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� This review describes an integrated and multidisciplinary approach for the ‘‘early” diagnosis of Alzhei-
mer’s disease (AD).

� An overview of epidemiology, genetic risk factors, and different biomarkers of AD is provided.
� Latest findings suggest EEG rhythms analysis as a valid screening tool to predict AD conversion.

a b s t r a c t

Alzheimer’s disease (AD) is the most common neurodegenerative disease among the elderly with a pro-
gressive decline in cognitive function significantly affecting quality of life. Both the prevalence and emo-
tional and financial burdens of AD on patients, their families, and society are predicted to grow
significantly in the near future, due to a prolongation of the lifespan. Several lines of evidence suggest
that modifications of risk-enhancing life styles and initiation of pharmacological and non-
pharmacological treatments in the early stage of disease, although not able to modify its course, helps
to maintain personal autonomy in daily activities and significantly reduces the total costs of disease man-
agement. Moreover, many clinical trials with potentially disease-modifying drugs are devoted to prodro-
mal stages of AD. Thus, the identification of markers of conversion from prodromal form to clinically AD
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may be crucial for developing strategies of early interventions. The current available markers, including
volumetric magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebral spinal
fluid (CSF) analysis are expensive, poorly available in community health facilities, and relatively invasive.
Taking into account its low cost, widespread availability and non-invasiveness, electroencephalography
(EEG) would represent a candidate for tracking the prodromal phases of cognitive decline in routine clin-
ical settings eventually in combination with other markers. In this scenario, the present paper provides
an overview of epidemiology, genetic risk factors, neuropsychological, fluid and neuroimaging biomark-
ers in AD and describes the potential role of EEG in AD investigation, trying in particular to point out
whether advanced analysis of EEG rhythms exploring brain function has sufficient specificity/sensitiv
ity/accuracy for the early diagnosis of AD.

� 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
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1. Introduction

Alzheimer’s disease (AD) is characterized by a progressive loss
of memory and deterioration of other cognitive functions. The typ-
ical AD clinical phenotype follows a prodromal stage known as
Mild Cognitive Impairment (MCI): although quite heterogeneous,
it is usually characterized by memory loss (amnestic MCI, aMCI)
and represents a transitional state between normal aging and AD.
Annually, 10–15% of patients diagnosed with MCI progress to AD
dementia (usuallyMCI prodromal-to-AD), at a considerably acceler-
ated rate compared with healthy age-matched individuals, esti-
mate around 1–2% (Petersen et al., 1999; Tierney, 2001). The
identification of reliable markers able to intercept those MCI who
are in a prodromal stage may allow for developing early interven-
tions. In fact, even in the absence of a disease-modifying therapy,
several lines of evidence suggest that starting pharmacological
and non-pharmacological treatments (including changes in life-
style) in the early and/or prodromal stage of disease helps main-
tain personal autonomy in daily activities and significantly
reduces the total costs of disease management (D’Amelio and
Rossini, 2012; Teipel et al., 2015; Petersen et al., 2017). Moreover,
MCI prodromal-to-AD subjects are the main targets of many of the
ongoing clinical trials with potentially disease-modifying drugs
(DMDs), since these drugs have proved ineffective when full symp-
tomatology of AD has been already developed. Therefore, early
markers predicting with high sensitivity/specificity the evolution
from prodromal stages to clinically overt AD are of pivotal impor-
tance. Although this goal can be partly reached with the presently
available diagnostic armamentarium – volumetric magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
PET + radioligands, lumbar puncture for amyloid and tau metabo-
lites –, all of these markers have a relatively low sensitivity to
synaptic dysfunction (the very early stage of pre-symptomatic
AD). Moreover, most of them are expensive, poorly available on
community health facilities and relatively invasive. Taking into
account its low cost, widespread availability and non-
invasiveness, electroencephalographic signals (EEG) analysis may
be an excellent candidate for tracking the prodromal phases of cog-
nitive decline in routine clinical settings. This review paper was
prepared under the endorsement of the International Federation
of Clinical Neurophysiology (IFCN) and is the result of an ‘‘Experts
Workshop” held in Rome in June 2017. The first part of this paper
provides an overview of the epidemiology and genetic risk factors
as well as of neuropsychological and neuroimaging biomarkers in
AD. The second part summarizes the key issues and the most
recent findings about the application of EEG in AD evaluation,
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pointing out whether advanced analysis of EEG rhythms exploring
brain function has sufficient specificity/sensitivity/accuracy for the
early diagnosis of AD as a first level approach forscreening out the
risk of conversion from MCI to AD.
2. Epidemiology of AD and dementias

The AD phenotypes and syndromes classification has improved
substantially over the last decade. The diagnosis in the preclinical
phase is based largely on limited and selected data from few ter-
tiary centers. There are few and limited population-based data
on the issues of new classification systems and diagnosis anticipa-
tion. Population-based data with the use of new, including
advanced markers, and old criteria originate from the Mayo Clinic
Study on Aging (MCAS) as part of the study of the Rochester Epi-
demiologic Project (Rocca et al., 2018).

In everyday clinical activity, the prompt diagnosis of dementia
is missed in a large number of cases using the old NINCDS-
ADRDA criteria (Rait et al., 2010). This is evident comparing data
from the active search in population-based studies as CFAS (Cogni-
tive Function and Ageing Studies) and EURODEM with data from
files of the GPs of the national UK database (passive ascertainment
based on referral). The misdiagnosis or missed diagnosis is much
larger in the >80 age groups compared with lower age groups. This
is relevant considering that two out of three patients with AD will
be over age 85 by 2050. One of the most interesting questions is
the time trend of dementia incidence. Dementia prevalence is stea-
dily growing, caused both by the aging and increased life expecta-
tion of the general population. This is a worldwide phenomenon,
but China, India, Indonesia and Brazil drive these demographic
changes as a result of the huge size of their population. Recent
prevalence data from CFAS in the elderly population (older than
65) from six geographic areas in England and Wales show that
dementia prevalence estimated in the period 2008–11 was almost
25% less than what was predicted based on prevalence data esti-
mated in the period 1989–94, in the same area (Matthews et al.,
2013). Consistently, CAFS report a drop in incidence of about
20%, mainly determined by a decline in incidence among males
(Matthews et al., 2016).

Similarly, in the Framingham Study a population-based investi-
gation (Satizabal et al., 2016) has been conducted looking at
dementia incidence time trends in five thousands elderly (more
than 60) within the period 1977–2008, divided in four 5-year
intervals. The cumulative dementia incidence rates declined from
3.6/100 to 2.0 per/100 person year. Dementia declined about 44%
in the more recent period only in subjects with at least high school
diploma, and the decline was both for AD and vascular dementia.
In the same period, there was an increase in diabetes, obesity
and hypertension. On the other side, there was an increase in num-
ber of hypertensive subjects with medical treatment, a reduction of
stroke, a decrease in the prevalence of smoking, an increase of
average levels of high-density lipoprotein (HDL) cholesterol. Fur-
thermore, there was really a dramatic increase in education, with
subjects holding a college degree going from 13 to 34%. Several
causes and possible interactions of these changes have still to be
identified.

All these data show that – under appropriate lifestyle modifica-
tions – dementia incidence is declining in a relatively short period
of time, similarly to what happened previously for myocardial
infarction and stroke (Mozaffarian et al., 2015). These changes indi-
cate that dementia is largely preventable. In the last two decades,
several observational studies have shown a wide variety of poten-
tially modifiable risk factors for cognitive impairment and demen-
tia (Livingston et al., 2017), which have been proposed as targets
for preventive strategies. In addition to cardiovascular risk factors,
psychological conditions, education level, engagement in social
and mentally stimulating activities, sensory changes, and lifestyle
including diet, physical activity and voluptuary habits have
obtained a crucial role (Livingston et al., 2017). The recognition
of modifiable risk factors and successive intervention may be part
of a population strategy that could lead to a significant decrease of
about 30% of dementia cases, according to conservative estimates
recently published (Norton et al., 2014).
3. Cost effectiveness of early diagnosis in AD

AD was estimated in 2010 to cost about $604 billion in United
States (US) annually. These costs are staggering, particularly taking
into account the predictions for the growth in the worldwide num-
ber of AD cases (Wimo et al., 2013), that will increase rapidly in the
next decades. In the US, the global costs of dementia were esti-
mated to be $818 billion in 2015, with an increase of 35% since
2010; 86% of the expenses are incurred in high-income countries.
The costs of informal care and the direct costs of social care still
contribute within similar proportions to the total cost, whereas
the cost of the medical sector is much lower. The threshold of US
$1 trillion is currently being crossed (Wimo et al., 2017). The
advantage for an early diagnosis of AD in a scenario that does
not permit disease- modifying therapy (DMT) is still debated and,
in absence of such therapies, programs devoted to screen general
old population for AD could appear useless. On support for an early
diagnosis of AD, it is generally thought that also the treatment with
Choline Esterase inhibitors (ChEi) is more effective when used
before widespread pathological changes have occurred
(Cummings et al., 2008; Hogan et al., 2008).

On this field, several neuro-economic investigations have pro-
vided reliable recommendation about the effect of an early diagno-
sis on the social cost and the advantage in patient management. In
particular, timely detection and symptomatic intervention in AD
can be cost-effective because even though having limited efficacy,
they nonetheless control symptoms enough to reduce healthcare
costs and keep patients living longer in the community
(Geldmacher, 2008). Moreover, a UK study based on 2007 costs
estimated that in ten years timely detection and treatment pro-
duced savings of £3600 (US $5508) in direct costs and an additional
amount of £4150 ($6350) in indirect costs (caregiver time) per
patient (Getsios et al., 2012).

Despite the burden posed on individuals and the health care
system, diagnosis of AD is clearly suboptimal. For instance, the
UK National Audit Office estimates that more than half of all cases
of AD in the United Kingdom are undiagnosed.

Recently, Barnett and coworkers (2014) explored the effect of
an early diagnosis and interventions in the Paquid cohort. They cal-
culated the economic effects of moving AD diagnosis from the real
standard diagnosis – Mini-Mental State Examination (MMSE) 18 –
to the previous 8 years. They applied a statistical model in which a
symptomatic treatment that improve cognition by one MMSE
point would produce a maximum net cost benefit when applied
at the earliest time point and this effect would drop 17% for each
year of delayed diagnosis. In contrast, for a scenario where a
DMT halting cognitive decline for one year, economic benefits
would peak when treatment effects were applied two years prior
to standard diagnosis. In this case, the effect would be fifteen times
greater than in the symptomatic one. It is clear that the modifica-
tion of the clinical trajectories with both symptomatic drugs and
DMT could have enormous consequences on the general cost of
AD management. This offers a challenge for all Health Services,
which should be prepared to face an increasing number of subjects
with dementia. Besides, when we pass to the scenario of DMT
availability, the diagnosis will move from AD to prodromal-to-AD
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states. In such condition, clinical criteria are unlikely to be appro-
priate and progressively investigations that are more expensive
will be required.
4. Overwiew on AD markers

According to recent indication of the National Institute on Aging
and Alzheimer’s Association (NIA-AA) Research Framework, AD is
defined by its underlying pathologic processes that can be docu-
mented by postmortem examination or in vivo by biomarkers,
shifting the definition of AD in living people from a syndromic to
a biological construct (Jack et al., 2018). Therefore, when looking
at AD as a continuum, the role of the markers is essential to track
the evolution of disease and especially to allow an early diagnosis
starting from pauci- or asymptomatic disease stages. The concept
of MCI prodromal-to-AD has been introduced from a panel of inter-
national experts (Dubois et al., 2010, 2014). They showed that if
neuropsychological tests are combined with information from neu-
roimaging (both structural and flow/metabolic), cerebral spinal
fluid (CSF) analysis and genetic risk evaluation, one can predict
with high accuracy the evolution to AD in MCI subjects at an indi-
vidual basis or – better – MCI subjects who are already in a stage
prodromal-to-AD can be promptly intercepted. Subjects with a pro-
dromal stage of AD (IWG-2 – International working group – crite-
ria, Dubois et al., 2014) or MCI prodromal-to-AD (NIA-AA criteria,
McKhann et al., 2011) are the main targets for the employment
of diagnostic/prognostic markers. MCI can be defined ‘‘as an inter-
mediate clinical and neuropsychological state between normal cogni-
tion and AD dementia, mainly characterized by objective evidence of
memory impairment during a neuropsychological examination that
does not yet encompass the definition of AD dementia” (Vecchio
et al., 2018). Epidemiological research suggests that aMCI is a pre-
cursor of AD, based on the high rate of progression from this state
to AD. Not all MCI subjects convert to dementia, either remaining
in the MCI condition or returning to a fully normal one, but many,
between 50 and 60%, do it.. In order to promote early prompt ther-
apeutic and organizational strategies, the diagnosis of the MCI con-
dition and the prognosis on the likelihood and time of progression
to dementia should be should be achieved simultaneously. The MCI
definition requires the following: cognitive questionnaire, screen-
ing tests (MMSE), neuropsychological evaluation – including 2
tests for episodic memory, tests for language, visuo-spatial abilities
and behavioral scales with appropriate normative thresholds
(Cerami et al., 2017; Costa et al., 2017) –, functional scales, neuro-
logical examination and a CDR (Clinical Dementia Rating) score of
0.5. Growing evidence suggest that early diagnosis reduces health
and social costs for dementia management. Moreover, MCI
prodromal-to-AD is becoming progressively more frequent and is
the preferred target for clinical trials with potential DMDs. To date,
several tests combined together (i.e. hippocampal volumetric MRI,
18F-FDG PET and lumbar puncture for CSF examination) allow diag-
nosing early MCI prodromal-to-AD with a high degree of sensitivity
and specificity. Because of their elevated costs, low availability
and/or invasiveness, these cannot be applied to evaluate a large
population sample on a nationwide scale. In a recent study by an
international consortium (Cohort Studies Memory in an Interna-
tional Consortium-COSMIC - Sachdev et al., 2015) it was attempted
to define the epidemiological boundaries of the MCI condition by a
metanalysis of the published data. A prevalence of 5.9% has been
estimated in a population with >60 year, with an increment of
the stratified age ranges from 4.5% (60–69 years), to 5.8%
(70–79 years) and 7.1% (80–89 years). On this basis, – even if this
scenario is not accepted by all the Experts (see Petersen et al.,
2018) – just for example, for the 2016 in European Community
population an estimated number of about 8.000.000 MCI subjects
can be predicted.

4.1. Genetic markers

Three decades of genetic research have substantially broadened
our knowledge about pathogenic mechanisms leading to neurode-
generation and dementia, starting, however, from very rare forms
of AD. In the 20th century, genetic linkage analysis identified three
major causes underlying genetically dominant early onset forms of
AD (ADAD) such as amyloid precursor protein (APP), and Prese-
nilins (PSEN1 and PSEN2) genes (Goate et al., 1991; Levy-Lahad
et al., 1995; Sherrington et al., 1995). Mutations of these genes rep-
resent state markers of the disease: since they are dominant muta-
tions, carriers develop and transmit the disease to 50% of offspring,
and penetrance is about 100%. Although ADAD has a rather clear
phenotype characterized by memory loss, time and space confu-
sion, apraxia, agnosia, troubles of language, neither the onset nor
the phenotype are constant and monomorphic, and overlapping
can be frequently observed between clinical phenotypes, geno-
types and also pathological proteotypes (Tang et al., 2016). Several
families carrying a PSEN1 mutation have been described with
involvement of frontal lobe or spastic paraplegia (Piscopo et al.,
2008; Wallon et al., 2012) or extrapyramidal signs thus mimicking
Lewy body dementia (Karlstrom et al., 2008; Wallon et al., 2012).
Even in the large ADAD Calabrian kindreds, sharing the same PSEN1
mutation and a classic neuropathological phenotype, at onset
symptoms cluster into four different groups: apathetic, amnesic,
dysexecutive, disoriented (Bruni et al., 2010) (Fig. 1A). The APP
A713T mutation leading to AD with cerebrovascular lesions (CVLs)
in Calabrian families associates to both early and late onset pheno-
types, also independently from homozygosity (Conidi et al., 2015)
(Fig. 1B).

The multigenerational ADAD families (Tang et al., 2016) fre-
quently reconstructed along centuries through genealogy with
hundreds of affected subjects and at risk relatives represent an
extraordinary and powerful model for the study of AD. All the three
genes are involved in the processing of b amyloid (Ab) strongly sus-
taining the amyloid cascade hypothesis (Schellenberg and
Montine, 2012). DIAN cohort constituted by ADAD carriers has
already showed that the biological disease starts in the brains dec-
ades before clinical onset (Tang et al., 2016) with the deposition of
Ab and the alterations of the other biomarkers. The same certitude
cannot be confirmed in late onset AD, that is still unclear regarding
etiology and pathogenesis and whose genetic component is com-
plex and much more difficult to ascertain.

The lifetime risk to develop AD is about 10–12% (Breitner et al.,
1999) and a genetic susceptibility increasing or decreasing the risk
of developing the disease does exist. There is almost an infinite
number of susceptibility genes for dementia. The Apolipoprotein
E (APOE) gene with the e4 allele gives to carriers a higher risk of
developing the disease, especially in women (Liu et al., 2013),
shortening the age of onset of AD not only in sporadic AD patients
but also in carriers of mutations of both the PSEN1 (Pastor et al.,
2003) and of APP (Sorbi et al., 1995). In recent years several
whole-genome sequencing studies (GWAS) have suggested that
the risk of developing AD is given by the association of common
polymorphisms with low penetrance and high frequency in the
population and, therefore, with small effect size; although the total
number of AD risk genes remains elusive, there is significant evi-
dence suggesting that their combinations may have a substantial
impact on disease susceptibility, onset and progression of sporadic
late-onset AD (Bertram and Tanzi, 2008).

Theoretically, assessment of genetic risk could be a key to pre-
venting or slowing the progression of the AD. APOE e4 genotype
has been demonstrated as the major predictor of progression to



Fig. 1. (A) Extended pedigree representing known affected subjects of all families with presenilin 1 (PSEN1) Met146Leu mutation. (B) Pedigree of the family with amyloid
precursor protein (APP) A713T mutation associates to both early and late onset phenotypes, also independently from homozygosity.
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AD in patients with aMCI (Zheng et al., 2016). However, the use of
APOE genotyping is limited due to its low sensitivity and speci-
ficity, but it could be useful in combination with other markers
including EEG connectivity (Vecchio et al., 2018). Zheng et al.
(2016) found a notable increase in plasma homocysteine (HCY)
together with a significant decrease in serum brain-derived neu-
rotrophic factor (BDNF) in aMCI-APOE e4 patients converting to
AD. Studies focused on changes in DNA methylation level (i.e.
COASY and SPINT1 gene promoter regions) could be helpful to
identify subjects destined to progress from MCI to AD (Kobayashi
et al., 2016).

Although ADAD mutations are marker of state not of process,
combined together with current biomarkers, they will allow an
early diagnosis even in the preclinical phase. The implementation
and evaluation of AD genetic risk markers in the prediction of
MCI to AD dementia progression is in an early phase. However,
detecting new susceptibility factors with a functional impact on
AD will bring about major insights into the disease pathways,
and initiate new lines of research.

4.2. Neuropsychological markers

An important milestone for the modern era of AD research is the
publication of the NINCDS-ADRDA clinical criteria for the diagnosis
of AD, which remained the standard reference in the field for more
than two decades (McKhann et al., 1984). According to the original
McKhann criteria, ‘‘neuropsychological tests provide confirmatory
evidence of the diagnosis of dementia and help to assess the course
and response to therapy”. Neuropsychological tests are recom-
mended for specific aims, such as the definition of unusual pattern
of cognitive deficits, in the context of longitudinal studies or as
outcome measures for drug efficacy trials. An important change
took place only in the ‘90s, with the rise of interest in the identifi-
cation of a ‘‘pre-dementia” stage of AD, resulting in the introduc-
tion of the MCI concept (Petersen et al., 1999). Among the
criteria for the diagnosis of this at-risk condition for progression
to dementia, there is the presence of an objective impairment of
memory, defined on the basis of a defective test performance in
comparison to an age-matched control group. In the following per-
iod this concept was extended, on the basis of the same psychome-
tric criteria, to other cognitive domains besides long-term memory
(Petersen, 2004).

The International Working Group Research Criteria (Dubois
et al., 2007, 2010, 2014) and the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic guidelines
(McKhann et al., 2011) introduced a novel approach, based on
the concept of an AD continuum, rather than of disease ‘‘stages”.
Both set of criteria emphasize the role of markers in supporting
the diagnosis of AD at the very early clinical stages, i.e. when the
patient is symptomatic but does not fulfill the criteria for dementia
(respectively, prodromal AD, or MCI due-to-AD/prodromal-to-AD).
Within this perspective, neuropsychological tests can be consid-
ered as a ‘‘gateway biomarker” in the AD diagnostic process
(Cerami et al., 2017). In the case of typical presentations of AD,
the performance in episodic memory tests is crucial for early diag-
nosis, and is the basis for the definition of MCI or prodromal AD
according to current diagnostic criteria. There is however no con-
sensus on the most appropriate tests to be employed. Episodic
memory tests are sensitive, but not specific. In addition, they are
unsuitable to measure disease severity and progression as they
reach floor levels early in the disease course. Tests controlling for
effective memory encoding and retrieval may be particularly suit-
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able to identify the hippocampal amnestic syndrome, a typical fea-
ture of AD ‘‘with the presence of a paradigmatic and specific episodic
memory involvement, characterized by a diminished free recall ability,
which is only marginally improved by cueing” (Grande et al., 2018).
In this regard, the Free and Cued Selective Reminding Test (FCSRT)
has been used to better differentiate the genuine hippocampal def-
icit of AD from age-associated memory dysfunctions, due to
impaired attention, inefficient information processing, and ineffec-
tive retrieval (Grober and Buschke, 1987). The FCSRT, as well as the
‘‘bedside” 5-Word cued recall test (Dubois et al., 2002; Economou
et al., 2016) increase the specificity for AD (Dierckx et al., 2009;
Wagner et al., 2012). There is also evidence supporting the value
of the FCSRT to predict progression towards dementia in at risk
populations (Sarazin et al., 2007).

An important issue is the role of neuropsychological testing in
the diagnosis of atypical AD presentations. The three main forms
defined by the IGW-2 criteria (Dubois et al., 2014), i.e. the lan-
guage, visuospatial and behavioral presentations, require special-
ized neuropsychological assessment for an adequate diagnostic
evaluation, in particular in the early stages, for follow-up and for
evaluation of treatment effects. The logopenic/phonological variant
of primary progressive aphasia (PPA) is by far the most common
language presentation of AD (Spinelli et al., 2017). Only very few
tools have been specifically developed for the assessment of lan-
guage deficits in PPA patients, and for the characterization of the
PPA subtype, which is relevant for a probabilistic diagnosis of the
underlying pathology. The language tests in common use, e.g.
Aachener Aphasie Test (AAT) (Huber et al., 1980) and the Boston
diagnostic aphasia examination (BDAE) (Kaplan, 1983), have not
been specifically developed for the differentiation of the subtypes
of PPA, but rather for the evaluation of aphasia due to stroke. A
‘‘minimal” procedure, allowing a classification according to the
current diagnostic criteria (Gorno-Tempini et al., 2011) must
include:

a. a qualitative and quantitative observation of patient’s
speech and language during a semi-structured interview,
which can be based on a complex picture description; the
main parameters to be assessed are: lexical production rate
and phonological/articulatory errors; disorders of fluency
(pauses and repetitions); lexical typology; and syntactic
structure and complexity; on this basis, it is possible to con-
clude for the presence or absence of motor speech disorders
and agrammatism, necessary for the differential diagnosis
with other PPA variants, seldom associated to AD pathology;

b. tasks of picture naming and word-picture matching to assess
single word comprehension;

c. a repetition test allowing an assessment of phonological and
auditory verbal short-term memory abilities, typically
impaired in logopenic aphasia;

d. sentence-picture matching tasks to assess syntactic
comprehension.

The visuo-spatial presentation of AD is posterior cortical atro-
phy (PCA) (Crutch et al., 2017). This clinical picture is characterized
at the onset by prominent visuo-spatial cognitive features, such as
deficits in space and object perception, simultanagnosia, construc-
tional dyspraxia, prosopoagnosia, oculomotor apraxia, optic ataxia
and alexia. As in the case of logopenic aphasia, all these aspects can
be quantified using a wide array of tests, which have been devel-
oped for the neuropsychological evaluation of focal brain damage,
such as the copy of Rey’s figure (Rey, 1941). An excellent screening
battery, which allows to evaluate in a short amount of time the
function of both ventral and dorsal visual processing pathways is
the Visual Object and Space Perception Battery (Warrington and
James, 1991).
Finally, a true challenge for neuropsychological assessment is
the third variant of atypical AD presentation, characterized by
‘‘frontal” features (Ossenkoppele et al., 2015). The crucial issue
here is the differential diagnosis with the behavioral variant of
frontotemporal dementia, which requires, in addition to biomarker
evidence, a detailed neuropsychological assessment. This must not
be limited to classical ‘‘frontal lobe tests”, such as the Wisconsin
Card Sorting (Heaton et al., 1993) or the Stroop test (Stroop,
1935), but requires a comprehensive evaluation of behavioral dis-
orders and neuropsychiatric disturbances (for example, with the
Frontal Behavioral Inventory, Kertesz et al., 1997, and the Neu-
ropsychiatric Inventory, Cummings et al., 1994), as well as an
assessment of social cognition performance (see, for example,
Torralva et al., 2009).

To summarize, a clear definition of the cognitive/behavioral
phenotype is the first step towards a biomarker-supported patho-
logical diagnosis of AD. The identification of the very early/prodro-
mal stages of both typical (hippocampal episodic memory) and
atypical (visuo-spatial abilities, language, executive function and
behavior) presentations is one of the main goals of neuropsycho-
logical assessment. There is clearly a need for harmonization of
tools and procedures and for the collection of high quality psycho-
metric data. This priority, however, should not obscure the impor-
tance to develop innovative ideas based on the advances in
cognitive neuroscience research. The recent focus on pre-clinical
rather than prodromal stages (Dubois et al., 2016) offers a great
opportunity for the development of novel, continuous measures
assessing cognitive efficiency and functional status. Taking advan-
tage of the technological possibilities, such as those offered by
smartphones and social media (Wilmer et al., 2017), is one of the
many interesting developments to be explored in the next few
years.
4.3. Neuroimaging markers

MRI and PET have tremendously improved our diagnostic abil-
ity to formulate a correct diagnosis of dementia in clinical settings
(McGinnis, 2012). Importantly, these tools have contributed in
clarifying the pathophysiology of dementia by providing in vivo
indirect information on the underlying brain tissue abnormalities.

MRI is a non-invasive tool that allows a detailed anatomical
investigation of the brain with an extremely high sensitivity in
detecting macroscopic tissue abnormalities (Bozzali et al., 2016).

For this reason, it is routinely used to rule out conditions that
may mimic a neurodegenerative form of dementia, such as brain
tumors, normal pressure hydrocephalus, subdural hematoma,
and cerebrovascular encephalopathy. Conversely, PET imaging
detects metabolic brain tissue changes and has proven to be highly
sensitive in identifying specific patterns of hypo-metabolism in
individuals suffering from degenerative dementia since early clin-
ical stages (Iaccarino et al., 2017). Moreover, new radiotracers have
been recently developed to detect peculiar pathological features of
neurodegeneration, such as Ab and tau-protein radiotracers (Jack
et al., 2017).

Conventional MRI. The main role of conventional MRI, as men-
tioned above, is that of excluding those conditions that may mimic
a clinical presentation of neurodegenerative dementia. Nonethe-
less, in a proportion of cases, it can provide information to support
a correct diagnosis of neurodegenerative dementia based on the
identification of peculiar patterns of regional brain atrophy. In clin-
ical settings, visual rating scales can be used to determine the pres-
ence of regional patterns of brain atrophy on T1- weighted images
(Scheltens et al., 1992; Wahlund et al., 2001). For instance, the
‘‘medial temporal lobe atrophy” (MTA) scale has proven accurate
in defining the degree of regional atrophy in studies that compared
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patients with AD to cognitively intact controls (Ridha et al., 2007).
On the other hand, MTA has shown poor sensitivity in quantifying
volumetric changes longitudinally (Ridha et al., 2007; Persson
et al., 2017). The presence and extension of macroscopic white
matter (WM) abnormalities is also a relevant piece of information
for the differential diagnosis and staging of dementias. For this rea-
son, ad hoc visual rating scales have been developed to quantify the
severity of WM lesions on T2-weighted and fluid attenuated inver-
sion recovery (FLAIR) scans. The Age RelatedWhite Matter Changes
(ARWMC) scale (Wahlund et al., 2001) and the Fazekas’ scale
(Fazekas et al., 1987) are amongst the most popular, and their
use in clinical routine is simple. When a diagnosis of AD is sus-
pected, the combination of the MTA scale with scales assessing
WM abnormalities can return abnormal patterns that can be
schematically divided in 3 categories: (1) severe MTA and minimal
WM changes; (2) minimal MTA and severe WM changes; (3) mod-
erate MTA and moderate WM changes. In case 1, MRI suggests a
diagnosis of AD, while in case 2, it supports the hypothesis of a
remarkable cerebrovascular contribution to cognitive symptoms.
Case 3 is still consistent with the hypothesis of neurodegeneration
without a clearcut preference for AD. Moderate MTA in association
with moderate WM changes can indeed be seen also in dementia
with Lewy bodies (DLB) that, in the absence of Parkinsonism may
be challenging differential diagnosis with AD. With respect to
WM lesions, especially when present in a moderate degree, an
association has been shown with brain amyloid deposition
(Marnane et al., 2016), which is characteristic of AD pathology,
but which may also coexist with Lewy bodies in in DLB brains.

Quantitative Brain Volumetrics. Sophisticated algorithms of
image registration have been developed to allow volumetric
images from different subjects to be taken into a common space.
This advancement in image processing allows between-group
comparisons (e.g., patients vs. controls) to be run on a voxel-by-
voxel level basis. Additionally, correlations between regional brain
volumetrics and clinical, neuropsychological and behavioral mea-
sures can be investigated within this same framework. For data-
driven analyses, voxel-based morphometry (VBM) is one of the
most popular techniques that have been successfully used to inves-
tigate dementias (Ashburner and Friston, 2000). VBM is an
operator-independent technique that allows the investigation of
the whole brain to be run without any need of a priori hypotheses
on the anatomical distribution of regional brain atrophy (i.e.,
voxel-wise analysis) (Bozzali et al., 2006). After image normaliza-
tion, modulation, and segmentation (Ashburner and Friston,
2000), grey matter (GM) maps are extracted and used for statistical
group comparisons or for correlations with clinical, neuropsycho-
logical and behavioral variables. When used to investigate patients
with typical AD at different clinical stages, VBM returns patterns of
regional GM atrophy that involve not only the medial temporal
lobes but also many other areas of the association cortex (Bozzali
et al., 2006; Serra et al., 2010a, 2014). Additionally, VBM has shown
meaningful associations between the distribution of regional GM
volumes and patients’ performance on neuropsychological tests,
thus linking together specific patterns of regional GM atrophy with
patients’ clinical features. (Serra et al., 2010a, 2010b, 2014). As
reported before, MCI is a clinical condition associated to an
increased risk for developing dementia, and its amnestic form
(aMCI) is widely regarded as a prodromal stage of typical AD.
Nonetheless, there are other forms of MCI (i.e. non-amnestic MCI,
naMCI), whose cognitive profile is dominated by impairments in
cognitive domains other than memory. Patients with naMCI are
more likely to either convert to a non-typical form of AD or other
forms of neurodegenerative dementia. Again, when using VBM to
compare patients with aMCI with those with naMCI different pat-
terns of regional GM atrophy can be identified (Serra et al., 2013).
At a group level, VBM has demonstrated the ability to discriminate
between patients on the transitional stage towards typical AD (i.e.,
aMCI) from those who are more likely to convert to other forms of
dementia (i.e., naMCI) (Serra et al., 2013).

An interesting aspect to be considered in patients with demen-
tia is the so-called ‘‘cognitive reserve” (Stern et al., 2018). Accord-
ing to this hypothesis, some individuals are more resilient to the
effect of brain damage accumulation thanks to their level of cogni-
tive reserve. When stratifying patients with AD at different clinical
stages for their level of cognitive reserve, VBM is able to identify
patterns of regional GM volumes that account for the mismatch
between clinical disease severity and extension of brain tissue
damage in individuals with higher cognitive reserve (Serra et al.,
2011).

Diffusion imaging. Diffusion imaging measures the microscopic
movement of water molecules into the brain, thus providing indi-
rect information on the tissue microstructure/integrity especially
within the WM compartment (Basser and Jones, 2002). This tech-
nique has been extensively used to investigate patients with AD
and MCI (for a review, see Bozzali et al., 2016). Studies using a
whole brain approach of image analysis have demonstrated wide-
spread WM alterations in the brain of patients with AD at various
clinical stages (Serra et al., 2010a; Liu et al., 2011). Other studies
based on diffusion weighted tractography (i.e., a technique that
allows the reconstruction of the principal WM tracts) have shown
specific patterns of structural disconnection that correlate with
patients’ clinical stage as well as with some peculiar cognitive def-
icits (Serra et al., 2012; Bozzali et al., 2012). For instance, an inves-
tigation focusing on the cingulum (i.e., the main pathway of
connection between the medial temporal lobe structures and the
rest of the brain) has demonstrated a progressive loss of structural
integrity of this WM tract over the transition from normal aging to
AD passing through the preclinical stage of aMCI (Bozzali et al.,
2012). Interestingly, this microstructural WM damage together
with the regional GM atrophy predicts the level of cognitive
impairment at both disease stages, aMCI and AD (Bozzali et al.,
2012). A novel method of diffusion imaging analysis, called
anatomical connectivity mapping (ACM), has been proposed to
assess the structural brain connectivity into the whole brain tissue
(Bozzali et al., 2011, 2013). This approach has highlighted not only
patterns of structural brain disconnection over the transition from
normal aging to AD, but also possible mechanisms of brain plastic-
ity (Bozzali et al., 2011, 2013).

Functional MRI. Neuronal activity can be indirectly assessed
in vivo through blood oxygenation level dependent (BOLD) func-
tional MRI (fMRI). fMRI is used to investigate the patterns of brain
activation in subjects who are requested to perform various types
of task, including those engaging higher level abilities (e.g., mem-
ory, visuo-spatial attention, executive functions, emotion process-
ing, etc). Another way to use fMRI for brain investigation is
collecting a time series of BOLD volumes at rest in the so-called
resting-state fMRI technique. Resting-state fMRI aims at detecting
coherent fluctuations of brain activity over time that allow the
assessment of functional brain connectivity, and its changes as a
consequence of brain diseases. Functional brain connectivity can
be assessed within specific networks, some of which have been
associated with specific cognitive functions.

Task-driven fMRI investigations to assess the neurobiological
changes related to episodic memory deficits in patients with AD
have demonstrated reduced activity in the hippocampus and other
temporal lobe areas, and increased activity in the parietal associa-
tion cortex (Peters et al., 2009). Other studies based on memory
tasks have demonstrated decreased brain activation not only in
the temporal lobe structures but also in parietal and frontal regions
(Golby et al., 2005). Most studies involving patients with MCI have
shown patterns of increased activity within brain regions related to
the specific cognitive tasks (for a review, see Pihlajamäki et al.,
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2009). An explanation for this increased task related brain activa-
tion at early AD stages is that it might represent a compensatory
mechanism against the accumulation of brain damage (Lenzi
et al., 2011).

When using resting-state fMRI there are several networks that
can be investigated. Amongst them, the so-called default-mode
network (DMN) (Greicius et al., 2003) has proven being the most
targeted one by AD pathology. This network includes the posterior
cingulate cortex, the inferior parietal and the medial prefrontal
cortex. A study that combined resting-state fMRI and VBM to
assess respectively changes in functional brain connectivity and
regional GM atrophy demonstrated, in patients with MCI and AD,
that functional disconnection precedes the accumulation of GM
atrophy in the posterior cingulate cortex (Gili et al., 2011). The pos-
terior cingulate cortex, which is one of the key nodes of the DMN, is
structurally connected to the medial temporal lobes through the
cingulum (Bozzali et al., 2012). This supports the hypothesis that,
at least in some brain regions such as the posterior cingulate, brain
atrophy may be caused by disconnection mechanism (Gili et al.,
2011). Moreover, DMN connectivity within the posterior cingulate
cortex has been found to be modulated by individual levels of cog-
nitive reserve (Bozzali et al., 2015). This contributes to our under-
standing of the possible mechanism by which cognitive reserve
operates in delaying the clinical impact of AD pathology. A more
sophisticated way to analyze resting-state fMRI data is based on
the use of brain connectomics. When assessing the modulation of
cognitive reserve on brain connectomics in patients with MCI
and AD, such an effect is observed in the former but not in the lat-
ter patient group (Serra et al., 2017). Indeed, MCI patients with
higher levels of cognitive reserve revealed an increase of functional
connectivity in their fronto-parietal nodes and a decrease of con-
nectivity in in their fronto-temporo-cerebellar nodes (Serra et al.,
2017). The absence of such a modulation in AD patients suggest
that cognitive reserve acts to counterbalance the clinical symp-
toms of AD in an earlier time window of the transitional stage
towards dementia. This has implications for pharmacological and
non-pharmachological interventions (Koch et al., 2018) in AD
patients.

Metabolic Imaging. PET imaging has shown the ability to detect
pathological brain abnormalities in the absence of detectable
changes on MRI (Phelps, 2000). 18Fluorodeoxyglucose (18FDG-
PET) is a widely available radiotracer that provides information
on regional brain glucose metabolism (i.e., a proxy measure of neu-
ronal activity) (Bohnen et al., 2012). The pattern of hypometabo-
lism that is typically detected by 18FDG-PET in patients with AD
involves the temporo-parietal association cortex, the precuneus
and the posterior cingulate cortex (Iaccarino et al., 2017; Bohnen
et al., 2012; Kato et al., 2016). 18FDG-PET has proven highly sensi-
tive and specific in identifying patients with AD from healthy
elderly individuals (sensitivity ranging from 70 to 90%) as well as
from patients suffering from other forms of neurodegenerative
dementia (specificity of 87%) (Knopman, 2012).

More recently, amyloid PET imaging has been introduced to
detect the presence of AD pathology in vivo (Rowe and
Villemagne, 2013). The idea is that an abnormal processing of Ab
peptides triggers some critical pathophysiological events that
eventually result in accumulation of Ab plaques in the brain tissue
(Hardy and Selkoe, 2002). This process is known to occur many
years before the clinical onset of AD.

Within such a pathophysiological framework, amyloid PET
imaging has shown the ability to detect, in patients with AD, an
increase of tracer binding in medial frontal and orbitofrontal areas,
in the lateral parietal and temporal cortex, in the precuneus and
posterior cingulate cortex (Rowe and Villemagne, 2013). These
anatomical regions are well known to exhibit a high concentration
of Abplaques in AD brains. On the other hand, amyloid PET imaging
has shown some limitations when used in clinical settings. Ab
brain deposition is indeed widely present also in cognitively nor-
mal individuals, and discriminating between normal aging abnor-
malities and AD pathology can be particularly challenging,
especially in cases of late-onset AD.

With respect to the prognostic value on the risk of conversion to
AD, 18FDG-PET and amyloid PET imaging have both proven highly
powerful techniques. When using 18FDG-PET and amyloid PET
imaging in combination, the former has resulted being the best
individual predictor of AD conversion (Iaccarino et al., 2017).

Finally, PET imaging is still in continuous evolution. There are
other radiotracers available to target in vivo other aspects of neu-
rodegeneration, such as the brain accumulation of tau protein
(Jack et al., 2017).

4.4. Fluid markers

In the last two decades, several fluid markers, both for specific
and non-specific pathologic changes in AD patients, have been pro-
posed and tested. Over time, the most consistent findings have
been obtained with three CSF markers: the Aß1-42 peptide (Aß42),
the total tau protein (T-tau) and the phosphorylated tau protein
(P-tau) (Blennow et al., 2006, 2010). Although CSF contains less
protein than serum, ‘‘CSF markers are preferred over blood/plasma
biochemical markers to reflect brain pathophysiology in AD for two
main factors: 1) the direct contact between the brain and the CSF char-
acterized by a boundless bi-directional flow of proteins and 2) the
presence of the blood-CSF barrier that shields the CSF from direct
impact of the peripheral system through a restricted transportation
of molecules and proteins” (Olsson et al., 2016). Indeed, the three
CSF markers are related to the three main pathological changes
that occur in the AD brain: amyloid deposition in Aß plaques, intra-
cellular neurofibrillary tangles (NFT) formation, and neuronal loss.
Particularly, in AD patients, Ab42 is found at low concentrations
due to cortical amyloid deposition, T-tau at high concentration
due to cortical neuronal loss, and P-tau at high concentrations,
reflecting cortical tangle formation: this pattern is commonly
referred to as the ‘‘AD signature” (Galasko et al., 1998; Clark
et al., 2003; de Leon et al., 2006; Fagan et al., 2007, 2011; Shaw
et al., 2009).

There are numerous reviews on the diagnostic value of the CSF
markers, including in the early stages of AD (for a recent review see
Olsson et al., 2016). In particular, the combination of these CSF
markers increases the diagnostic accuracy with sensitivity and
specificity reaching 85–90%, both for early identification of AD
and for distinction between AD and non-AD dementias (Blennow
et al., 2010). The CSF markers are also highly predictive of progres-
sion to AD from MCI (Hansson et al., 2006; Fagan et al., 2007; Li
et al., 2007; Diniz et al., 2008; Brys et al., 2009; Mattsson et al.,
2009; Snider et al., 2009; Shaw et al., 2009). Subsequently, the
diagnostic criteria for AD dementia established by the NIA-AA
(McKhann et al., 2011) and the research criteria by the IWG-2
(Dubois et al., 2014) recommend the use of fluid markers (reduced
levels of Ab42 and elevated levels of T-tau and P-tau in CSF), when
there is a need to increase the certainty that the underlying cause
of a dementia syndrome is AD. Similar recommendations for mark-
ers were presented in the most recent European Federation of Neu-
rological Societies guidelines for the diagnosis and management of
AD (Hort et al., 2010) and other dementias (Sorbi et al., 2012). In
the diagnostic criteria for MCI due-to-AD developed by NIA-AA, a
positive Aß marker (either by amyloid-PET or CSF) together with
the presence of a neuronal injury marker, such as medial temporal
lobe atrophy or elevated levels of T-tau and P-tau in the CSF indi-
cates that the MCI syndrome may be because of AD, whereas neg-
ative Aßmarkers suggest that MCI is unlikely because of AD (Albert
et al., 2011). The IWG-2 criteria for prodromal AD are the presence
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of episodic memory decline of the hippocampal type as the leading
clinical symptom and positive marker evidence from either CSF or
imaging that supports the presence of underlying AD pathology
(Dubois et al., 2014). Although such bulk of evidences, further
research, validation, and standardization are required for a clinical
routine use (for recent recommendations about the use of CSF
markers in clinical practice see Herukka et al., 2017, and
Simonsen et al., 2017).

In addition to the classical CSF markers, other candidate mark-
ers from alternative non-invasive matrices, particularly blood, have
been investigated and are currently under study. Meanwhile, they
are presently less considered in International Guidelines than CSF
markers. In fact, data available in literature on plasma markers
show conflicting results (for a review see Olsson et al., 2016), so
that their use for the diagnosis of AD is not yet validated. For exam-
ple, merely reporting main findings for the classical AD markers,
blood Aß42 level has been found to be unchanged or having only
small variations in AD group respect to control (Olsson et al.,
2016). On the same line, different studies found an increase, a
decrease or no changes of plasma tau levels in AD patients
(Sparks et al., 2012; Chiu et al., 2013, 2014; Tzen et al., 2014;
Wang et al., 2014). Conversely, interesting results have been found
investigating blood levels of neurofilament light protein (NFL), a
marker of axonal damage, which resulted increased in both MCI
and AD patients respect to controls and showed a correlation with
CSF concentration and with cognitive impairment (Lewczuk et al.,
2018). Other similar emerging blood markers, linked to phenom-
ena like neurodegeneration (neuron-specific enolase, NSE, and
heart fatty acid binding protein, HFABP), Ab metabolism (Ab40),
tangle pathology (P-tau), glial activation and inflammatory
response to the disease (glial fibrillary acidic protein, GFAP, and
monocyte chemotactic protein 1, MCP-1), have been tested with
variable results. Most of them show a significative correlation with
the AD disease in CSF concentrations, but the corresponding
plasma levels do not seem to reflect such modification (Olsson
et al., 2016). In any case, the identification of reliable blood mark-
ers – both classical and emerging – is challenging because tradi-
tional immunoassay platforms do not have a high sensitivity in
detecting specific brain pathological markers in a matrix like
plasma, in which the great number of cells and different classes
of molecules determine a potential analytical interference. To
avoid this limit, novel ultrasensitive approaches and techniques
are emerging – such as mass-spectrometry analysis (MS)
(Nakamura et al., 2018), immunomagnetic reduction (IMR) (Yang
et al., 2017), electrochemiluminescence (ECL) and the single mole-
cule array (SIMOA) (Kuhle et al., 2016) –, with the purpose of
increasing accuracy and sensitivity of the detection. At this regard,
standardization and quality control programs, aimed to the defini-
tion of standard operating methods and analytical procedures, are
mandatory to warrant the application of blood and CSF markers for
both clinical trials and routine clinical diagnosis of AD.
5. EEG markers

The human brain can be imagined as a gigantic anatomo-
functional scaffold modeled by myriads of network structures at
micro-meso-macro-scale levels, with nodes and links that dynam-
ically cooperate with time-varying aggregations via transient and
rapid locking/unlocking of the orchestrated firing synchronization
of spatially separated neuronal assemblies (Singer, 1990; Jung
et al., 2001; Makeig et al., 2002; Fuentemilla et al., 2006). Both
Internal and external inputs from the surrounding environment
and learning/training and aging process continuously continually
interfere with the remodeling of brain networks throughout life
via plastic mechanisms mainly utilizing the Long Term Potentia-
tion/Depression (LTP/LTD) mechanisms of synaptic transmissions..
Network configuration and excitability also fluctuate in millisec-
ond time frames, according to the cyclic changes of the cortical
state (‘‘cortical uncertainty,” Adrian & Moruzzi, 1939), with an
impact on their instantaneous efficacy for a given task’s perfor-
mance. ‘‘Such phenomena are reflected in the overall electromagnetic
brain signals oscillating at various rhythms, which are recordable from
the scalp via electroencephalography (EEG) and magnetoencephalog-
raphy (MEG); ‘‘phase synchronization (or coherence), phase-locking,
entrainment, cross-frequency (or power synchrony), and phase reset
of EEG rhythms measure the degrees of functional connectivity
between different brain areas and play a key role in the fluctuating
cortical state, reflecting communication across spatially separate func-
tional regions operating at different frequencies and cross-frequency
synchronies” (Buzsaki, 2005; D’Amelio and Rossini, 2012; Vecchio
et al., 2019a,b). EEG and MEG record time-varying changes of elec-
tromagnetic signals with a time resolution of milliseconds and fol-
low the dynamics and hierarchies of neuronal assembly
connection/disconnection; these synchronization mechanisms are
also linked with performance in cognitive functions (Uhlhaas and
Singer, 2006; Buzsaki and Schomburg, 2015).

Scalp resting state EEG rhythms reflect the summation of oscil-
latory membrane post-synaptic potentials generated from cortical
pyramidal neurons, which play the role of EEG sources. Based on
biophysical considerations, these sources were estimated as
extended several squared centimeters (Nunez and Srinivasan,
2006; Srinivasan et al., 2007). These potentials can be considered
as the oscillatory output of the resting state cortical system, while
inputs were afferents coming from other cortical neural biomasses
and thalamo-cortical neurons and neurons belonging to ascending
reticular systems (Nunez and Srinivasan, 2006).

In clinical neurophysiology, frequency analysis of scalp EEG
rhythms reveals most spectral content under 50 Hz in standard
physiological conditions as scalp and skull do act as spatial and fre-
quency filters. Indeed, EEG rhythms can be investigated at higher
frequency bands, e.g. 100–250 Hz, using intracranial or MEG
recordings that eliminate the skull filtering effects. In an ideal
spectral analysis of scalp EEG rhythms, frequency bands of interest
should be related to peaks in power density spectrum to denote
relevant neural process (Lopes da Silva, 2013).

Linearity and non-linearity is the behavior of a neural circuit, in
which the output signal strength varies in direct or non-direct pro-
portion to the input signal strength respectively. Herein we used
the term ‘‘synchronization” to denote non-linear oscillatory com-
ponents of the brain system as a reflection of a collective oscilla-
tory behavior of cortical neural populations generating EEG
rhythms (Boccaletti et al., 2002). To produce scalp EEG rhythms,
this ‘‘synchronization” mechanism must occur at a macroscopic
spatial scale of some centimeters. Synchronizing neural popula-
tions in the cerebral cortex are the main source of scalp EEG
rhythms.

Typical linear characteristics of scalp EEG rhythms are power
density/amplitude and phase. Magnitude and topography of power
spectral density computed from scalp EEG rhythms is the most
used marker of cortical neural synchronization. It is often com-
puted by Fast Fourier Transform (FFT). Alternative advantageous
procedures use parametric autoregressive models and wavelets
analysis.

Spectral analysis of EEG rhythms is typically done at fixed fre-
quency bands. There is a promising convergence of spectral analy-
sis results of EEG rhythms in patients with AD. Compared to
seniors with intact cognition (Nold), these patients show wide-
spread increase in d and h power density and posterior decrease
in a and b power density with frequency lowering of a power den-
sity peak (Jelic et al., 2000; Adler et al., 2003; van der Hiele et al.,
2007; Nishida et al., 2011; Scheeringa et al., 2012). Non-linear



Fig. 2. The Functional Source Separation (FSS) algorithm is a new concept-source identification method with Magnetoencephalography (MEG)/Electroencephalography
(EEG)/Electromiography (EMG), developed by LET’S. To identify the source, FSS exploits a specific functional fingerprint of the source neurodynamics -instead of the source’s
position-. FSS returns the source’s neurodynamics in all experimental conditions of interest, together with the source scalp distribution, which is the input for the localization
algorithms, if the source’s position is of interest.
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measures of ‘‘synchronization” markers pointed to a complexity
loss of cerebral dynamics in AD in the same frequency bands
(Pritchard et al., 1994; Woyshville and Calabrese, 1994; Besthorn
et al., 1995; Stam et al., 1995, 1996; Jelles et al., 1999; Dauwels
et al., 2010a; Azami et al., 2017a for a review).

Scalp topography of EEG rhythms reflects the summation of EEG
activity generated by frontal, parietal, occipital, and temporal
source activities with poor spatial resolution of several centime-
ters. Compared to scalp EEG mapping, EEG source estimation pre-
sents the advantage that the cortical generators of EEG activity
may be approximately disentangled. Of note, EEG source estimates
are approximations of intracerebral neural current flows.

Both non-linear and linear mathematics can estimate neural
current density of EEG cortical sources (Valdés-Sosa et al., 2009;
Gramfort et al., 2013). These procedures model 3D tomographic
patterns of EEG cortical generators into a spherical or an MRI-
based head model representing electrical properties of cerebral
cortex, skull, and scalp, typically co-registered to Talairach brain
atlas (Talairach and Tournoux, 1988; Yao and He, 2001; Pasqual-
Marqui, 2002, 2007a, 2007b). Source localization procedures esti-
mate the current intensity of all dipoles (e.g. hundreds to thou-
sands) of cortical model to explain scalp EEG amplitude/power
density. These solutions are mathematically regularized to account
the fact that the EEG inverse problem is under-determined and ill-
conditioned.

An important step in EEG analysis is to maximize the signal-to-
noise ratio by trying to separate, as much as possible, the signal
from the noise using information on the specific source under
study. In some cases, it is possible to observe neural activity syn-
chronization by supplying to the subject an external stimulus, or
instructing the subject to perform a specific task. Asking to repeat
this task many times and triggering the onset of analysis on the
task onset, an average may be obtained over all the epochs. In this
way, only the electromagnetic field originated by a source time-
and-space correlated with the task is left unchanged, while all
other signals are reduced by a factor 1/

p
N, where N is the number

of averages.
Given the high relevance of analyzing resting state activity,

alternative procedures to enhance the signal to noise ratio were
developed including Blind Source Separation (BSS) methods such
as Independent Component Analysis (ICA) (Hyvarinen et al.,
2001) and semi-BSS methods such as Functional Source Separation
(FSS) (see Fig. 2) (Tecchio et al., 2007; Porcaro and Tecchio, 2014).
A relevant step relates the determination of the current density
distribution inside the brain, especially in some region of interest.
The diverse approaches to solve the so-called inverse-problem
range from single and multiple dipoles (Scherg and Berg, 1991)
to distributed sources, which include the Multiple Signal Classifica-
tion (MUSIC) (Mosher et al., 1992), the recursively applied and
projected-MUSIC (RAP-MUSIC) (Mosher and Leahy, 1999), the min-
imum norm estimates (MNE) (Hämäläinen and Ilmoniemi, 1994)
and the Low resolution brain electromagnetic tomography (LOR-
ETA) (Pascual-Marqui et al., 1994). Furthermore, spatial filtering
procedures, like beam forming, for example synthetic aperture
magnetometry (SAM) (Vrba and Robinson, 2001), are also
alternatives.

Given the side effects in solving the inverse problem, which
depends on biophysical properties external to EEG-MEG informa-
tion and in part unknown (proper conductivity of diverse extra-
cerebral tissues), neuroscientific community spends huge efforts
to extract the information of interest from the identified sources
derived from BSS and semi-BSS methods.

In both cases stronger analysis tools exploits graph theory
(Miraglia et al., 2017), which returns indicators of the balance
between the local connectedness and the global integration of a
network mainly concentrating the evaluation on the connectivity
features of the involved regions. Approaches concentrating on
the dynamic features of the neuronal activity include the power
estimate in diverse oscillatory frequency ranges and non-linear
measures assessing either the complexity of the signal (Escudero
et al., 2015) or its fractal dimension (Smits et al., 2016).
6. The relevance of EEG in AD investigation

6.1. Resting-state EEG

There is a vast literature on EEG abnormalities in pathological
brain aging (for a review see Rossini et al., 2006). Compared to
Nold subjects, AD patients contain excessive d and a significant
decrement of posterior a rhythms (Huang et al., 2000). Similarly,
MCI display a significant decrease of a power compared to Nold
(Koenig et al., 2005). Furthermore, a prominent decrease of EEG
spectral coherence in a band in AD has been reported (Jelic et al.,
2000; Adler et al., 2003).

The EEG h power was found to be higher in aMCI who will con-
vert to AD. In fact, a high predictive accuracy of baseline EEG fea-
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tures for predicting future decline was found (Prichep et al., 2006).
Furthermore, the analysis of EEG coherence (the phase different of
the oscillations of a given frequency at two different electrodes)
has been shown to contribute to the differentiation of AD from
Nold (Adler et al., 2003) and to the prediction of aMCI conversion
to AD (Jelic et al., 2000). However, findings were usually significant
only at a group level (de Haan et al., 2012a); moreover, relatively
small samples were investigated with a briefer than required fol-
low up. Despite such limitations, an important review (Dauwels
et al., 2010a) has summarized the progresses in the diagnosis of
AD: generalized slowing of the spectral profile, reduced complexity
and perturbations in EEG.

Similar features of EEG sources with some attenuation in ampli-
tude seen in AD patients were also observed in MCI subjects (see
Canuet et al. 2012; Babiloni et al., 2016). These findings were con-
firmed by an independent approach based on minimum-norm
depth-weighted estimation (Hsiao et al., 2013). Relative to aMCI
subjects, AD patients pointed to reduced activity in precuneus, pos-
terior cingulate, and parietal regions as well as increased activity in
d or h sources in inferior parietal, medial temporal, precuneus, and
posterior cingulate (Hsiao et al., 2013).

Cross-validation of EEG source solutions was successfully done
with correlation study with patients’ clinical/cognitive status and
other AD markers. In AD subjects, clinical symptoms were posi-
tively correlated with abnormalities in b, a, and d source activities
(Dierks et al., 1993; Babiloni et al., 2009). Global cognitive status as
revealed by MMSE score correlated negatively with d/h source
activity and positively with a source activity (Gianotti et al.,
2007; Babiloni et al., 2011a,b, 2013, 2015; Canuet et al., 2012).

Occipital, temporal, and parietal a source activity was maxi-
mum in aMCI patients with greater hippocampal volume, while
they were intermediate in those with smaller hippocampal vol-
ume, and minimum in AD patients (Babiloni et al., 2009). In addi-
tion, widespread a source activity was positively related to the
volume of cortical gray matter in aMCI and AD subjects, while a
negative correlation was found with widespread activity in d
sources (Babiloni et al., 2013). In these subjects, there was a posi-
tive correlation between occipital-parietal a source activity and
corresponding gray matter volume (Babiloni et al., 2015). More-
over, it was shown a negative correlation between EEG a dipolarity
(e.g., uniformity of alpha potential distribution) and P-tau or T-tau/
Ab in cerebrospinal fluid in AD (Kouzoki et al., 2013).

6.2. Event-related potentials

Event-related potentials (ERPs) are brain potentials time-locked
to a sensory, cognitive, or motor event (Blackwood and Muir, 1990;
Luck, 2014). Usually, ERPs are recorded by averaging several brain
responses over a large number of experimental trials in order to
boost signal-to-noise ratio. The resulting waveforms reflect the
occurrence of sensory and cognitive processes in the brain, provid-
ing information about both the time course of the event (with a
high resolution) and the spatial disposition of generating sources.
Therefore, ERPs allow studying neural correlates of information
processing related to sensory-motor, perceptual and higher cogni-
tive functions (Howe et al., 2014).

The great majority of works about ERPs focused on the analysis
of P300 component that is the most extensively used in clinical
applications to study dementia and aging. P300 is a scalp-
positive ERP component with a peak around 250–500 ms and an
amplitude of 10–20 lV elicited by auditory, visual, or somatosen-
sory stimuli (Polich and Kok, 1995). For its evaluation, the so-called
‘‘oddball” paradigm is commonly used, in which there is an alter-
nation of frequent and irrelevant (standard/non-target) stimuli
and of random, infrequent and task-relevant (target) stimuli that
have to be detected (Polich and Criado, 2006; see Rossini et al.,
2006 for a review). While P300 amplitude seems to reflect memory
processes and especially attentional abilities during task execution
(Gonsalvez and Polich, 2002), its latency seems to be linked to the
stimulus more than the response processing and is generally inde-
pendent of behavioral response time (Duncan-Johnson, 1981;
Verleger, 1997; Ilan and Polich, 1999). Therefore, in clinical set-
tings, peak latency has been used as a motor-free measure of cog-
nitive function, showing a negative correlation with mental
function in normal subjects: in fact, shorter latencies are associated
with high cognitive performance in attention and immediate
memory tasks (Polich et al., 1983, 1990; Polich and Martin, 1992;
Stelmack and Houlihan, 1994; Reinvang, 1999), while increased
latencies are found both in normal aging and further in dementia
(Polich et al., 1986; Fjell and Walhovd, 2001;Polich, 1997).

In general, almost all previous P300 studies reported a pro-
longed latency in AD patients compared to age-matched healthy
controls (Pedroso et al., 2012), with a particular sensitivity for
deterioration of language, memory, and executive functions (Lee
et al., 2013). Two recent meta-analyses demonstrated that P300
latency could reliably distinguish groups of MCI patients from con-
trols (Howe et al., 2014; Jiang et al., 2015). Moreover, Jiang et al.
found that stable MCI patients showed a shorter P300 latency
and larger amplitude compared to MCI prodromal-to-AD patients
(Jiang et al., 2015). Although the majority of P300 studies in AD
focused on its latency, changes in its amplitude have also been
found (Parra et al., 2012; Hedges et al., 2016) with sensitivity
and specificity above 80% (Juckel et al., 2008).

Concerning other types of ERPs evidence shows that early com-
ponents are usually less affected in AD, while later potentials,
because they probably refer to higher cognitive processes, could
be more effective to evaluate the progression of cognitive decline:
in fact, in the early stage of the disease a decreased P600 and N400
repetition effect and also a delayed N200 latency can be usually
detected, thus providing an useful marker to predict the conver-
sion from MCI to AD (Horvath et al., 2018).

Finally, it is noteworthy to highlight that the diagnostic validity
of ERPs is considered relatively poor, essentially because of the
great variability of sensitivity and specificity of ERPs measure-
ments reported in the literature. Hence, although recent studies
using promising clinical ERPs approaches presented prediction
accuracies of MCI/ AD progression in the 85–95% range (Bennys
et al., 2007; Olichney et al., 2008; Chapman et al., 2011), and
besides their theoretical interest, it is urgently necessary a stan-
dardization of ERPs assessment procedures in order to encourage
their inclsusion in clinical routine.

6.3. Event-related synchronization/desynchronization

In the analysis of ERPs, the early and late positive and negative
potentials were studied in the time domain as the components
named N100, N200, P200, P300, late positive potential, etc. ERPs
do not just have time-related changes, but these potentials also
have frequency content properties. It is possible to analyze the fre-
quency specific changes related to the function by different
methodologies. The main aim in the analysis of frequency-
specific changes is to find out the increase or decrease of the power
spectrum in a specific frequency band and to find out phase
information of this frequency band related to the given stimula-
tion/task. Event-related increase in a specific frequency band is
called Event-Related Synchronization (ERS) whereas event related
decrease in a specific frequency is called Event-Related Desynchro-
nization (ERD). ERS/ERD analysis was first introduced by
Pfurtscheller and Aranibar (1977) and by Pfurtscheller and Lopes
da Silva (1999). Klimesch (1999) reported that event-related upper
a ERD is positively correlated with long-term memory perfor-
mance, whereas an increase of h ERS is positively correlated with



Table 1
Summary of the time-frequency dynamics of AD and MCI patients in the literature.

Frequency Delta response Theta response Alpha response Beta response Gamma response

AD ; Decreased delta
ERS

; Decreased theta power/ ERS,
decreased theta phase locking

; Decreased ERD
" Increased ERD

; Decreased, beta power/ERS
; Decreased beta ERD

; Decrease early gamma
ERS,
" Increased Gamma
power
; Decreased gamma ERD

MCI ; Decreased delta
ERS

; Decreased theta power/ ERS,
decreased theta phase locking

; Decreased alpha
phase locking

; Decreased, beta power/ERS
; Decreased, beta phase locking ;
Decreased beta ERD

References Caravaglios et al.
(2008)
Kurt et al. (2014)
Yener et al. (2008,
2012, 2013)
Yener and Bas�ar
(2013)

Caravaglios et al. (2008)
Cummins et al. (2008)
Deiber et al. (2009, 2015)
Yener et al. (2007)

Babiloni et al. (2000,
2005)
Deiber et al. (2015)
Fraga et al. (2017)
Karrasch et al.
(2006)

Deiber et al. (2015), Fraga et al.
(2017)
Güntekin et al. (2013), Kurimoto
et al. (2012)
Missonnier et al. (2007)

Bas�ar et al. (2016),
Osipova et al. (2006)
van Deursen et al. (2011)
Kurimoto et al. (2012)

AD: Alzheimer’s Disease. MCI: mild cognitive impairment. ERS: event-related synchronization. ERD: event-related desynchronization. MCI: mild cognitive impairment.
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the encoding of new information. Bas�ar (1980) on the other hand
mainly focused on the event-related increase of responses in a
specific frequency band and called these responses as Event
Related Oscillations. Furthermore, the role of pre-stimulus activity
to post-stimulus responses both by analysis of power and phase
information of the signal were shown (Bas�ar, 1998, 1999) and
the dynamics of event-related oscillations and the evoked power
spectrum, digital filters, phase locking factors and event-related
coherences for a specific function were explored in detail.
Delorme and Makeig (2004) proposed their open toolbox to ana-
lyze ERS and ERS and as well as the inter-trial coherence, which
is a measure of phase locking factor. During the analysis of time
and frequency changes of ERPs, it is crucial to analyze all frequency
bands with taking into consideration the change of event-related
power spectrums and phase locking factors. In the last decade,
researchers analyzed event-related time-frequency dynamics to
find out the electrophysiological markers for AD. Table 1 repre-
sents the event-related time-frequency dynamics of AD patients.

Event-Related d Responses: a decrease of digitally filtered d
responses is found in AD patients in comparison to healthy con-
trols. Several researchers showed increased d response correlated
with the increased cognitive load (Güntekin and Bas�ar, 2016). In
AD, the differentiation between ‘‘target” and ‘‘non-target”
responses in d response was not found as in controls, but there
was a d response decrement during both visual and auditory odd-
ball paradigms (Caravaglios et al., 2008; Yener et al., 2008, 2012).
Furthermore, the decrease of d response was correlated with the
decrease of frontal brain volume (Yener et al., 2016). MCI patients
had also decreased d responses during ‘‘oddball paradigm” (Kurt
et al., 2014; Yener et al., 2013). Furthermore, there was a gradual
decrease in d responses being higher in healthy elderly controls,
lower in MCI and lowest in AD (Yener and Bas�ar, 2013).

Event-Related h Responses: h responses are mainly increased in
frontal-central areas during cognitive paradigms. h ERS is posi-
tively correlated with the encoding of new information
(Klimesch, 1999) and increased h power and h phase locking was
observed during working memory paradigms (Klimesch et al.,
1997; Bas�ar et al., 2001; Sauseng et al., 2010). AD and MCI patients
had abnormalities in h response due to their cognitive decline
(Cummins et al., 2008; Deiber et al., 2009, 2015). Deiber et al.
(2009) showed that progressive MCI had reduced baseline induced
h power than stable MCI and healthy controls during N-back task.
In a recent study Deiber et al. (2015) reported decreased h ERS in
MCI patients in comparison to healthy controls. Caravaglios et al.
(2010) showed that AD patients had increased prestimulus h activ-
ity and reduced event-related h power in comparison to healthy
controls during auditory oddball paradigm. h-c coupling during
working memory paradigms also merits special attention:
Goodman et al. (2018) analyzed h-c coupling in patients with
MCI and AD during N-back working memory task. Authors showed
that healthy controls had higher h-c coupling on the 2-back work-
ing memory task, on the other hand, MCI patients and AD patients
had impaired h-c coupling and AD patients had the lowest h-c cou-
pling in comparison to all other groups.

Event-Related a Responses: a response has an important role in
sensory, cognitive and memory processes (Klimesch, 1999).
Although Klimesch’s inhibition theory had high acceptance in the
research area, many studies are showing that increase of a
response and/or a ERS has essential functional correlates, including
sensory and memory functions (for a review see Bas�ar, 2012; Bas�ar
and Güntekin, 2012). a ERD was reduced in healthy aging subjects
(Gevins et al., 1997; Gevins and Smith, 2000). Babiloni et al. (2000)
during movement related task showed an abnormal preponder-
ance during both movement related b ERD, post-movement b
and a ERS values in AD. In a MEG study, Babiloni et al. (2005)
reported delayed a ERD latency and increased a ERD peak in
patients with dementia in comparison to healthy young and
elderly subjects during the visual delayed choice reaction task.
On the other hand, Karrasch et al. (2006) found reduced ERD in
AD patients during auditory-verbal Sternberg memory task. In a
recent study, Fraga et al. (2017) also reported decreased a ERD in
patients with MCI and AD in comparison to healthy controls during
N-Back task. To our knowledge there is only one study that analy-
ses event-related phase locking a responses in MCI(Deiber et al.,
2015) that showed decreased a phase locking in MCI patients in
comparison the healthy controls. New researches with including
large patient groups are needed for understanding the dynamics
of a responses in AD patients.

Event-Related b Responses: b responses are mainly related to
sensory-motor functions, being these responses depressed during
voluntary movement and motor imagery. However, the researches
performed in the last decade have shown that b responses are also
related to cognitive and working memory functions (Tallon-Baudry
et al., 1998; Güntekin et al., 2013; Onton and Makeig, 2009;
Ravizza et al., 2005). Missonnier et al. (2007) found that b ERS
was lower in progressive MCI and AD in comparisons to stable
MCI and healthy controls during attentional detection task.
Güntekin et al. (2013) showed that healthy controls had higher b
phase locking and power during target stimulation in comparisons
to ‘‘non-target” simulation, whereas this was not the case for MCI
patients who had reduced b phase locking and power during audi-
tory oddball paradigm. Deiber et al. (2015) had also showed
reduced ERS and b phase locking in MCI patients in comparisons
to healthy controls during N-Back task.
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Event-Related c Responses: Evoked and induced c responses play
an important role both in sensory and cognitive processes. The
increase of c responses was reported during increased attention,
memory processes, face and emotional picture recognition
(Bas�ar-Eroglu et al., 1996; Keil et al., 1999; Singer, 1999; Tallon-
Baudry and Bertrand, 1999; Herrmann et al., 2004; Jensen et al.,
2007; Bas�ar, 2013; Güntekin and Bas�ar, 2014). Osipova et al.
(2006) and Van Deursen et al. (2011) found increased c responses
in AD patients in comparison to healthy controls during auditory
steady-state responses. Kurimoto et al. (2012) analyzed the ERS/
ERD in AD patients during Sternberg paradigm and reported that
AD patients had reduced c ERD. On the other hand, Bas�ar et al.
(2016) analyzed the filtered c responses in three different sub-
frequency c bands and four different time windows during visual
oddball paradigm. These authors found that healthy controls had
higher c responses during 0–200 ms in comparison the AD
patients, whereas AD patients had higher late c responses. Both
sensory and cognitive paradigm elicits early c phase locking. Dif-
ferentiation between sensory and cognitive paradigms was found
in later time windows (200–400 ms and 400–600 ms) (Bas�ar
et al., 2015). Therefore, the c responses should be analyzed in dif-
ferent time and frequency windows. Analysis of ERD/ERS and
phase locking of c responses in AD patients during different sen-
sory and cognitive paradigms are still needed to see the differenti-
ation of c responses in AD patients and healthy controls. Early and
late c responses should be analyzed separately to find out the dif-
ferentiation of c responses in AD patients comprehensively.

6.4. Attention and working memory-related EEG features

EEG signals associated with selective attention and working
memory may detect very early and subtle changes in cortical net-
work function at baseline in cognitively intact elderly individuals,
to identify initial phases of subsequent cognitive deterioration. In
a recent study (Deiber et al., 2015), participants were evaluated
with an extensive neuropsychological battery (Giannakopoulos
et al., 2009): those with a CDR score of 0.5 but no dementia and
a score more than 1.5 standard deviations below the age-
appropriate mean in any of the neuropsychological tests were con-
firmed to have MCI. Eighteen months after the baseline evaluation,
only control subjects underwent cognitive reassessment with the
same neuropsychological battery. Participants were placed in the
deteriorated controls (dCON) group at follow-up if they had a per-
formance of 0.5 standard deviation lower than that at inclusion for
two or more neuropsychological tests. The final sample included
55 individuals in the stable controls (sCON) group, 42 in the dCON
group, and 45 in the MCI group. Continuous EEG was recorded dur-
ing a simple attentional and a 2-back working memory task
(Deiber et al., 2009). The Laplacian-transformed EEG signal was
segmented into epochs of 5500 ms, starting 1500 ms before stim-
ulus onset. ERPs were obtained by stimulus-locked averaging of
the signal with a 200 ms pre-stimulus baseline correction. To
detect and characterize the event-related EEG oscillations whose
latency and frequency ranges are not known a priori, a time-
frequency (TF) analysis based on a continuous wavelet transforma-
tion of the signal was applied (complex Morlet’s wavelets). Analy-
sis was performed in the h, a and b frequency bands. Inter-trial
coherence (ITC) is a time-frequency domain measure of event-
related phase locking across trials, also referred to as phase-
locking factor. ITC values range from 0 to 1, with higher values
indicating higher coherence of the phase of oscillations across tri-
als. ITC analysis was performed in the h (4–7 Hz), a (8–13 Hz) and b
(14–25 Hz) frequency bands (see Deiber et al., 2015).

ERSP (Event-related spectral power) and ITC (inter-trial
coherence) were separately analyzed within the h, a and b fre-
quency bands over the 9 most posterior electrode sites where their
amplitude was maximal. In both tasks, stimulus presentation eli-
cited a transient increase of h power (ERS) followed by a decrease
of a and b power (ERD). An increased a and b ERD as well as
decreased b ITC during the successful performance of simple atten-
tion and working memory tasks are associated with the subse-
quent development of neuropsychological deficits in healthy
elderly controls. In the a range, the posterior ERD was enlarged
in dCON and MCI as compared to sCON, suggesting an increased
mobilization of resources engaged for attention and working mem-
ory in these groups. In the presence of preserved task perfor-
mances, such increases were usually interpreted as
compensatory phenomena related to the necessity to enhance
the activation of the memory networks in order to guarantee accu-
rate task achievement. Alternatively, the increased activation could
represent an early sign of loss in brain efficiency. Modulations in
the b range were less obvious than in a range. The b ERD was of
higher amplitude in dCON than sCON and MCI, but did not differ
between sCON and MCI. This parameter (decrease of b activity) is
determined by exogenous, bottom up factors (Engel and Fries,
2010). Consistent with this idea, the increase of b ERD in dCON
as compared to sCON can reflect an enhancement of attentional
recruitment devoted to stimulus processing.

Inter-trial coherence is particularly sensitive to cognitive
decline in the b frequency range during working memory activa-
tion, since this index was able to differentiate two cognitive levels
within the control group, in contrast to h and a phase-locking
indices. Fine-tuning regulation within higher b frequency ranges,
shown to relate to attentive behavior, would be affected in the very
early phases of cognitive decline (Wrobel et al., 2007).
6.5. Non-linear EEG analysis

The non-linear behavior of the brain activity and its reflection in
electrophysiological recordings such as the EEG has attracted sub-
stantial attention since the early 800s (Jeong, 2004; Stam, 2005;
Hornero et al., 2009). The reasons were twofold. Firstly, the emer-
gence of methods based on Chaos Theory and their promise to
achieve a deterministic characterization of complex time series
(Grassberger and Procaccia, 1983; Wolf et al., 1985). Second, the
fact that multiple neural processes are governed by non-linear
phenomena and such non-linear dynamics are essential for
healthy, adaptive cortical activity, up to the point that abnormal
non-linear dynamics has been related to a number of brain dis-
eases (Breakspear, 2017).

The early application of non-linear methods based on Chaos
Theory to spontaneous EEG activity in AD showed lower correla-
tion dimension (D2) (Grassberger and Procaccia, 1983) and largest
Lyapunov exponent (L1) (Wolf et al., 1985) values than control
subjects (Jeong, 2004). These findings were interpreted as a reduc-
tion in number of variables needed to describe the dynamics of the
EEG (D2) and a loss of flexibility in information processing (L1).
This is because D2 is a measure of the geometry of the attractor
that describes the EEG signals whereas L1 accounted for howmuch
similar activity diverged over time (Jeong, 2004). Despite their dif-
ferent focus on static and dynamic properties of the EEGs, the
results of both D2 and L1 were associated with a reduction of com-
plexity in EEG activity due to AD (Jeong, 2004). Such interpretation
of AD as a disease affecting the complexity of EEG signals is still
valid today (Garn et al., 2015; Smits et al., 2016; Azami et al.,
2017a).

Nonetheless, the application of approaches based on Chaos The-
ory, such as D2 and L1, to EEG activity was quickly dismissed due
to major methodological issues. This led to a re-examination of the
field, which resulted into two alternative, yet probably more pro-
found, research directions (Stam, 2005):
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(i) The characterization and modelling of non-linear dynamics
in general, in contrast to only chaos.

(ii) The development of novel non-linear measures more suit-
able for application to noisy and multivariate recordings
such as the EEG.

Methods of non-linear EEG analysis can be categorized into
three main groups:

� Fractal dimension metrics, including Katz and Higuchi’s defini-
tions (Higuchi, 1988; Katz, 1988).

� Irregularity estimators, including sample entropy (Richman and
Moorman, 2000) and permutation entropy (Bandt and Pompe,
2002).

� Multiscale metrics (Humeau-Heurtier, 2015), including multi-
scale sample entropy (Costa et al., 2005) and derived
approaches such as multiscale dispersion entropy (Azami
et al., 2017a).

The concept of fractal dimension refers to a non-integer dimen-
sion of a geometric object. Hence, metrics such as Katz and Higu-
chi’s fractal dimension are conceptually related to D2. However,
a crucial difference with D2 is that these fractal dimensions are
computed in the time domain rather than requiring the recon-
struction of the signal attractor, thus making them faster
(Esteller et al., 2011). These metrics have been applied to sponta-
neous EEG activity in AD showing that patients had reduced fractal
dimension compared to healthy controls (Henderson et al., 2006),
especially in temporal-occipital regions (Smits et al., 2016).

A prolific and powerful framework for the non-linear character-
ization of EEG activity is that of information theory and entropy
measures. In this context, metrics such as sample entropy (Sam-
pEn) can be seen as conditional entropy estimators as measures
of the rate of production of information within a signal (how much
information previous samples of the time series provide about the
future points) that indicate its level of predictability (Faes et al.,
2015). Entropy metrics have been used to analyze spontaneous
EEGs in AD and in MCI. The results showed reduced irregularity
in AD patients’ EEG activity. Nonetheless, these results must be
taken with caution due to the reduced size of the sample used in
a number of those publications and the fact that the ability to dis-
tinguish between patients and controls may depend on the values
of the parameters used in the non-linear metrics (Simons et al.,
2018).

The third major category of non-linear measures are those
related to the multiscale behavior of signals and the concept of
complexity, which is here understood as sophisticated behavior
beyond that of both fully predictable and deterministic systems
and that of merely random oscillations (Costa et al., 2005; Yang
and Tsai, 2013). Thus, completely ordered (i.e., predictable) or ran-
dom systems are not physiologically complex (Goldberger et al.,
2002). A working measure of complexity was proposed by quanti-
fying entropy (originally SampEn) over multiple temporal scales
obtained from ‘‘coarse-grained” versions of the signals under anal-
ysis (Humeau-Heurtier, 2015; Azami and Escudero, 2018a, 2018b).
This method was called multiscale (sample) entropy (MSE) (Costa
et al., 2005) and it has inspired the application of entropy metrics
in a multiscale way (Humeau-Heurtier, 2015; Azami et al., 2017a).

MSE has been applied to reveal significant differences at a range
of temporal scales between the EEG activity of patients with AD
and controls (Escudero et al., 2006; Yang et al., 2013; Coronel
et al., 2017). The results indicate that the spontaneous EEG activity
of AD patients is less complex than that of controls at short tempo-
ral scales (associated with higher frequencies) but this tendency
reverses at longer temporal scales (related to lower frequencies)
where the AD patients seem to have higher complexity (Escudero
et al., 2006; Yang et al., 2013). Similar results have been obtained
with multiscale dispersion entropy (MDE) (Azami et al., 2017b).
This finding poses intriguing questions about the dependency of
the complexity of brain activity on the temporal scales and fre-
quency range under analysis. These issues have begun to be inves-
tigated recently (Courtiol et al., 2016; Azami et al., 2017b) but
further research is needed to obtain a comprehensive interpreta-
tion of the application of multiscale methods to EEG signals and
their relationship with other brain activity such as connectivity
(Stam, 2005). This could be complemented with the use of appro-
priate computational models of EEG activity that would allow the
inspection of the dependencies between structural and functional
connectivity, diverse non-linear estimators and biophysical param-
eters (Escudero et al., 2015; Ibanez-Molina et al., 2019).

Arguably, one of the limitations of the non-linear methods sur-
veyed so far is that they are applicable to single (univariate) signals
only. Multivariate versions have become recently available (Ahmed
and Mandic, 2011; Labate et al., 2013; Azami et al., 2017a; Azami
and Escudero, 2017; Deng et al., 2017) but their use to inspect
EEG activity is still in its infancy.

Finally, it is worth mentioning that most results come from
spontaneous recordings but the recent availability of methods
applicable to short time series enable the non-linear analysis of
EEG activity recorded during tasks (Morison et al., 2013; Garn
et al., 2015; Timothy et al., 2017), something that could result in
increased sensitivity and/or specificity to early AD.

6.6. Graph theory application and brain connectivity methods

Time series of cortical electric neuronal activity can be used for
estimating cortical connectivity, based on a relatively simple con-
cept in which the ‘two places’ could be replaced by ‘two neuronal
assemblies’: ‘‘Two places are functionally connected if their activity
time series are similar” (Worsley et al., 2005). However, from a for-
mal point of view, there are many different ways to define similar-
ity between signals including those from EEG.

Such methods are mainly based on the exact low resolution
electromagnetic tomography eLORETA (Pascual-Marqui et al.,
2011) an algorithm representing a linear inverse solution for EEG
signals that has no localization error to point sources under ideal
(noise-free) conditions (Pascual-Marqui, 2002). In order to obtain
connectivity values a Lagged Linear Coherence algorithm is applied
as a measure of functional physiological connectivity (Pascual-
Marqui, 2007a, 2007b). Moving from the scalp-recorded EEG
potentials distribution, the cortical 3-D mapping of current density
(source localization) is carried out via eLORETA as detailed in pre-
vious studies also providing the proof of its exact zero-error local-
ization property (see Pascual-Marqui, 2007b, 2009).

Several recent publications from independent groups (Canuet
et al., 2011; Barry et al., 2014; Aoki et al., 2015; Ikeda et al.,
2015; Ramyead et al., 2015; Vecchio et al., 2014b, 2014c, 2015,
2016b) supported the idea of a correct source localization using
eLORETA; such idea remains true not only with high-density EEG
recordings, but also with the standard 20-channel EEG montage
(10–20 system).

Connectivity can be computed by eLORETA software in the
regions of interest (ROIs) defined according standardized Brod-
mann areas for left and right hemispheres in individual cases
(Talairach and Tournoux, 1988). Intracortical Lagged Linear Coher-
ence obtained via the ‘‘all nearest voxels” or those in a sphere of
19 mm radius methods and selected on the basis of the number
of considered nodes (Pascual-Marqui, 2007a; Pascual-Marqui
et al., 2011), can be individually computed between all possible
pairs of ROIs for each of EEG frequency bands (Kubicki et al.,
1979; Niedermeyer and da Silva, 2005): d, alpha 1, alpha 2, beta
1, beta 2, and gamma. Then, eLORETA current density time series
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of each Brodmann area is used to estimate the functional connec-
tivity. The Lagged Linear Coherence (LagR) algorithm implemented
in eLORETA is used to obtain functional physiological connectivity
not affected by volume conduction and low spatial resolution
(Pascual-Marqui, 2007a).

Network analysis requires that the original empirical data (in
our case the EEG signals) are converted in a graph (weighted or
unweighted, directed or undirected) first by defining what should
be considered a node, and what can be considered a link (Stam,
2014). Core measures of graph theory can be computed with

http://www.brain-connectivity-toolbox.net (Vecchio et al., 2014b;
Miraglia et al., 2015, 2016), which defined two of the main brain
properties: segregation and integration. Segregation is defined as
the degree to which network elements form separate clusters
and their complex can be defined as clustering coefficient (C)
(Rubinov and Sporns 2010); integration refers to the level and
amount of network interconnection favoring exchange of informa-
tion (Sporns, 2013), and it is summarized by the characteristic path
length (L) coefficient (Rubinov and Sporns, 2010).

The mean clustering coefficient is computed for all nodes of the
graph and then averaged (Onnela et al., 2005; Rubinov and Sporns,
2010) describing the tendency of network elements to form local
clusters (de Haan W et al., 2009). Starting by the definition of L
(Onnela et al., 2005; Rubinov and Sporns, 2010), weighted charac-
teristic path length Lw (Onnela et al., 2005; Rubinov and Sporns,
2010) represents the shortest weighted path length connecting
two nodes.

Small-worldness (SW) represents the ratio between normalized
C and L - Cw and Lw- with respect to the EEG frequency bands. For
example, to obtain individual normalized measures characteristic
path length and clustering coefficient were divided by the mean
obtained by the average of each measured parameter in all EEG fre-
quency bands for individual subjects (Vecchio et al., 2018). Data
normalization with respect to surrogate networks could not be
done due to the weighted values of the considered networks.
How does the ‘‘graph theoretical” model compete with other types
of EEG analysis methods and how does it contribute to AD diagno-
sis? To the same EEG epochs utilized for graph valuation this type
of classifier was compared to other kinds of methods of EEG anal-
ysis currently used for AD studies, namely spectral coherence and
power spectrum; such methods showed 51.79% sensitivity, 100%
specificity and 68.86% accuracy. These results are promising but
less significant than the one from small world analysis (Vecchio
et al., 2018).

Currently, network science is developing along a sophistication
of network measures and models, introducing new concepts, such
as cost-efficiency, hierarchical modularity, vulnerability to random
or targeted attack, and the notion of rich clubs.

Transitivity (Tw) is another graph parameter: is measured as
the fraction of the node’s neighbors that are also neighbors of each
other (Watts and Strogatz, 1998) and reflects, on average, the
prevalence of clustered connectivity around individual nodes, a
measure of segregation based on the number of triangles in the
network. It is computed as Tw and represents a variant of Cluster-
ing Coefficient not affected by individual node normalization
(Newman, 2003). More sophisticated methods describing segrega-
tion besides the presence of densely interconnected groups of
regions also reflects their composition named the network’s mod-
ular structure (community structure). It reflects the decomposition
of network into groups of nodes, with the maximal content of
within-group links (within network connections are dense), and
the minimal level of between-group links (between network con-
nections are sparse). The degree to which the network may be sub-
divided into such clearly delineated and non-overlapping groups is
quantified by a single statistic, the Modularity (Qw). Unlike most
other network measures, the optimal modular structure for a given
network is typically estimated with optimization algorithms.
Finally, Local efficiency (Ew

loc) is an index of the information transfer
efficiency limited to neighboring nodes (i.e., nodes with direct
edges to the node of interest), and indicates how mutually inter-
linked neighboring nodes are (Latora and Marchiori, 2001).

Within network hierarchical organization studies as obtained
by the analysis of simultaneous EEG oscillations of different fre-
quencies and cross-frequency couplings during a given task-
performance has opened new research avenues into cognitive
mechanisms (Buzsaki and Draghun, 2004). In fact, time modulation
of the connectivity pattern of the nodes in a task-related network
explains most of the performance variability -i.e. from ‘‘excellent”
to ‘‘poor”- in apparently stable conditions (Ferreri et al., 2014;
Vecchio et al., 2014a, 2016b). In other words, the task-
performance level and the task-related choice/behavior contents
are largely written in the immediate architecture of the EEG net-
works’ connectivity, preceding the task (by a few seconds, usually).

Each EEG rhythm reflects different mechanisms and a complete
view – in time, space, and frequency domains – is needed to obtain
a comprehensive analysis of its functional dynamics. It is worth
mentioning that, depending upon the frequency content of the
examined rhythm, the time discrimination of the activation within
the network frame can be as short as few msec (down to 10 msec
in the high c band). Because of this, EEG connectivity analysis facil-
itates an evaluation of the time hierarchy governing the serial/par-
allel activation of the nodes and their time/space relationship
within a given network (i.e. whether A is active before, after, or
in parallel to B).

Within this theoretical frame, it is not surprising that aging pro-
cesses significantly modulate the network configuration of brain
connectivity. Resting-state EEG characteristics are known to
change across physiological aging, with gradual modifications in
spectral power profile indicating a decrease of a (8–13 Hz) and a
global ‘‘slowing” of the background EEG, with an increase together
with topographic modifications of the slower d (2–4 Hz) and h (4–
8 Hz) rhythms (Dujardin et al., 1994, 1995; Klass and Brenner,
1995; Klimesch, 1999; Rossini et al., 2006). Changes in the poste-
rior a rhythms are possibly due to the progressive degradation of
the activity of dominant oscillatory thalamo-cortical circuits in
the resting, awake, adult brain (Steriade, 1998; Brunia, 1999;
Pfurtscheller and Lopez da Silva, 1999). Brain aging also affect
the ability to time-varying synchronization of rhythmic oscilla-
tions in a network organization (Vecchio et al., 2017).

Dementias – particularly in the very early stages – mainly affect
synaptic transmission and therefore represent ‘‘disconnection syn-
dromes” (Rossini et al., 2006; Dauwels et al., 2010b; Babiloni et al.,
2011a,b; Vecchio et al., 2015, 2017). However, advanced EEG anal-
ysis had limited application in early AD diagnosis; for instance a
combined use of graph theory to explore brain connectivity from
EEG signals and ApoE genotyping as a genetic risk factor for early
interception of the MCI prodromal-to-AD condition have been
attempted only very recently with encouraging results (Vecchio
et al., 2018).

Age-related topographical changes of brain networks have been
recently investigated with different modalities including diffusion
tensor imaging MRI, EEG/MEG and fMRI (see reviews by Xie and
He, 2011; Tijms et al., 2013; Rossini et al., 2019a). It is worth men-
tioning that fMRI and EEG connectivity do not reflect exactly the
same physiological phenomena; in fact, transient locking/unlock-
ing of neuronal firing as reflected by EEG phase synchronization
does not require any energy consumption modification and does
not produce any BOLD signal visible in fMRI.

In a global view, due to the decreased local and global
connectivity parameters, the large-scale functional brain network

http://www.brain-connectivity-toolbox.net
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organization in AD deviates from the optimal small-world towards
a more ‘‘ordered” architecture with a less efficient information
exchange across brain areas and in line with the ‘‘disconnection”
hypothesis (D’Amelio and Rossini, 2012). On the clinical ground,
it is of interest the study of conditions as MCI prodromal-to-AD. A
statistically significant difference in the SW organization was
found between MCI subjects who will progress to AD (Converted
MCI, particularly those who can be defined rapid converters – i.e.
1–2 years –) and MCI subjects who will not progress to AD (Stable
MCI). Indeed, Converted MCI showed an abnormal increase in
graph parameters for the low a rhythm, along with a decrease
for the d and c rhythms, if compared with Stable MCI (Vecchio
et al., 2018). The Converted MCI subjects also showed SW charac-
teristics very similar to those encountered in AD patients 1 to
2 years before their conversion (Time 0 of the study, Vecchio
et al., 2018). Such findings might be interpreted in light of the
background physiology of a rhythm, usually defined as the ‘‘idling
rhythms” of the adult brain (Niedermeyer and da Silva, 2005). Sev-
eral studies converge on the idea that a is a deterministic chaotic
signal involved in several functions – besides others (Stam et al.,
1999) – ranging from memory formation to sensory-motor pro-
cessing (Schurmann and Basar, 2001). Indeed, event-related activ-
ity studies in the healthy have shown a positive correlation
between a frequency and the speed of information processing, as
well as a good cognitive performance (Klimesch, 1999). Differently
from a rhythms, which are widely recordable and dominate in the
posterior brain areas, d rhythms are poorly represented, thus
reflecting a condition of likely a-d ‘‘reciprocal inhibition” (Rossini
et al., 2006). Furthermore, it is well known that the anatomical
or functional disconnection of lesioned cortical areas generates
spontaneous slow oscillations in the d range in virtually all
recorded neurons. In particular, the SW decrease in d band repre-
sents an increase of functional inhibition and, vice versa, the oppo-
site holds true for a band. A SW decrease in the c band in the
Converted MCI is in line with previous evidence (Vecchio et al.,
2014c), showing a decrease of SW c band in AD with respect to
MCI and control subjects. The c band (>30 Hz) mediates informa-
tion transfer between cortical and hippocampal structures for
memory formation (Vinck et al., 2013), particularly through feed-
forward mechanisms (Abeles, 1991) and coherent phase-coupling
between oscillations recorded simultaneously from different neu-
ronal structures (Fries, 2005). Both animal and human studies pro-
vide evidence that c oscillations play a fundamental role in
memory tasks. c rhythms are involved in numerous cognitive func-
tions, including visual object processing, attention and memory
(Tallon-Baudry et al., 1998) and are strictly reflecting behavioral
performance (accuracy and reaction time) in several memory tasks,
including episodic memory, encoding and retrieval (Kaiser et al.,
2008). Further, microelectrode intraneural recordings demon-
strated that c oscillations are pivotal in spike phase synchroniza-
tion, which is at the base of EEG connectivity mechanisms
(Nikolic et al., 2013).

It is worth mentioning that in a population of 145 MCI subjects
followed up for 2 years, the ROC curve derived from graph-theory
EEG analysis showed SW characteristics with a > 60% sensitivity
(AUC 0.64, indicating moderate classification accuracy) for classify-
ing the MCI state as a prodromal of AD (Vecchio et al., 2018). These
findings are in line with previous studies (de Haan et al., 2012b;
Vecchio et al., 2014c; Miraglia et al., 2016) in which SW character-
istics were decreased in low frequency bands in patients with AD
compared to MCI (Vecchio et al., 2018). That is, the MCI connectiv-
ity pattern was less random than that of the AD group. Moreover,
significant differences between healthy elderly, MCI subjects and
AD patients have been demonstrated by showing that physiologi-
cal brain aging presents greater specialization (though lower val-
ues) of SW characteristics that are higher than normal in low
EEG frequencies and lower in a bands (Vecchio et al., 2016a).
Finally, the control analysis, with respect to AD patients, showed
that Converted aMCI presented a graph theory pattern practically
identical to the AD one. These findings suggest that EEG connectiv-
ity analysis, combined with neuropsychological evaluation in MCI,
could be of great help in early MCI prodromal-to-AD identification
as a first-line screening method to intercept those subjects with
a high risk for rapid progression to AD.

It is of paramount interest to consider that the ROC curves gath-
ered by a combined phenotype and genotype characteristics anal-
ysis (obtained at a low cost with widely available ApoE
technology), the accuracy increased to 91.78 % (AUC 0.97, indicat-
ing a nearly optimal classification accuracy) for classifying the MCI
state as a prodromal of AD (Vecchio et al., 2018). This result is in
line with the fact that the e4 allele of the APOE gene is the major
risk genetic factor for pathogenesis of late-onset AD (Huang and
Mucke, 2012; Giri et al., 2016).

The neurodegenerative process begins many years before the
clinical symptoms with a selective attack to synaptic transmission
and to the efficacy of brain dynamic connections (D’Amelio and
Rossini, 2012). A plastic reorganization of the surviving neuronal
circuitries – the neural ‘‘reserve” – contrasts and resists to such
an attack nulling or limiting the impact on daily living abilities:
this could explain the prolonged pre-symptomatic period
(Rossini et al., 2006; D’Amelio and Rossini, 2012; Ferreri et al.,
2003). In MCI subjects, the SW characteristics provided reliable
predictions of MCI to AD progression within a relatively short
time-frame. Moreover, rapid progression from MCI to AD heralds
an aggressive type of dementia with a rapid degradation of daily
life skills.
7. Toward automated EEG-based AD diagnosis?

AD diagnostic accuracy rate by experienced clinicians varies
from 80 to 90% and requires a huge amount of resources, from
high-tech equipment to highly trained experts that are primarily
found only at medical centers in developed countries (Sarazin
et al., 2012).

Consequently, non-invasive, low-cost and straightforward auto-
mated techniques for early AD diagnosis should be developed and
improved. A promising candidate to achieve this goal is neural sig-
nal analysis through quantitative electroencephalography (qEEG).

Notwithstanding, in order to develop a fully automated system
to support clinicians in AD diagnosis, further improvements in
qEEG algorithms are required regarding artifact removal tech-
niques, feature extraction, feature selection and automatic classifi-
cation strategies. The schematics of an ideal automated EEG-based
system for early diagnosis of AD (leave-one-subject-out training
paradigm) is depicted in Fig. 3 (Cassani et al., 2014). A comprehen-
sive review on the state-of-the art algorithms related to all the sys-
tem components is beyond the purpose of this review: herein we
will just provide some general notions about feature analysis pro-
cedures. So far the great majority of studies in EEG-based biomark-
ers for AD early diagnosis rely on the resting-awake experimental
protocol, thus for the sake of compactness we will restrict our
information to this approach. As previously described, four main
effects on EEG signals from AD patients have been recurrently
observed: slowing, reduced complexity, decreased synchrony, loss
of frequency-dependent connectivity and neuromodulatory deficit
in EEG rhythms. For the former three effects, a comprehensively
review was already performed (Dauwels et al., 2010a), while for
connectivity analysis the Reader is referred to the related section
of this manuscript. Regarding the quantification of the neuromod-
ulatory activity, amplitude modulation analysis was propositioned
as a spectral-temporal technique, allowing direct characterization



Fig. 3. Scheme of an automated electroencephalography (EEG)-based Alzheimer’s Disease (AD) diagnosis system in the cross-validation leave-one-subject-out paradigm
(Cassani et al., 2014). AAR: automated artifact removal.
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of cross-frequency interaction effects by measuring the rates at
which EEG bands are modulated (Falk et al., 2012; Fraga et al.,
2013). The procedure of feature averaging is an interesting addi-
tional tool proven to improve the accuracy in AD diagnosis
(Fraga et al., 2013). This processing stage is analogous to the epoch
averaging customarily performed in event-related potential stud-
ies, but the main difference is that such averaging is done in the
(non-linear) feature domain rather than in the time domain.

The combination of all the first-mentioned feature extraction
techniques results in a wide-ranging collection of features. For this
reason, a feature selection process necessarily should be done in an
automated or at least in a semi-automated way. A large number of
machine learning algorithms can be used to accomplish this task. A
widely used procedure for both feature selection and classification
in diagnosing AD applications is support vector machine (SVM),
which achieved up to 98% accuracy in early AD detection (Falk
et al., 2012; Fraga et al., 2013; Trambaiolli et al., 2011). One of
the major advantages of SVM is that, using it together with the
L1-norm as penalization, it leads to sparse weight vectors and
allows feature selection and classification to be accomplished in
the same step (Cassani et al., 2017). An interesting variation of
SVM is the Relevance Vector Machine (RVM), which replaces the
binary SVM classifier with a soft-decision method based on a prob-
abilistic Bayesian learning framework and outperformed SVM
when tested in a fully-automated AD diagnostic system (Cassani
et al., 2014).
8. Conclusions

In this manuscript, we attempted to report the main and rele-
vant tools for an integrated and interdisciplinary approach to the
diagnosis of AD, particularly focusing on neurophysiological tech-
niques and on the possibility of making an early diagnosis. We
moved from the concept that a safe, valid and reliable early iden-
tification of MCI prodromal-to-AD is essential for a systematic
screening of at risk populations, especially in view of the future
arrival of disease-modifying drugs (Rossini et al., 2019b).

During the meeting held in Rome in June 2017 a panel of
Experts from different disciplines has discussed this problem inte-
grating the various disciplines involved in this field (epidemiology,
neuropsychology, fluid testing, genetics, neuroimaging both struc-
tural and functional, EEG/MEG). Many of them agreed to prepare a
common manuscript providing a review of the strengths and
weaknesses of the individual biomarkers for early diagnosis. The
International Federation of Clinical Neurophysiology has supported
this meeting; such an endorsement has been triggered by the
‘‘vision” that the neurophysiological methods (in particular the
advanced analysis of electromagnetic brain signals) could repre-
sent a first-line screening tool particularly for their high sensitivity
to synaptic function, non-invasiveness, low-cost and widespread
availability. Since EEG/MEG digitized signals can be easily trans-
lated via a technological platform from recording places on the ter-
ritory to expert’s centers for sophisticated analysis, harmonization
of the analysis methods can be and should be accomplished. Need-
less to say, neurophysiological methods alone cannot reach neither
the required accuracy nor the diagnostic specificity (i.e. distinguish
AD from other dementias or amyloid-positive from amyloid-
negative AD forms), but could contribute for a first-line screening
that allows for defining high-risk subjects currently investigated
only with highly sophisticated/expensive (i.e. volumetric MRI,
PET with radioligands) and invasive (i.e. lumbar puncture)
approaches. A future and realistic target is to try to reduce the
number of cases that need second- and third-line further evalua-
tion, making the whole scenario affordable both from the organiza-
tional and financial sides. The literature review presented here
indicates several approaches that are extremely promising to open
a new era in EEG/MEG methods to innovative clinical applications
in the field of AD early diagnosis with huge implications.

Device-producing companies are very slow in appreciating this
opportunity, while researchers from the neuroscientific clinical
community seem to be - once again- on the frontline.

Let us go on and try to realize this dream!
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