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Abstract

Background: Congenital forms of hearing impairment can be caused by mutations in the estrogen related
receptor beta (ESRRB) gene. Our initial linkage studies suggested the ESRRB locus is linked to high caries experience
in humans.

Methods: We tested for association between the ESRRB locus and dental caries in 1,731 subjects, if ESRRB was
expressed in whole saliva, if ESRRB was associated with the microhardness of the dental enamel, and if ESRRB was
expressed during enamel development of mice.

Results: Two families with recessive ESRRB mutations and DFNB35 hearing impairment showed more extensive
dental destruction by caries. Expression levels of ESRRB in whole saliva samples showed differences depending on
sex and dental caries experience.

Conclusions: The common etiology of dental caries and hearing impairment provides a venue to assist in the
identification of individuals at risk to either condition and provides options for the development of new caries
prevention strategies, if the associated ESRRB genetic variants are correlated with efficacy.

Keywords: Dental caries, Deafness, Dental development, Ear development, Linkage disequilibrium, Genetics,
Polymorphisms
Background
Dental caries is a major public health problem and is esti-
mated to affect 60 to 90 percent of school children as well
as a vast number of adults [1]. Also, data from across the
world show that children with hearing disorders suffer
from poor oral health [2-12]. Congenital forms of hearing
impairment can be caused by mutations in the estrogen
related receptor beta (ESRRB) gene [13-16]. ESRRB is lo-
cated in the 14q24.3 locus, which was linked to dental
caries through a genome-wide linkage scan [17]. This is
not the first time that hearing loss is associated with alter-
ations of dental structures. Distinct mutations of the
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dentin sialophosphoprotein gene (DSPP), a gene involved
in the initial mineralization of the dentin matrix, are
responsible for the clinical manifestations of dentino-
genesis imperfecta 1 with or without autosomal dom-
inant progressive high frequency sensorineural hearing
loss (DFNA39) [18]. In addition, a case control study of
572 college age musicians showed that ESRRB nonsyno-
mous SNP rs61742642 (P386S) was associated with bilat-
eral notches in their ears and thus suffered from hearing
loss due to acoustic overload [19].
Estrogen has a role in the preservation of hearing in aging

human adults, and ESRRB binds to estrogen-responsive ele-
ments of downstream transcription targets of estrogen sig-
naling [20]. Alterations in transcription, mediated by the
glucocorticoid receptor (GR), can contribute to the pheno-
type of hearing loss related to ESRRB mutations because
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GR, like ESRRB, is widely expressed during and after mat-
uration of the mouse and rat cochlea. In addition, ESRRB
might repress transcriptional activity mediated by GR
[13,20,21]. Here we investigated whether loss of function
of ESRRB, which in humans leads to hearing impairment,
also leads to increased dental caries experience. We used
multiple experiments to attempt to gain a thorough idea
Figure 1 Flow chart of experiments included in this study. Experiment
Results are listed in diamonds. Details of each experiment are provided in t
of how ESRRB plays a role in dental decay. Figure 1 pro-
vides a visual representation of how the work was concep-
tualized and developed.

Methods
Subjects studied are summarized in Table 1. Overall, we
studied 1,731 individuals, including two consanguineous
s listed in order of appearance in manuscript and listed in the boxes.
he Methods section.



Table 1 Summary of all individuals analyzed in tests of association, gene expression, and enamel microhardness

Filipinos Turkish Brazilian
Rio de Janeiro

Brazilian Friburgo Argentinean Turkish (Enamel
Microhardness)

Sample size (mean DMFTa ± SDb) 477 (9.7 ± 7.3) 172 (3.8 ± 4.0) 500 (2.4 ± 3.0) 320 (1.4 ± 2.7) 143 (7.1 ± 7.8) 100 (5.2 ± 3.4)

High caries groupc (mean DMFT ± SD) 298 (13.3 ± 6.7) 92 (7.2 ± 2.3) 171 (5.8 ± 2.6) 53 (6.7 ± 2.8) 66 (13.0 ± 7.9) 63 (7.3 ± 2.5)

Low caries groupc (mean DMFT ± SD) 179 (3.6 ± 2.4) 80 (0) 329 (0.6 ± 0.9) 267 (0.4 ± 0.9) 77 (2.0 ± 2.3) 37 (1.7 ± 1.0)

Females 224 93 236 158 83 62

Males 253 79 264 162 60 38

Age (mean ± SD) 25.8 ± 16.3 5.4 ± 0.8 9.1 ± 3.1 3.5 ± 1.5 21.7 ± 15.6 17.2 ± 3.1

The number of pedigrees 72 unrelated unrelated unrelated unrelated unrelated
aDecayed, Missing due to caries, Filled Teeth.
bStandard Deviation.
cHigh and low dental caries experience was defined based on our original genome wide linkage study.
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families (Figure 2) carrying ESRRB mutations associated
with congenital hearing loss. Subjects had ancestry in
the Philippines, Turkey, Brazil, Argentina, and the Czech
Republic. These populations have been described previ-
ously [13,16,17,22-26]. The two consanguineous families
are from Turkey and the Czech Republic and have been
described previously as well [13,16]. The study was ap-
proved by the Institutional Review Board of the University
of Pittsburgh, appropriate oversight committees of human
participation in research in the Philippines, Turkey, Brazil,
Argentina, and the Czech Republic, and written informed
consent was obtained from each person included in the
study. Whole blood was collected for genetic analysis
in the cases of the Philippines and the two consanguin-
eous families from Turkey and the Czech Republic. The
remaining study groups had DNA purified from whole sal-
iva. Dental caries data was recorded by the use of the
Decayed-Missing due to caries-Filled Teeth index (DMFT).
Detailed descriptions of the assessments for each popula-
tion are in the Additional file 1.
Dental caries and tooth loss information was collected

for two consanguineous families (one from Turkey [13]
segregating a seven base pair duplication mutation and
Figure 2 Dental caries experience of families with hearing impairmen
individuals who are heterozygous (carriers) for the mutation. Dental caries level
one from the Czech Republic [16] segregating the mis-
sense mutation R291L). Families reported on the status
of their teeth based on what they were told by their den-
tist. The detailed reports are presented in Additional
file 1: Table S1. Based on these reports, dental caries sta-
tus was defined as high or low caries experience. These
families have recessive hearing impairment due to muta-
tions in ESRRB. It is important to note that the family
from Turkey comes from a region of low socioeconomic
status with limited access to dental care, whereas the fam-
ily from the Czech Republic resides in a metropolitan area
with better access to dental care. Dental data were col-
lected by phone interview (E.K. in Turkey and D.S.B. in
the Czech Republic). Of the 17 family members contacted
by E.K., 15 provided information regarding their dental
caries experience. D.S.B. was able to obtain information
from four family members. Dental caries experience be-
tween ESRRB mutation carriers and non-carriers was
compared using the Fisher’s exact test.
To study 14q24.3, single nucleotide polymorphisms (SNPs)

were selected using data from the International HapMap
project on Caucasians and Chinese (http://www.hapmap.
org), which were viewed using Haploview [27]. Twenty-
t DFNB35. Black indicates recessive hearing impairment. Dots indicate
s (high or low) and age in years are indicated below each subject assessed.
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five single nucleotide polymorphisms (SNPs) were selected
in 14q24.3 for fine-mapping and are listed in Additional
file 1: Table S2 based on pairwise linkage disequilibrium
and gene structure data. The Graphical Overview of Link-
age Disequilibrium (GOLD) software was used to calculate
pairwise linkage disequilibrium between the SNPs and
help interpret data [28].
Genotyping was performed using Taqman chemistry

end-point analysis. Association between the chosen SNPs
and recorded dental caries experience was tested with the
transmission disequilibrium test (TDT) implemented in
the Family-Based Association Test (FBAT) statistical pro-
gram [29]. Bonferroni correction was implemented to cor-
rect for multiple comparisons and significance was set at
0.002 (0.05/25). Eight SNPs that showed a trend for asso-
ciation with dental caries experience in the Filipino dataset
were studied in the additional four population datasets.
These eight SNPs were all present within or flanking
the ESRRB gene. Data were analyzed using the PLINK
software [30]. In order to derive a summary statistic for
association with the eight SNPs across populations, a
random-effects meta-analysis model was used to estimate
the odds ratio for the presence of the associated allele de-
termined by the fine-mapping of the Filipino families. Be-
fore pooling the data, we estimated Cochran’s Q statistic,
which indicates the degree of heterogeneity. There was
no significant evidence of heterogeneity overall (Q = 7.0,
p = 0.429). A random-effects model was used because it
includes variance components both within and between
studies. Moreover, because the random-effects model
generally yields a wider confidence interval than a fixed-
effects model, the random-effects model is more conser-
vative [31].
The less common allele of rs17074565 in 13q31.1 was

associated with dental caries and was predicted to disrupt
a binding site of GR [32]. Lower expression levels of GR in
whole saliva are also associated with high dental caries ex-
perience [32]. In the Filipino sample, we tested if the eight
ESRRB SNPs that showed a trend for association with
dental caries also interacted with the SNP rs17074565. We
observed the transmission of alleles from parents hetero-
zygous for both the rs17074565 SNP and the ESRRB SNPs
to estimate if specific allele combinations were transmitted
more often than expected.
All of the exons and exon-intron boundaries of ESRRB

were sequenced and compared with the reference se-
quence transcript ENST00000505752 obtained from
Ensembl Genome Browser (http://useast.ensembl.org/
index.html). Ninety-three samples from the Turkish co-
hort were used (62 caries samples and 31 caries free
control samples). Primers are listed in Additional file 1:
Table S3.
Total RNA isolated from a subset of 94 subjects from

the Argentinean population described above was used to
test if ESRRB expression can be detected in whole saliva.
Subsequent cDNA synthesis from 100 ng of total RNA
was accomplished by using High Capacity cDNA Reverse
Transcription kit (Applied Biosystems). Primers specific
for the three ESRRB isoforms [13] were tested (ESRRB
short, long, and Delta10 isoforms listed in Additional
file 1: Table S4); GAPDH was our endogenous control.
Quantitative real-time PCR was performed with SYBR
Green PCR Master Mix (Applied Biosystems). Quantifica-
tion of ESRRB expression levels compared to GAPDH was
performed by 2-DeltaDeltaCT method [33]. Real-time
PCR amplification was performed with an initial denatur-
ation at 95°C for five minutes, 60 cycles at 95°C for 45 sec-
onds, 55°C for 45 seconds, and finally 72°C for 90 seconds
in a 7900HT Real-time PCR machine. Real-time results
were confirmed by western blotting analysis. ESRRB ex-
pression levels were analyzed based on the presence of
zero, one, or two copies of lesser common alleles, sex, and
dental caries experience. Non-parametric tests were used
in all comparisons.
Total RNA from the submaxillary salivary gland epi-

dermoid carcinoma cell line HTB-41™ (American Type
Culture Collection) was isolated and studied. cDNA syn-
thesis and real-time PCR conditions used were described
above. GAPDH was used as the endogenous control.
Amplification of cDNA was performed with SYBR Green
PCR Master Mix (Applied Biosystems).
Enamel samples from extracted premolar teeth from

100 orthodontic adolescent patients (63 with high dental
caries experience and 37 with low caries experience,
Table 1) from Istanbul University were used in enamel
microhardness testing (Figure 3). The enamel samples
came from premolars and were used to test the associ-
ation between genetic variation in ESRRB and enamel
microhardness at baseline, after simulating artificial car-
ies, and after fluoride treatment. The goal was to test the
hypothesis that ESRRB influences dental caries by generat-
ing a more susceptible enamel surface to acidic dissolution.
The Ethics Committee of Istanbul University approved this
study, and informed consent from all participating patients
was obtained. Subjects age ranged from ten to 32 years
(mean age of 17.2 years; 38 males and 62 females). The
mean DMFT ranged from zero to 17 (mean DMFT 5.2; 63
with high caries experience and 37 with low caries experi-
ence). Tooth samples were cleaned of any remnants and
stored in a 10% formalin solution (pH= 7.0) at room
temperature until the initial polishing. The crowns of each
tooth were separated from the roots and then separated
again buccolingually and mesiodistally. The five surfaces
studied were occlusal, mesial, buccal, distal, and lingual.
The surfaces were sanded for one minute, at a force of 1
lbf, while moving at a speed of 20 rpm on paper of 320,
400, and 600 grit, and then polished for seven minutes at a
force of 1 lbf at a speed of 25 rpm in 6 μm, 1 μm, and

http://useast.ensembl.org/index.html
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Figure 3 Enamel microhardness study design. Image above A depicts the five tooth surfaces upon which enamel microhardness was tested.
Image above B is a close-up of the occlusal surface. Image above C shows the appearance of an enamel specimen ready to be tested. Image
below D shows the testing unit. Microhardness was tested at baseline, after artificial caries creation, and after exposure to a fluoridated solution
(panels above E, F, and G. are schematic representations of the assessments).
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0.25 μm diamond suspension. Sample baseline microhard-
ness was tested using a microhardness tester (IndentaMet
1100, Buehler Ltd.) with a knoop diamond. Five indenta-
tions under a load of 25 grams for five seconds were made.
Next, artificial caries was simulated by immersing the sam-
ples in 24 mL of demineralizing solution (1.3 mmol/L Ca,
0.78 mmol/L P, 0.05 mol/L acetate buffer, 0.03 μg F/mL,
pH:5.0) at 37°C for 16 hours. Microhardness was again
measured by five indentations created just below the initial
ones. These indentations were then exposed for ten mi-
nutes to a fluoride solution, created from toothpaste con-
taining sodium fluoride (1,400 ppm fluoride), to determine
if microhardness for the artificial caries lesions would be
brought back to baseline levels after fluoride exposure.
Again, surface microhardness was measured with five
more indentations below the previous ten.
The results of the microhardness testing were com-

pared to the genotyping of DNA extracted from saliva
from each of the 100 patients. Results were analyzed
using the PLINK software package28. Mean microhard-
ness at baseline, after artificial caries lesion creation, and
after fluoride application was calculated. Subjects were di-
vided into two comparison groups: above and below the
means. We made comparisons by surface, as well as by
using the mean enamel microhardness of all five surfaces
combined. A p-value of 0.0004 was considered statistically
significant to accommodate for multiple comparisons
(Bonferroni correction: 0.05/144).
Expression of Esrrb during enamel development was de-
termined by immunohistochemical analysis of sections of
mouse mandibular molars at postnatal day four (secretory
stage) and postnatal day eleven (maturation stage).

Results
Of the 25 SNPs used for fine-mapping the region 14q24.3,
eight SNPs within or flanking ESRRB were found to
be over-transmitted in a sample population from the
Philippines (Figure 4). Linkage disequilibrium was assessed
for these markers and is presented graphically as
Additional file 1: Figure S1. Studies of additional popula-
tions also indicated associations (details in Additional
file 1: Tables S5 through S8). Populations are summa-
rized in Table 1. Figure 5 shows the odds ratios for the as-
sociation of rs1676303 in samples from the Philippines,
Turkey, Brazil, and Argentina. We also show odds ratios
when the Brazilian samples, which had lower dental caries
experience, were excluded from the meta-analysis (meta-
analysis of the additional SNPs can be found in Additional
file 1: Figures S2 through S8).
Two families with DFNB35 hearing loss and ESRRB mu-

tations were contacted for this study, one from Turkey [13]
and the other from the Czech Republic [16]. Of the 17
Turkish DFNB35 family members with a recessive seven
base pair duplication in exon 8 of ESRRB (c.1018_1024dup
GAGTTTG) and hearing impairment [13] contacted by
phone interview, 15 provided information regarding their



Figure 4 Summary of fine-mapping results. At the top, the fine-mapped region is highlighted on 14q24.3. Eight SNPs within or flanking ESRRB
were associated with high caries experience.
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dental caries experience (Figure 2). The ten members of the
family who are carriers for the ESRRB mutation (six homo-
zygous, four heterozygous) have severe dental caries, with
many if not all teeth affected by caries. Three of the five in-
dividuals without ESRRB mutations were caries free, and
two of the five had low caries experience (Fisher’s exact test,
p = 0.02). The DFNB35 family from the Czech Republic has
a recessive missense mutation (R291L) in ESRRB and hear-
ing impairment. Both the mother of the affected child and
the mother’s father had high dental caries experience. The
affected four-year-old child is caries-free in his primary
dentition, and his father is apparently affected by periodon-
tal disease. It was not possible to define the father’s dental
caries status.
We also found statistical evidence of an interaction be-

tween ESRRB SNPs and a SNP predicted to disrupt a
GR binding site in families with high dental caries ex-
perience (Table 2).
From the sequencing of ESRRB exons and exon-intron

boundaries, SNPs rs10132091, rs61742642, rs3813545,
rs3829784, rs45533334, rs35544003, rs2361292, and
Figure 5 Odds ratios for over-representation of the T allele (rs167630
five studied groups suggest an association between ESRRB rs1676303 and d
removed from analysis, the association between ESRRB rs1676303 and dent
rs55835922 were found in our samples. There is no evi-
dence indicating these SNPs are disease-causing variants.
No mutations causing hearing impairment were found. In-
dividuals with dental caries have an over-representation of
the T allele of rs55835922 (74% versus 54%; p = 0.01). The
SNP rs61742642 is a missense mutation (P386S), but its
frequency was just slightly elevated in cases with dental
caries (13% versus 9.5%). SNP rs35544003 is a synonym-
ous change not thought to have any detrimental effect.
Detailed sequencing results are listed in Additional file 1:
Table S9.
Only expression of the short ESRRB isoform listed in

Additional file 1: Table S4 was detected, both by real
time PCR and western blot analyses (Additional file 1:
Figure S9). Additionally, expression of the short ESRRB
isoform was detected in the submaxillary salivary gland
epidermoid carcinoma cell line HTB-41™. The data from
the real time PCR experiments indicate that adult fe-
males express ESRRB in whole saliva in higher levels
than men (p = 0.01). Furthermore, a statistical associ-
ation was found between ESRRB expression in whole
3) in individuals with high dental caries. A. Meta-analysis with the
ental caries. B. When the two study groups with less dental caries are
al caries becomes stronger.



Table 2 Statistical evidence of interaction between
rs17074565 (a SNP predicted to disrupt a GR binding
site) and ESRRB SNPs in dental caries in Filipinos

ESRRB SNP interacting
with rs17074565

Number of
informative
families

p-value Associated
ESRRB Allele

rs4903399 27 0.0000002 C

rs6574293 27 0.00003 G

rs1077430 13 0.21 -

rs4903419 20 0.0000004 A

rs2860216 27 0.05 T

rs10132091 20 0.0000001 T

rs1676303 16 0.0004 T

rs745011 11 0.008 T
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saliva of children and rs745011 allele distribution (p = 0.04).
In a dominant model, statistical association was found
between ESRRB expression and rs10132091 genotypes
(p = 0.03), between low dental caries experience and
rs10132091 genotypes (p = 0.05), and between low ESRRB
expression in whole saliva of adults and rs6574293 geno-
types (p = 0.04). In a recessive model, statistical association
was found between low ESRRB expression and rs2860216
genotypes (p = 0.02).
Through experiments that tested the effects of acid

dissolution of the enamel surface, we reasoned that
ESRRB variants contributes to formation of an enamel
structure that is more susceptible to the acidic effects in-
volved in the initiation of dental caries. Distribution of
alleles of SNP rs4903419 was different between subjects
with harder and softer enamel at baseline under a reces-
sive model (The G allele was associated with harder en-
amel, p = 0.0007). Also, the distribution of alleles of SNP
rs6574293 was different when enamel microhardness at
the distal surface was compared after the creation of an
artificial caries lesion and after fluoride application (The
A allele was associated with harder enamel after fluoride
application, p = 0.0006). Complete results are summa-
rized in Additional file 1: Table S10.
Immunohistochemical stain with rabbit polyclonal

antibody, demonstrated that Esrrb is expressed by mouse
ameloblasts, the cells that deposit tooth enamel, during
the secretory stage of amelogenesis in mice (postnatal
day four, Additional file 1: Figure S10), but not during
the later maturation stage of dental development, such
as postnatal day eleven.

Discussion
Mice that are Esrrb-deficient, or which have a conditional
knockout of the Esrrb gene, exhibit head-tossing, head-
bobbing, and running in circles caused by inner-ear de-
fects [34,35]. In humans, the ESRRB autosomal recessive
hearing impairment indicates that ESRRB is essential for
inner-ear development [13-16]. We showed that SNPs in
the ESRRB locus are also associated with dental caries ex-
perience in multiple populations, but particular populations
are less influenced by factors that protect against the dis-
ease. Results were clearer when we removed the “healthier”
groups from the pooled analysis (Figure 5), leaving the ones
with limited access to dental care, similar cultural and social
behaviors, and sub-optimal exposure to fluoridated drink-
ing water. When we evaluated dental caries in two families
with previously described hearing impairment and ESRRB
mutations, the evidence clearly showed that the severity of
dental destruction was much more apparent in mutation
carriers. Upon testing the enamel of human teeth in regards
to genetic variation in ESRRB, we found evidence that
“softer” enamel is associated with ESRRB SNPs.
ESRRB is suggested to repress transcriptional activity me-

diated by GR, and these two proteins are widely expressed
during and after maturation of the mouse and rat coch-
lea [13]. We previously showed that a SNP in 13q31.1
(rs17074565) was associated with dental caries and po-
tentially disrupts the GR binding site [32]. We found stat-
istical evidence that rs17074565 and ESRRB SNPs are
over-transmitted together in families with high dental car-
ies experience.
Both clinical and archeological evidence suggest that

women have higher levels of dental caries [36-43], al-
though these differences are not evident when studies
are performed in individuals with similar socioeconomic
levels and environments [44-46]. The differences are
suggested to be the consequence of sex disparities and
bias related to the risk factors modulating dental caries
[47]. On the other hand, men appear more commonly to
have faster hearing deterioration, in part due to the types
of occupations that favor males [48]. This evidence is
promising in the sense that ESRRB detection in whole sal-
iva can be explored not only in regards to risks of dental
caries, but also related to risks of hearing loss related to
aging or occupational hazard (i.e., dentists [49]). The ra-
tionale for this suggestion comes from the hypothesis that
ESRRB could cause congenital forms of hearing impair-
ment as well as increased susceptibility to the acquired
forms of hearing loss. A similar phenomenon happens with
diabetes. Data on susceptibility genes and familial cluster-
ing for Type 1 and Type 2 Diabetes in humans, mice, and
rats suggest the possibility of shared genetic susceptibility
to both Type 1 and Type 2 Diabetes in humans [50,51].
We have demonstrated that informed candidate-gene

selection aids in identifying specific variants with a role
in complex traits that may be otherwise missed by
genome-wide association studies [52-55]. The associ-
ation of dental caries and hearing impairment provides a
venue to assist in the identification of individuals at risk
to either condition and provides options for the develop-
ment of new strategies of prevention for both caries and
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hearing loss, if the associated ESRRB genetic variants are
correlated with efficacy.

Conclusions
ESRRB, a gene when mutated causes a form of hearing
impairment, also contributes to dental decay likely by in-
fluencing the formation of an enamel surface more sus-
ceptible to demineralization under acidic conditions.

Web resources
The URLs for presented data are as follows:

dbSNP: http://www.ncbi.nlm.nih.gov/projects/SNP.
Ensemble Genome Browser: http://www.ensembl.org/
index.html.
HapMap Project: http://hapmap.ncbi.nlm.nih.gov.
PLINK: http://pngu.mgh.harvard.edu/~purcell/plink/.
Primer3: http://biotools.umassmed.edu/bioapps/
primer3_www.cgi.
UCSC Genome Bioinformatics: http://genomebrowser.
ucsc.edu.
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