]

33. Murray, J.I.; Voelker, R.B.; Henscheid, K.L.; Warf, M.B.; Berglund, J.A. Identification of motifs that function
in the splicing of non-canonical introns. Genome Biol. 2008, 9, R97. [CrossRef] [PubMed]

34. Ohi, M.D.; Vander Kooi, C.W.; Rosenberg, J.A.; Ren, L.; Hirsch, J.P.; Chazin, W.J.; Walz, T.; Gould, K.L.
Structural and functional analysis of essential pre-mRNA splicing factor Prp19p. Mol. Cell. Biol. 2005,
25, 451–460. [CrossRef]

35. Hogg, R.; McGrail, J.C.; O’Keefe, R.T. The function of the NineTeen Complex NTC in regulating spliceosome
conformations and fidelity during pre-mRNA splicing. Biochem. Soc. Trans. 2010, 38, 1110–1115. [CrossRef]

36. Das, S.; Krainer, A.R. Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism
and cancer. Mol. Cancer Res. 2014, 12, 1195–1204. [CrossRef]

37. Huang, Y.; Gattoni, R.; Stévenin, J.; Steitz, J.A. SR splicing factors serve as adapter proteins for TAP-dependent
mRNA export. Mol. Cell 2003, 11, 837–843. [CrossRef]

38. Chin, K.; Sharp, K.A.; Honig, B.; Pyle, A.M. Calculating the electrostatic properties of RNA provides new
insights into molecular interactions and function. Nat. Struct. Mol. Biol. 1999, 6, 1055.

39. Query, C.C.; Strobel, S.A.; Sharp, P.A. Three recognition events at the branch-site adenine. EMBO J. 1996,
15, 1392–1402. [CrossRef]

40. Humphrey, W.; Dalke, A.; Schulten, K. VMD–Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38.
[CrossRef]

41. Kesarwani, A.K.; Ramirez, O.; Gupta, A.K.; Yang, X.; Murthy, T.; Minella, A.C.; Pillai, M.M. Cancer-associated
SF3B1 mutants recognize otherwise inaccessible cryptic 3’ splice sites within RNA secondary structures.
Oncogene 2017, 36, 1123–1133. [CrossRef] [PubMed]

42. Carrocci, T.J.; Zoerner, D.M.; Paulson, J.C.; Hoskins, A.A. SF3b1 mutations associated with myelodysplastic
syndromes alter the fidelity of branchsite selection in yeast. Nucleic Acids Res. 2017, 45, 4837–4852. [CrossRef]
[PubMed]

43. Zhang, J.; Ali, A.M.; Lieu, Y.K.; Liu, Z.; Gao, J.; Rabadan, R.; Raza, A.; Mukherjee, S.; Manley, J.L.
Disease-causing mutations in SF3B1 alter splicing by disrupting interaction with SUGP1. Mol. Cell 2019,
76, 82–95. [CrossRef] [PubMed]

44. Boudrez, A.; Beullens, M.; Waelkens, E.; Stalmans, W.; Bollen, M. Phosphorylation-dependent interaction
between the splicing factors SAP155 and NIPP1. J. Biol. Chem. 2002, 277, 31834–31841. [CrossRef] [PubMed]

45. Liberante, F.G.; Lappin, K.; Barros, E.M.; Vohhodina, J.; Grebien, F.; Savage, K.I.; Mills, K.I. Altered splicing
and cytoplasmic levels of tRNA synthetases in SF3B1-mutant myelodysplastic syndromes as a therapeutic
vulnerability. Sci. Rep. 2019, 9, 1–13. [CrossRef] [PubMed]

46. Seiler, M.; Yoshimi, A.; Darman, R.; Chan, B.; Keaney, G.; Thomas, M.; Agrawal, A.A.; Caleb, B.; Csibi, A.;
Sean, E.; et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in
spliceosome-mutant cancers. Nat. Med. 2018, 24, 497. [CrossRef]

47. Obeng, E.A.; Chappell, R.J.; Seiler, M.; Chen, M.C.; Campagna, D.R.; Schmidt, P.J.; Schneider, R.K.; Lord, A.M.;
Wang, L.; Gambe, R.G.; et al. Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis,
aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 2016, 30, 404–417.
[CrossRef]

48. Di, C.; Zhang, Q.; Chen, Y.; Wang, Y.; Zhang, X.; Liu, Y.; Sun, C.; Zhang, H.; Hoheisel, J.D. Function, clinical
application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ. 2019, 26, 1181–1194. [CrossRef]

49. Desmedt, C.; Haibe-Kains, B.; Wirapati, P.; Buyse, M.; Larsimont, D.; Bontempi, G.; Delorenzi, M.; Piccart, M.;
Sotiriou, C. Biological processes associated with breast cancer clinical outcome depend on the molecular
subtypes. Clin. Cancer Res. 2008, 14, 5158–5165. [CrossRef]

50. Bonifaci, N.; Berenguer, A.; Díez, J.; Reina, O.; Medina, I.; Dopazo, J.; Moreno, V.; Pujana, M.A. Biological
processes, properties and molecular wiring diagrams of candidate low-penetrance breast cancer susceptibility
genes. BMC Med. Genom. 2008, 1, 62. [CrossRef]

51. Wang, B.D.; Lee, N.H. Aberrant RNA splicing in cancer and drug resistance. Cancers 2018, 10, 458. [CrossRef]
[PubMed]

http://dx.doi.org/10.1101/gad.1377405
http://www.ncbi.nlm.nih.gov/pubmed/16357217
http://dx.doi.org/10.1186/gb-2008-9-6-r97
http://www.ncbi.nlm.nih.gov/pubmed/18549497
http://dx.doi.org/10.1128/MCB.25.1.451-460.2005
http://dx.doi.org/10.1042/BST0381110
http://dx.doi.org/10.1158/1541-7786.MCR-14-0131
http://dx.doi.org/10.1016/S1097-2765(03)00089-3
http://dx.doi.org/10.1002/j.1460-2075.1996.tb00481.x
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1038/onc.2016.279
http://www.ncbi.nlm.nih.gov/pubmed/27524419
http://dx.doi.org/10.1093/nar/gkw1349
http://www.ncbi.nlm.nih.gov/pubmed/28062854
http://dx.doi.org/10.1016/j.molcel.2019.07.017
http://www.ncbi.nlm.nih.gov/pubmed/31474574
http://dx.doi.org/10.1074/jbc.M204427200
http://www.ncbi.nlm.nih.gov/pubmed/12105215
http://dx.doi.org/10.1038/s41598-019-39591-7
http://www.ncbi.nlm.nih.gov/pubmed/30804405
http://dx.doi.org/10.1038/nm.4493
http://dx.doi.org/10.1016/j.ccell.2016.08.006
http://dx.doi.org/10.1038/s41418-018-0231-3
http://dx.doi.org/10.1158/1078-0432.CCR-07-4756
http://dx.doi.org/10.1186/1755-8794-1-62
http://dx.doi.org/10.3390/cancers10110458
http://www.ncbi.nlm.nih.gov/pubmed/30463359


Biomolecules 2020, 10, 680 16 of 17

52. Croft, D.; Mundo, A.F.; Haw, R.; Milacic, M.; Weiser, J.; Wu, G.; Caudy, M.; Garapati, P.; Gillespie, M.;
Kamdar, M.R.; et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2013, 42, D472–D477.
[CrossRef] [PubMed]

53. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.;
Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein–protein interaction networks, integrated over the tree of
life. Nucleic Acids Res. 2014, 43, D447–D452. [CrossRef] [PubMed]

54. Assenov, Y.; Ramírez, F.; Schelhorn, S.E.; Lengauer, T.; Albrecht, M. Computing topological parameters of
biological networks. Bioinformatics 2007, 24, 282–284. [CrossRef] [PubMed]

55. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T.
Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome
Res. 2003, 13, 2498–2504. [CrossRef] [PubMed]

56. Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.;
Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2018,
47, D941–D947. [CrossRef]

57. Malhotra, G.K.; Zhao, X.; Band, H.; Band, V. Histological, molecular and functional subtypes of breast
cancers. Cancer Biol. Ther. 2010, 10, 955–960. [CrossRef]

58. Makki, J. Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clin. Med. Insights
Pathol. 2015, 8, S31563. [CrossRef]

59. Seiler, M.; Peng, S.; Agrawal, A.A.; Palacino, J.; Teng, T.; Zhu, P.; Smith, P.G.; Caesar-Johnson, S.J.;
Demchok, J.A.; Felau, I.; et al. Somatic mutational landscape of splicing factor genes and their functional
consequences across 33 cancer types. Cell Rep. 2018, 23, 282–296. [CrossRef]

60. Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.;
Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes.
Nucleic Acids Res. 2018, 46, W296–W303. [CrossRef]

61. Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.;
Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and
CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput.
2015, 12, 405–413. [CrossRef]

62. Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.;
MacKerell, A.D., Jr.; Pastor, R.W. Update of the CHARMM all-atom additive force field for lipids: Validation
on six lipid types. J. Phys. Chem. B 2010, 114, 7830–7843. [CrossRef]

63. Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys.
Chem. A 2001, 105, 9954–9960. [CrossRef]

64. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High
performance molecular simulations through multi-level parallelism from laptops to supercomputers.
SoftwareX 2015, 1, 19–25. [CrossRef]

65. Wang, L.; Yuan, Y.; Chen, X.; Chen, J.; Guo, Y.; Li, M.; Li, C.; Pu, X. Probing the cooperative mechanism of the
µ–δ opioid receptor heterodimer by multiscale simulation. Phys. Chem. Chem. Phys. 2018, 20, 29969–29982.
[CrossRef] [PubMed]

66. Yuan, S.; Filipek, S.; Palczewski, K.; Vogel, H. Activation of G-protein-coupled receptors correlates with the
formation of a continuous internal water pathway. Nat. Commun. 2014, 5, 4733. [CrossRef]

67. Kufareva, I.; Abagyan, R. Methods of protein structure comparison. In Homology Modeling; Springer: Berlin,
Germany, 2011; pp. 231–257.

68. Aier, I.; Varadwaj, P.K.; Raj, U. Structural insights into conformational stability of both wild-type and mutant
EZH2 receptor. Sci. Rep. 2016, 6, 34984. [CrossRef]

69. Yang, L.; Song, G.; Carriquiry, A.; Jernigan, R.L. Close correspondence between the motions from principal
component analysis of multiple HIV-1 protease structures and elastic network modes. Structure 2008,
16, 321–330. [CrossRef]

70. Grant, B.J.; Rodrigues, A.P.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S. Bio3d: An R package for the
comparative analysis of protein structures. Bioinformatics 2006, 22, 2695–2696. [CrossRef]

71. Mishra, S.K.; Jernigan, R.L. Protein dynamic communities from elastic network models align closely to the
communities defined by molecular dynamics. PLoS ONE 2018, 13, e0199225. [CrossRef]

http://dx.doi.org/10.1093/nar/gkt1102
http://www.ncbi.nlm.nih.gov/pubmed/24243840
http://dx.doi.org/10.1093/nar/gku1003
http://www.ncbi.nlm.nih.gov/pubmed/25352553
http://dx.doi.org/10.1093/bioinformatics/btm554
http://www.ncbi.nlm.nih.gov/pubmed/18006545
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://dx.doi.org/10.1093/nar/gky1015
http://dx.doi.org/10.4161/cbt.10.10.13879
http://dx.doi.org/10.4137/CPath.S31563
http://dx.doi.org/10.1016/j.celrep.2018.01.088
http://dx.doi.org/10.1093/nar/gky427
http://dx.doi.org/10.1021/acs.jctc.5b00935
http://dx.doi.org/10.1021/jp101759q
http://dx.doi.org/10.1021/jp003020w
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1039/C8CP06652C
http://www.ncbi.nlm.nih.gov/pubmed/30478466
http://dx.doi.org/10.1038/ncomms5733
http://dx.doi.org/10.1038/srep34984
http://dx.doi.org/10.1016/j.str.2007.12.011
http://dx.doi.org/10.1093/bioinformatics/btl461
http://dx.doi.org/10.1371/journal.pone.0199225


Biomolecules 2020, 10, 680 17 of 17

72. Kasahara, K.; Fukuda, I.; Nakamura, H. A novel approach of dynamic cross correlation analysis on molecular
dynamics simulations and its application to Ets1 dimer–DNA complex. PLoS ONE 2014, 9, e112419.
[CrossRef] [PubMed]

73. McCammon, J. Protein dynamics. Rep. Prog. Phys. 1984, 47, 1. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0112419
http://www.ncbi.nlm.nih.gov/pubmed/25380315
http://dx.doi.org/10.1088/0034-4885/47/1/001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Results
	SF3B1 Gene Has the Highest Number of Mutations in the Pre-mRNA Splicing Network
	K700E Mutation Affects the Stability of SF3B1, Pre-mRNA, and p14
	K700E Mutation Weakens Interactions Formed with Pre-mRNA
	K700E Mutation Impacts the Global Dynamics of SF3B1
	K700E Mutation Changes the Correlation between Residues in SF3B1 Protein

	Discussion
	Materials and Methods
	Identification of Genes Participating in Pre-mRNA Splicing and Constructing the Related Gene Network
	Assessment of the Impact of the Mutation by Means of Molecular Dynamics Simulations
	System Setup
	Simulation Protocol
	Simulation Analysis Tools


	References

