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A B S T R A C T   

In this empirical study, a five-stage methodology is used to examine the efficiency of 45 worldwide known airline 
companies from the financial, operation and marketing perspectives. Initially, the superefficient data envelop
ment model is run with inputs and outputs that are selected based on the literature review. However, because 21 
out of 45 airline companies are found to be efficient based on this analysis, a stepwise regression-based mech
anism is applied to four reduced models – one for each output variable – for better discrimination. The outputs 
are, namely, net profit margin (financial output), passengers carried, on-time departure performance (opera
tional outputs), and customer satisfaction (marketing output). In this way, the significant input variables are 
found for each reduced model. In the third stage, in order to provide even more discrimination, social network- 
based eigenvector centrality values are used as the weights of the superefficiency scores, and the strengths and 
weaknesses of efficient airlines for each output are specified in terms of their related significant inputs. The 
results show that, when net profit margin is taken as an output, Vietnam Airlines has the top weighted super
efficiency value and excels in terms of available seat kilometers and liquidity, but it should improve its debt level. 
Although Norwegian Airlines has the highest efficiency with respect to debt level, it is not the best role model 
because its eigenvector centrality value is relatively low. However, Norwegian airlines also has the highest 
weighted superefficiency and acts as a role model in terms of on-time departures with respect to this output. Its 
main strength is liquidity, and it has no significant weaknesses. On the other hand, in terms of overall satisfaction 
and passengers carried, Vietnam Airlines and Thai Airways are the leaders, respectively. Vietnam Airlines is the 
only superefficient company with respect to overall satisfaction, while the basic strengths of Thai Airways in 
terms of passengers carried are its employee and fleet, and it has no significant weakness. A final aggregation of 
the results is made by making pairwise comparisons of the relative importance of four outputs for 7 experts 
selected from different departments of airline companies. According to the results, Net Profit Margin has the 
highest priority, followed by On-time Departure and Overall Customer Satisfaction, while passengers carried has 
the lowest importance. Based on these relative priorities, it can be said that Vietnam Airlines can be accepted as 
the top performing airline company, followed by Norwegian Airlines.   

1. Introduction 

Today, airline companies are facing important financial, operational 
and customer service performance fluctuations. To improve the 
competitiveness of airline companies, it is necessary to use appropriate 
tools to measure their efficiencies in these dimensions. However, the 
efficiency evaluation is difficult because of the large number of complex 
factors involved. For example, a focus on service quality may help to 
increase customer satisfaction and, hence, improve service productivity, 

but the operational and financial performance may be subsequently 
reduced as a result. Contrarily, decisions to improve an airline’s oper
ational and financial performance regardless of customer satisfaction 
may result in internal and external factors that can cause a number of 
negative reactions. As seen, the problem has a multidimensional aspect. 
On the other hand, the results are also heavily influenced by the vari
ables that are taken into account (Colli et al., 2011). 

This study proposes an integrated superefficiency Data Envelopment 
Analysis (DEA) model with a stepwise regression-based feedback 

* Corresponding author. 
E-mail addresses: uaydin@bandirma.edu.tr (U. Aydın), makaradayi@medipol.edu.tr (M.A. Karadayi), fulengin@sabanciuniv.edu (F. Ülengin).  

Contents lists available at ScienceDirect 

Journal of Air Transport Management 

journal homepage: http://www.elsevier.com/locate/jairtraman 

https://doi.org/10.1016/j.jairtraman.2019.101725 
Received 27 May 2019; Received in revised form 5 August 2019; Accepted 21 September 2019   

mailto:uaydin@bandirma.edu.tr
mailto:makaradayi@medipol.edu.tr
mailto:fulengin@sabanciuniv.edu
www.sciencedirect.com/science/journal/09696997
https://http://www.elsevier.com/locate/jairtraman
https://doi.org/10.1016/j.jairtraman.2019.101725
https://doi.org/10.1016/j.jairtraman.2019.101725
https://doi.org/10.1016/j.jairtraman.2019.101725
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jairtraman.2019.101725&domain=pdf


Journal of Air Transport Management 82 (2020) 101725

2

mechanism and social network analysis to evaluate the performance of 
the world’s 45 major airline companies. The superefficiency DEA results 
are weighted with eigenvector centrality values to discriminate among 
the efficient airline companies. Based on the network-based analysis 
proposed by Liu and Lu (2010), the strengths and weaknesses of each 
efficient airline company are analyzed in detail for each considered 
output. For this purpose, a directed and weighted graph is constructed, 
in which the nodes represent the airline companies and the edges 
represent their relationships. This method can rank efficient DMUs, 
taking into account their qualities by utilizing the eigenvector centrality 
concept. This analysis aims develop a road map to specify the basic 
improvement areas in which each airline company should focus and 
make investments. The basic contributions of the study can be summa
rized as follows:  

1. The inputs and outputs are initially specified based on a literature 
survey. The lack of nonfinancial measures encountered in the liter
ature is addressed by taking into account the customer satisfaction 
surveys and the operational indicators.  

2. For each output, the most significant inputs are selected by using 
stepwise backward variable regression analysis. In this way, the less 
significant variables are eliminated from consideration.  

3. Although the stepwise regression-based backward variable selection 
technique is used with the classic DEA method (see section 2.2), its 
use with the superefficiency DEA model is a novel approach in the 
literature and increases the discriminatory and ranking power of the 
traditional DEA model.  

4. Subsequently, Social Network Analysis is used to specify each output 
variable for which efficient airline companies are leaders and role 
models in terms of input variables selected by stepwise regression 
analysis. The use of eigenvector centrality as a weight is itself a new 
concept in the group decision-making literature. Its application to 
find the weighted average of the superefficiency scores provides 
greater discriminatory power in the ranking of the efficient airline 
companies and a novel contribution to the airline management 
literature. Therefore, a benchmark is obtained for the airline com
panies to improve their effectiveness in different dimensions by 
analyzing the strengths and weaknesses of the role model in each 
dimension.  

5. A final selection of the most efficient airline companies is made based 
on the aggregation of the efficiency results for the financial, opera
tions and marketing efficiencies. A pairwise comparison survey is 
conducted with 7 experts on airline companies who are selected from 
different departments to represent different perspectives. The rela
tive weights of these outputs are specified using the eigenvalues 
corresponding to the largest eigenvector, and the experts’ opinions 
are aggregated using geometric means. 

The next section provides the literature survey on airline efficiency 
measurement and the variable selection methods. The third section 
provides the proposed methodology and its application to the worldwide 
known 45 airline companies, which also underlines the managerial 
implications for each output based on the superefficiency DEA. Social 
network analysis is conducted and eigenvector centrality values are used 
as the weights to compute the superefficiency score weighted by 
eigenvectorcentralitys. A final aggregation of the results is also provided 
to specify the top airline company. Finally, conclusions and further 
suggestions are given. 

2. Literature review 

2.1. Airline company efficiency research methods 

The performance of airline companies has attracted the attention of 
the researchers. Different methods, such as Stochastic Frontier, DEA, 
Multi-Criteria Decision-Making methods (MCDM), regression, tobit, 

logit, etc., are used for this purpose. However, as we will see in the 
literature survey, the analysis is generally focused on the financial data 
of these companies, whereas the nonfinancial performance is not usually 
taken into account (Dinçer et al., 2017). 

The first group of studies use MCDM methods for their performance 
analyses of airline companies. For this purpose, different MCDM 
methods have been developed to address airline performance evaluation 
problems (Barros and Wanke, 2015; Wanke et al., 2015; Pineda et al., 
2018; Dinçer et al., 2017). The studies apply several MCDM approaches 
to the problem, compare their results, and then make a final decision. 
However, this approach is difficult to comprehend and implement 
because it requires an extensive technical knowledge in MCDM fields 
(Wang et al., 2016). Additionally, in traditional MCDM approaches, the 
performance evaluation of the airline industry may require the consid
eration of qualitative and quantitative data and a large number of per
formance attribute evaluations. In all these methods, there are main 
disadvantages that need to be discussed. First, different users will obtain 
different results when using the same method because often each have 
different backgrounds, expertise and experience. The preferred infor
mation associated with the decision-makers in the evaluation criteria 
varies from person to person. Additionally, the ratings and weights of 
the criteria are assumed to be known precisely. However, using different 
relative criteria weights has a significant effect on the ranking of the 
alternatives. In fact, the ranking results are very sensitive to changes in 
the attribute weights. Different techniques may yield different results 
when applied to the same problem. There are no better or worse tech
niques, only techniques that fit better to certain situations. It is not easy 
to say which MCDM approach is more reasonable and reliable for airline 
performance evaluation problems. 

On the other hand, the models based on constructing an efficient 
frontier allows us to analyze the maximum possible output given certain 
inputs, and then to calculate the distance of the observed output to that 
frontier. The mathematical models proposed to determine such a fron
tier can be broadly classified as parametric models (e.g., stochastic 
frontier analysis (SFA)) and nonparametric models (e.g., DEA as intro
duced by Charnes et al. (1978)). In a parametric model, a functional 
form of the production function needs to be specified, in contrast to a 
nonparametric model, where specific assumptions about the form of the 
production function are not necessary. The DEA technique assumes that 
all deviations from the efficient frontier are due to inefficiency, while the 
SFA technique assumes that deviations from the efficient frontier can be 
either a realization of inefficiency or a random shock. There is no 
consensus as to which the most appropriate technique is. In fact, each 
has its own strengths and weaknesses (Coli et al., 2011; Barros and 
Couto, 2013). However, the parametric DEA models have been widely 
applied to measure the efficiency of airlines. DEA is a method of 
measuring the relative efficiency of a group of operating units wherein 
the relative values of the variables are unknown (Chow, 2014; Coli et al., 
2011; Barros and Peypoch, 2009). 

Most of the DEA studies evaluate the performance of the airlines in a 
specific country or region DEA (Saranga and Nagpal, 2016; Lee and 
Worthington, 2014; Lu et al., 2012; Mallikarjun, 2015; Rouse et al., 
2002; Saranga and Nagpal 2016; Sakthidharan and Sivaraman, 2018). 

Fuzzy DEA is an extended form of the standard DEA application to 
airlines performance evaluation, and is especially preferred in the case 
of uncertain data (Wanke et al., 2016; Soltanzadeh and Omrani, 2018) 

Recently, there has been a growing interest in applying DEA models 
to evaluate environmental performance of airlines and to reduce unde
sirable outputs in addition to evaluating financial performance (Chang 
et al., 2014, Arjomanbdi and Seufert, 2014, Choi et al., 2015, Cui and Li, 
2017a, Li and Cui, 2017, Chen et al., 2017). 

Lozano and Gutierrez (2011) introduce a multiobjective DEA 
approach and Barak and Hadooei (2018) use multiattribute decision 
making to evaluate airline performance evaluation in order to explore 
different trade-offs among airline operations, environmental impact, 
fleet costs and operating costs. 
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In conventional DEA models used to evaluate the airline efficiencies, 
the system is considered as a black box and does not take into account 
different processes of it, each having its own inputs and outputs. How
ever, recently, network DEA models consider the system as composed of 
several stages with serial structure. Lozano and Gutierrez (2014) use a 
slack-based network DEA to analyze the efficiency of European airlines. 
Chen et al. (2017) provide a stochastic network DEA model to assess the 
efficiency of 13 major Chinese airlines from 2006 to 2014. Zhu (2011) 
builds a two-stage network DEA process to measure airline performance. 

Among the methods used to analyze airline companies’ efficiencies, 
DEA accommodates multiple inputs and outputs, uses linear program
ming and does not require assumptions about the statistical properties of 
the variables. DEA does not require the specification of a functional form 
to be fitted. If the true functional form is unknown, this feature of DEA 
could be advantageous, since it avoids the danger of fitting the wrong 
functional form (Retzlaff-Roberts et al., 2004). That is, why a DEA-based 
efficiency model is used in this study. However, a limitation of DEA 
methods is that they classify the decision-making units (DMUs) as effi
cient when they have a 100% efficiency score and inefficient when they 
score below a 100% efficiency score. Although such a classification al
lows DEA to evaluate the efficiency of any data set, it does not allow the 
ranking of the DMUs. Several combinations based on superefficiency 
and cross-efficiency (Li et al., 2018), social networks (De Blas et al., 
2018) and MCDM (Rakhshan, 2017) with data envelopment analysis are 
used as new ideas to eliminate this problem. Aldamak and Zolfaghari 
(2017) provide a detailed review of literature related to ranking 
methods with DEA and comparing their advantages and shortcomings. 

The superefficiency concept in DEA was proposed by Andersen and 
Petersen (1993) as a useful tool when there are too many efficient DMUs 
under evaluation and it is crucial to rank these efficient DMUs. The core 
idea of the proposed methodology is to exclude the target DMU from the 
reference set, which allows a DMU to be located on the efficient frontier. 
Therefore, the superefficiency score for an efficient DMU can take any 
value greater than or equal to one (Zarafat Angiz et al. (2013), De Blas 
et al., 2018)). Later, Tone (2002) extended the superefficiency model of 
Andersen and Petersen (1993) and established the slacks-based measure 
of superefficiency, which evaluates efficiency by means of slack vari
ables. Slack variables defined in the model have the following charac
teristics: They are units-invariant and they represent either input 
excesses or output shortfalls (P~oldaru and Roots, 2014). The earlier 
literature has pointed out the importance and need for the supereffi
ciency concept in DEA models to provide additional discrimination and 
ranking power (Ruggireo, 2005; Liu and Lu, 2010). 

In this paper, a novel approach combining superefficiency, stepwise 
regression and social network analysis is used to rank the efficient airline 
companies according to financial, operational and marketing di
mensions. An input-orientation is preferred, since the outputs are less 
likely to be under the control of the individual airline companies than 
their choice of inputs in a competitive market. The CCR (Charnes, 
Cooper and Rhodes) model is also preferred in the published literature 
on airline efficiency studies (Coli et al., 2011; Rai, 2013; Sakthidharan 
and Sivaraman, 2018)). Therefore, an input-oriented slacks-based su
perefficiency DEA model with constant returns to scale (hereinafter 
Super-SBM-I-C) is preferred in this research. 

The justification of selecting Super-SBM-I-C as the most proper for 
implementation can be justified as follows. The inputs and outputs 
selected in this study evaluate both operational(Available Seat Kilo
meter (ASK), Revenue Passenger Kilometer (RPK), Fleet Size, Cargo 
Carried (Metric Tons), Passenger Carried (PAX), Employee Number, On- 
Time Departure Performance (OTP)), financial (Debt Ratio, Current 
Ratio, Quick Ratio, Cash Ratio, Liquidity, Net Profit Margin (NPM)) and 
service satisfaction (Overall Customer Satisfaction Score (OCSS)). 
Therefore an overall efficiency is analyzed rather than focusing on only 
technical efficiency. Such an evaluation is consistent with the majority 
of existing airline efficiency studies (Sj€orgen, 2016). This made CCR 
model the be the most proper approach because CCR model accepts that 

if a DMU is efficienct it is both technically and scale efficient while under 
VRS model a unit efficiency score means only technical efficiency 
(Kottas and Madas, 2018; Thanassoulis, 2001). On the other hand, air
lines have greater control over the inputs while the outputs are primarily 
influenced by macro-economic factors. We assume that airlines have a 
higher influence on the input variables than on the output variables. Our 
aim is to gain efficiency by reducing excess inputs while continuing to 
operate with the current technology mix (Kottas and Madas, 2018; 
Merkert and Hensher, 2011). The reason of selecting superefficienct 
DEA model is its discrimination power among efficiency scores by 
eliminating ties of efficient DMUs and its potential to detect outliers 
which consists of the DMUs having superefficiency scores greater than 
two (Kottas and Madas, 2018). 

To the best of our knowledge, there is no published paper combining 
a network-based approach and superefficiency in DEA to improve the 
discriminating power of traditional DEA for performance evaluation. 

2.2. Research on variable selection in DEA 

The specification of a DEA model necessitates the selection of 
appropriate inputs and outputs to be included in the model. One po
tential limitation of DEA is its sensitivity to appropriate variable selec
tion. In fact, the DEA scores are affected by the inclusion or exclusion of 
an input or an output. Although a simple DEA model that contains all the 
relevant information is generally preferred, there is always the danger of 
the exclusion of relevant variables, which may result in biased perfor
mance measurement. On the other hand, it is also necessary to avoid 
including irrelevant variables in the model that may result in overfitting. 
Therefore, one of the most important steps in the application of data 
envelopment analysis is the selection of appropriate input and output 
variables. 

The literature review reveals many multivariate statistical tech
niques, such as Efficiency Contribution Measure (ECM), Principal 
Component Analysis (PCA), regression-based tests and bootstrapping, 
for the selection of most appropriate variables (inputs/outputs). Natar
aja and Johnson (2011) compare these four most-widely used ap
proaches to variable selection in DEA. Efficiency contribution measures 
consider two DEA formulations, one with the candidate variable and one 
without it. A binomial statistical test is then used to determine whether 
the candidate variable is important for the problem at hand (Chen and 
Johnson, 2010). Principal Component Analysis (Adler and Golany, 
2001) is used to reduce the dimensionality of data. In the 
regression-based test, efficiency is regressed against a set of candidate 
variables which tests whether they are significant or not (Ruggiero, 
2005). Bootstrapping is proposed by Simar and Wilson (2001) to test the 
relevance of removing input and output variables, as well as the po
tential for aggregation. The simulation analysis results of Nataraja and 
Johnson (2011) show that Principal Component’s application to DEA 
has the smallest run time, works with a smaller sample size (n � 25), 
while the efficiency contribution measure works well with a low cor
relation and sample size but is vulnerable dimensionality problems 
while bootstrapping, has a heavy computational burden and has poor 
performance. They conclude that the four methods reveal significant 
differences and, thus, it is necessary to select the best-fit method ac
cording to the conditions of the problem at hand. 

Because our problem has a relatively small sample size (n ¼ 45) and 
the correlations among the variables are very low (average correla
tion ¼ 0.179), is robust to the use of CRS or VRS and is easy to imple
ment, in this research we decided to the use regression-based method for 
the selection of the appropriate input variables. In fact, the basic reason 
for low correlation is the factor analysis conducted to combine three 
variables, namely current, quick and cash ratios under the factor that we 
called “liquidity”. 

Wagner and Shimshak (2007) use a formal stepwise approach to 
variable selection. This method drops one variable at a time and uses a 
nonparametric test for the significance of the dropped variables. The 
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method is based on sequentially maximizing (or minimizing) the 
average change in efficiency as variables are added (dropped) from the 
model. If more than one variable has a significance value less than 20%, 
it uses a mean efficiency change and removes the variable with the least 
significant change. The procedure is repeated until all variables’ per
centage change in significance values are greater than 20%. At least one 
input and output variable is required to run the final model. 

Subramanyam (2016) proposes a new stepwise method to reduce the 
data set. The method is based on the improvement of the method pro
posed by Wagner and Shimshal (2007) and includes an additional step 
such that, if the percentage change in significance value is greater than 
20%, then it retains the variable, otherwise it removes the variable from 
the data exploration. 

In this paper, the stepwise approach proposed by Subramanyam 
(2016), which is the improved version of Wagner and Shimshal (2007)’s 
approach, is used for variable selection and for reducing the insignifi
cant input and output variables. However, as a novel approach, the 
backward procedure is applied not to the classic but to the supereffi
ciency DEA model because an important problem in the application of 
DEA for ranking is that usually many DMUs are found to be efficient and 
are therefore given the efficiency score of one (Cook and Seiford, 2009). 

3. Proposed methodology 

3.1. Framework 

The methodology used in this paper consists of five phases. More 
specifically, the proposed methodology initially runs the superefficient 
SBM models with all possible inputs and outputs, based on the literature 
review. Efficient airlines are listed and ranked at the end of the first stage 
using the full DEA models. Then, in the second stage, a regression-based 
mechanism is applied to different output scenarios, which are Net Profit 
Margin (NPM), On-time departure performance (OTP), Customer 

Satisfaction (OCSS) and Passengers carried (PAX). In the third stage, 
reduced superefficient SBM models are run and efficient airlines are 
determined and ranked. Furthermore, benchmarking and road maps for 
airlines are provided in the final stage, which includes identification of 
the strengths and weaknesses of each airline company. Managerial im
plications are provided for the managers of the airline companies for 
each output. The best airline company as a result of the aggregation of 
the four outputs is also analyzed through the pairwise comparison of the 
relative weights of the outputs according to expert opinions. The flow
chart of the proposed model is presented in Fig. 1. 

3.2. Evaluation of airline companies using proposed framework 

3.2.1. Phase I: efficiency evaluation of the full DEA model 
The preliminary list of financial, operational and marketing perfor

mance indicators based on the literature survey and factor analysis re
sults is given in Table 1. The Bloomberg database (Bloomberg (2016)) is 
initially used, especially for financial and operational indicators, and the 
missing values in the data set are obtained from the annual reports of the 
airline companies. Even though it is difficult to collect consistent data on 
airline service quality, service quality indicators should be incorporated 
into airline efficiency studies to make the results more realistic (Oum 
et al., 2005). In this context, an Overall Customer Satisfaction Score is 
created using data that was obtained from Skytrax Internet-based sur
veys that measure the level of customer satisfaction with the airlines. 
Skytrax sets out this list using the results of airline customer satisfaction 
surveys and publishes it on their webpage (https://www.airlinequality. 
com). This is used as a proxy variable for marketing performance. 
Initially, the Airlines in the Skytrax Top 100 Airlines list of 2016 are used 
to create the dataset but, due to the lack of data for each airline, the 
complete and accurate data for 2016 is found for only 45 airlines, which 
are selected for analysis. The inputs and outputs that are initially are 
selected for this study based on the most frequently used ones in the 

Fig. 1. The flowchart of the proposed model.  
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publihed literature. Data availability is also considered. However, in the 
second step most significant inputs are screened by step-wise regression 
analysis. 

As can be seen from Table 1, we have several financial ratio in
dicators in this research. It is known that the convexity axiom embedded 
in standard DEA models cannot be fully satisfied where the dataset in
cludes ratio measures and the results obtained from such models may 
not be correct and reliable (Zhu, 2011; Hatami-Marbini and Toloo, 
2019). Hollingsworth and Smith (2003) stated that BCC formulation 
should be deployed when rations are used in DEA. This specification 
ensures that all comparison between units is by interpolation only, and 
that extrapolation of behaviour to infeasible performance is ruled out. 
However, the reasons of using specifically a CRS based model in this 
study is explained in detail in section 2.1. In order to avoid the ratio issue 
to some degree, a factor analysis is conducted by taking the logarithm of 
both the numerator and the denominator of each ratio. In fact, when the 
information provided by the Cash, Current and Quick Ratios variables 
are considered, it can be seen that all of these variables are indicators of 
the cash availability of companies and, hence, they provide the same 
type of information. Therefore, Factor Analysis results obtained after the 
logarithmic transformation of the numerator and denominator of each of 
these three ratio variables can be seen in Table 2. According to the 
Factor Analysis result, one dimension, which we call “Liquidity”, can 
explain approximately 96.4% of the variances of Cash, Quick and Cur
rent Ratios (see Table 2). For this reason, the Liquidity dimension is used 
as a variable that can serve as a substitute for these three variables at the 
subsequent stages., factor analysis is conducted by taking the logarithm 
of the numerator and denominator of each ratio. 

Additionally, we checked whether the number of DMUs (Airlines) is 
at least twice the total number of input and output factors (Golan et al., 
1989). When the number of inputs and outputs of the models are 
considered, the Full Model has 5 inputs and 6 outputs. Reduced Models 
1, 2 and 4 have 3 inputs and 1 outputs, while Reduced Model 3 has just 1 
input and 1 output. Therefore, it can be said that the condition is 
satisfied. 

Initially, efficiency evaluations of 45 airline companies using a 
conventional input-oriented CRS DEA model are carried out. According 
to the results, 28 of the evaluated (target) airlines are found to be effi
cient. Because this is a very high number, in order to better discriminate 
among airline companies, it is decided to use the superefficiency 
concept. In this study, efficiency evaluations of full and reduced DEA 
models are conducted using super SBM-I-C. For an efficient DMUk, super 
SBM-I-C is formulated as follow (Tone, 2002; Tran et al., 2019): 

minδk ¼

1
m

Pm

i¼1

~xi
xik

1
s

Ps

r¼1

~yr
yrk

;

Table 1 
Performance indicators used in the analysis.  

Classification Indicator Evaluation  
Formula/ 
Definiton 

References Type of 
Variable 

Financial Debt Ratio Total Assets/ 
Total Liabilities 

Feng and Wang 
(2000),  
Bigliardi and 
Ivo Dormio 
(2010), Dinçer 
et al. (2017) 

Input  

Current Ratio Current Assets/ 
Current 
Liabilities 

Wang (2008),  
Dinçer et al. 
(2017) 

Input  

Quick Ratio (Cash and Cash 
Equivalents þ
Account  
Receivables þ
Short Term 
Investments)/ 
Short Term  
Liabilities 

Mahesh and 
Prasad (2012),  
Lee and Jang 
(2007), Wang 
(2008) 

Input  

Cash Ratio Cash and Cash 
Equivalents/ 
Short Term 
Liabilities 

Wang (2008),  
Armen (2013) 

Input  

Liquidity The variable 
obtained by 
saving the factor 
score as a 
regression score 
obtained as a 
result of 
Principle 
Component 
Analysis using 
Current, Quick 
and Cash ratios 

Lee and Jang 
(2007) 

Input  

Net Profit 
Margin 
(NPM) 

Net Profit/ 
Revenue 

Teker et al. 
(2016) 

Output 

Operational Available Seat 
Kilometer 
(ASK) 

Number of Seats 
Available x 
Number of 
Kilometers 
Flown 

Coli et al. 
(2011), Choi 
et al. (2015),  
Saranga and 
Nagpal (2016) 

Input  

Revenue 
Passenger 
Kilometer 
(RPK) 

Number of 
Revenue 
Passengers x 
Number of 
Kilometers 
Flown 

Barros and 
Peyboch (2009) 

Input  

Fleet Size Number of 
Aircraft 
Operated by 
Airline 

Barros and 
Peyboch (2009) 

Input  

Cargo Carried 
(Metric Tons) 

Payload Carried 
by Airline 

Sakthidharan 
&Sivaraman 
(2018) 

Output  

Passenger 
Carried (PAX) 
(Million) 

Passenger 
Carried by 
Airline 

Sakthidharan 
&Sivaraman 
(2018) 

Output  

Employee 
Number 

Number of 
Employee 

Barros and 
Peyboch 
(2009), Ha 
et al., 2013,  
Arjomandi and 
Seufert (2014),  
Chang et al. 
(2014), Lee and 
Worthington 
(2014), Choi 
et al. (2015),  
Cui and Li, 
2017 

Input  

On-Time 
Departure 

Ratio of 
Departure 

see https:// 
www.oag.com/ 

Output  

Table 1 (continued ) 

Classification Indicator Evaluation  
Formula/ 
Definiton 

References Type of 
Variable 

Performance 
(OTP) (%) 

within þ-15 
Minutes of 
Scheduling 
Departure Time 

airport-and- 
airline-on-time 
performance- 
report), Cho 
and Lee (2011), 
Chow (2014),  
Zhang et al. 
(2014), Dinçer 
et al. (2017) 

Marketing Overall 
Customer 
Satisfaction 
Score (OCSS) 

The Ratings of 
Airlines Between 
1 and 10 about 
Airlines Overall 
Service Quality 

see https:// 
skytraxratings. 
com Chow 
(2014) 

Output  
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s:t: ~xi �
Xn

j¼1;j6¼k

xijλj; i ¼ 1;…;m;

~yr �
Xn

j¼1;j6¼k

yrjλj; r ¼ 1;…; s; (1)  

~xi � xik; i ¼ 1;…;m;

0�~yr � yrk; r ¼ 1;…; s;

λj� 0; j ¼ 1;…; n; j 6¼ k;

where ~xi ði¼ 1;…;mÞ and ~yr ðr ¼ 1; …; sÞare decision variables with 
respect to inputs and outputs, respectively; and λ is a non-negative 
vector. 

Table 3 shows efficient airlines and their superefficiency scores with 
respect to the full model. 

3.2.2. Phase II: the best input and output combination selection using a 
stepwise regression-based approach 

In this study, we employed a stepwise regression-based backward 
analysis for variable selection. Stepwise regression conducts multiple 
regression a number of times, each time removing the weakest corre
lated variable from the model. Based on the literature survey, we 
determined six important outputs from the available data set, namely 
cargo carried (CARGO), passenger carried (PAX) and on-time departure, 
Overall Customer Satisfaction Score (OCSS), Net Profit Margin (NPM) 
and Revenue per passenger (RPK), for the regression analysis, as these 
are the most critical outputs for airline companies. However, since no 
significant inputs remained for CARGO and RPK after the stepwise 
analysis, they are excluded from the analysis. The stepwise regression 
analysis is used for each of the 4 outputs separately (reduced models 
1,2,3, and 4). In this research, the methodology proposed by Sub
ramanyam (2016) is adapted to the superefficiency model. It iterates 
through the following steps using the efficiency scores obtained from 
super SBM-I-C model as dependent variables for each specified output: 

Step 1: Determine input variables that contribute the most to pre
dicting the specified output variable. 
Step 2: Run the super SBM-I-C model and store the superefficiency 
scores and add them to the regression model. 

Step 3: Check the p-values of all input variables in the model. 
Remove the inputs from the model if their p-values are above 0.10 
(significance test of the dropped variables). 
Step 4: Repeat this procedure until all “significant” inputs are in the 
model and all “nonsignificant” inputs are removed). If the p-value of 
none of the input variable is significant, the related output-based 
model is eliminated from consideration 

The variables having significant coefficients for each output variable, 
as well as their standard errors, can be seen in Table 4. As seen from the 
table, the inputs have negative coefficients. 

3.2.3. Phase III: efficiency evaluation of the reduced DEA models 
In this phase, the efficient airlines are found using four reduced 

models, one for each of the four different outputs. The output of Reduced 
Model 1 is NPM, and the output of the Reduced Model 2 is OTP, while 
both models have same inputs. Norwegian Airlines, Bangkok Airways, 
Aegean Airlines, Aeromexico, United Airlines, Icelandair and China 
Eastern are efficient airlines with respect to both Reduced Models 1 and 
2. Alaska Airlines and Copa Airlines have superefficiency scores greater 
than 1 with respect to only Reduced Model 1. South African Airlines and 
TAP Air Portugal are efficient according to Reduced Model 2 only. 
Vietnam Airlines shows high performance with respect to Reduced 
Model 1 and Reduced Model 3; Delta Airlines is efficient with respect to 
Reduced Model 1 and Reduced Model 4; and Thai Airways, EasyJet and 
Asiana Airlines have superefficiency scores greater than 1 according to 
Reduced Model 4. Table 5 shows the efficient airlines according to the 
reduced models. 

When Table 5 is analyzed, it can be seen that airlines have different 
superefficiency scores according to the models. Therefore, in order to 
specify how airlines’ superefficiency scores, change with regard to the 
models used, the coefficients of variations (CV) are calculated. Since CV 
represents the average superefficiency score variation for each airline, it 
can be said that the airlines that have CV over 1, such as Thai Airways 
(1.24), United Airlines (1.19), South African Airways (1.11), Singapore 
Airlines 1.09), Emirates (1.08), Korean Air (1.07) and China Airlines 
(1.04), have different superefficiency scores with respect to different 
models. On the other hand, airlines such as Jet Airways (0.58), Air China 
(0.57), China Eastern (0.57), TAP Air Portugal (0.45) and Aeromexico 
(0.44) have approximately 0.5 CV, and this CV indicates that these 
airlines show nearly the same performance from one model to another. 
Finally, the overall CV mean is approximately 0.78, and this means that 
the airlines have approximately 0.8 standard deviation difference in 
superefficiency scores with respect to the full and reduced models. 

As seen from the results even though the reduced models have lower 
number of efficient airline companies, the discriminatory power of the 
ranking of superefficiency models is still low, except in reduced model 3. 
In the full model, which includes all the inputs and outputs, 28 airline 
companies out of 45 are found to be efficient. In the Reduced Model 1 
(Inputs: Debt Ratio, Liquidity, ASK, Output: NPM) the number of effi
cient airline companies decreased to 11. In Reduced Model 2 (Inputs: 
Debt Ratio, Liquidity, ASK, Output: OTD) the number of efficient airline 

Table 3 
Efficient Airlines and their Superefficiency Scores with respect to Full Model.  

DMU Superefficiency Score Rank DMU Superefficiency Score Rank DMU Superefficiency Score Rank 

Thai Airways 5.994 1 Asiana Airlines 1.270 11 China Airlines 1.091 21 
United Airlines 3.550 2 Emirates 1.267 12 China Eastern 1.087 22 
Vietnam Airlines 3.456 3 TAP Air Portugal 1.250 13 Lufthansa 1.082 23 
Norwegian 3.095 4 Singapore Airlines 1.248 14 SAS Scandinavian 1.054 24 
Bangkok Airways 1.722 5 Japan Airlines 1.168 15 Alaska Airlines 1.045 25 
Delta Air Lines 1.699 6 South African Airways 1.149 16 Copa Airlines 1.039 26 
Aegean Airlines 1.592 7 Aeromexico 1.148 17 Southwest Airlines 1.023 27 
Korean Air 1.320 8 China Southern 1.121 18 British Airways 1.006 28 
Icelandair 1.298 9 Hainan Airlines 1.117 19    
EasyJet 1.273 10 Hawaiian Airlines 1.094 20     

Table 2 
Factor analysis result.   

Liquidity 

Quick Ratio 0.991 
Cash Ratio 0.983 
Current Ratio 0.972 
Eigenvalue 2.893 
% of Variance 96.432  
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companies decreased to 9, and in Reduced Model 3 (ASK is the input, 
OCSS is the output), only one airline remained and, finally, in Reduced 
Model 4 (Inputs: Fleet, Liquidity, Employee; Output: PAX), the number 
of efficient airline companies is 4 (see Table 5). As a result, in order to 
better discriminate among the efficient airline companies and to specify 
their strength and weaknesses for each reduced model, in the next stage, 
a social network-based analysis is conducted. 

3.2.4. Phase IV: social network-based superefficiency DEA analysis to 
provide a roadmap 

In the fourth phase (Benchmarking), Social Network Analysis is used 
to identify the importance of each airline company within the network. 
Social Network Analysis has emerged as a key concept for focusing on 
the relationships between social entities such as nations, families, etc. 
These entities are influenced by other entities they take as role models, 
and such connections often comprise a social network and can be 
analyzed using social network analysis methods (DeNooy et al., 2011; 
McCulloh et al., 2013). 

In this paper, the social entities are the airline companies. The use of 
social networks in airline management is a very recent trend. To our 
knowledge, there are very few papers that use social networks in airline 
management. Çavdar and Ferhatosmano�glu (2018) analyzes the 
customer lifetime value in airline management while Lozano and 
Calzada-Infante (2017, 2019) use it for benchmarking and efficiency 
assessment of airlines. 

In this research, an eigenvector centrality measure is used to define 
the weights of the superefficiency scores of the efficient airlines and to 
calculate the weighted average score for each to have a robust 
discrimination in terms of ranking the efficient companies. Furthermore, 
we determined the strengths and weaknesses of each efficient airline 

company for each of the reduced models corresponding to each output. 
The network-based eigenvector centrality method proposed by Liu and 
Lu, 2010 is used for this purpose. Finally, the managerial implications 
are given for the airlines to improve their efficiency in terms of each 
reduced model. 

In the recent large-group decision-making literature, the centrality 
concept of social networks is used as the weight of the social entities to 
show their relative importance (Hengie et al. (2018); Lesser et al. 
(2017); Dong et al. (2018)). In fact, the degree of centrality counts how 
many links each airline company has. The degree of an airline is simply 
the count of the number of links going into it, in-degree, or coming from 
it, out-degree. However, degree centrality is limiting because it does not 
take into account which other nodes are important in the network. In 
this paper, we would such as to know the number of connections among 
superefficient airline companies. Therefore, it is necessary to find which 
airline companies are connected to important airline companies (i.e., 
airline companies with many links). The airline companies with high 
eigenvector values have the power to connect with many other influ
ential airline companies. This measure is called eigenvector centrality. 
In this paper, the eigenvector centrality measure is used to find the 
relative weight of each airline company for each output and the related 
significant input combination. The vectors are created by the Pajek64 
5.05 Network > Create Vector > Centrality >Hubs-Authorities com
mand, which contains eigenvector centrality scores (De Nooy et al., 
2011). As in degree centrality, eigenvector centrality measure assumes 
that, if decision-making units are more central, that is if they have many 
central contacts, it is important to know if they play a role in influential 
decision-making units. In other words, it is important to be a role model 
but it is also important to know for which airline you are acting as a role 
model (Liu and Lu (2010), De Nooy et al., 2011),). If an airline company 

Table 4 
Specification of significant input variables for reduced models 1–4 using stepwise regression analysis.  

Variables Unstandardized Coefficient Coefficients Standard Error Significance (t) Significance (F) 

Reduced Model 1: 
NPM (Dependent output)    

0.002** 

Constant 1.854 0.346 0.000*** 
Employee Number (Input)   0.727 
Debt Ratio (Input) � 0.015 0.004 0.001*** 
Liquidity (Input) � 0.186 0.078 0.021** 
Available Seat Kilometer (Input) � 2.03E-06 0.000 0.005*** 
Fleet Size (Input)   0.631 

Reduced Model 2 
OTP (Dependent-Output)    

0.004** 

Constant 1.884 0.390 0.000*** 
Employee Number (Input)   0.309 
Debt Ratio (Input) � 0.009 0.005 0.067* 
Liquidity (Input) � 0.227 0.088 0.013** 
Available Seat Kilometer (Input) � 2.88E-06 0.000 0.001*** 
Fleet Size (Input)   0.300 

Reduced Model 3 
OCSS (Dependent-Output)    

0.001** 

Constant 0.912 0.104 0.000*** 
Employee Number (Input)   0.271 
Debt Ratio (Input)   0.898 
Liquidity (Input)   0.131 
Available Seat Kilometer (Input) � 2.44E-06 0.000 0.001*** 
Fleet Size (Input)   0.220 

Reduced Model 4 
PAX (Dependent-Output)    

0.039** 

Constant 1.090 0.229 0.000*** 
Employee Number (Input) � 8.92E-06 0.000 0.064* 
Debt Ratio (Input)   0.127 
Liquidity (Input) � 0.174 0.073 0.022** 
Available Seat Kilometer (Input)   0.688 
Fleet Size (Input) � 0.001 0.001 0.071* 

* Significant at the 0.10 level (2-tailed). 
** Significant at the 0.05 level (2-tailed). 
*** Significant at the 0.01 level (2-tailed). 
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acts as a role model to other influential airline companies, then it is more 
likely to exert influence through them. An airline company with high 
eigenvector centrality is connected to many other nodes that are 
themselves well-connected. Because of their connectedness to other 
well-connected airline companies, such companies are expected to be 
influential nodes in the network. 

After the calculation of eigenvector centrality, the superefficient 
airline companies are ranked in a more robust way by multiplying their 
superefficiency score coming from the superefficient DEA model by their 
corresponding normalized eigenvector centrality value obtained in the 
previous step. The process is repeated for each reduced model except 
reduced model 3, where the efficient airline company was already 
reduced to one. Additionally, the network-based eigenvector concept 
suggested by Liu and Lu, 2010 is also used to develop a performance map 
to point out strengths and weaknesses of the ranked superefficient 
airline companies. Relative strengths and weaknesses of the supereffi
cient airline companies cross-organizations and within-organization can 
be calculated by the following formulas (2–9): 

Step 1: Transform all DEA results into a directed and weighted 
network where each node represents a DMU (airline company) and 
the link between a pair of node represents the referencing relation
ship between the pair. The corresponding lambda value, λjk gives 
information about the endorsement of inefficient airline to the effi
cient airline. For example, if an airlinej is an exemplar of airline k and 
the corresponding lambda value, λjkpointing from nodekto node j can 
be generated. 
Step 2: Calculate efficiency scores of all airlines using Super-SBM-I-C 
model. The value of λt

jk indicates the contribution of the ith input of 

Table 5 
Airline Companies’ efficiency scores according to the Reduced Models.  

Rank Reduced Model 
1 

Reduced Model 
2 

Reduced Model 
3 

Reduced Model 
4 

1 Norwegian 
(2.042) 

Norwegian 
(2.270) 

Vietnam 
Airlines (1.062) 

Thai Airways 
(4.280) 

2 Bangkok 
Airways 
(1.236) 

Aegean Airlines 
(1.431) 

Aeromexico 
(0.940) 

Delta Air Lines 
(1.254) 

3 Vietnam 
Airlines (1.124) 

Bangkok 
Airways 
(1.117) 

TAP Air 
Portugal 
(0.876) 

easyJet (1.209) 

4 Aegean Airlines 
(1.122) 

China Eastern 
(1.114) 

Bangkok 
Airways 
(0.083) 

Asiana Airlines 
(1.125) 

5 Aeromexico 
(1.112) 

Aeromexico 
(1.097) 

Aegean Airlines 
(0.031) 

Southwest 
Airlines (0.833) 

6 United Airlines 
(1.088) 

TAP Air 
Portugal 
(1.080) 

Icelandair 
(0.027) 

China Eastern 
(0.829) 

7 Icelandair 
(1.077) 

Icelandair 
(1.071) 

Hawaiian 
Airlines (0.020) 

Norwegian 
(0.811) 

8 Delta Air Lines 
(1.077) 

United Airlines 
(1.046) 

Copa Airlines 
(0.017) 

China Southern 
(0.779) 

9 Alaska Airlines 
(1.052) 

South African 
Airways 
(1.004) 

Finnair (0.011) Hainan Airlines 
(0.732) 

10 China Eastern 
(1.031) 

Vietnam 
Airlines (0.926) 

Air New 
Zealand (0.010) 

American 
Airlines (0.727) 

11 Copa Airlines 
(1.017) 

Hawaiian 
Airlines (0.877) 

Asiana Airlines 
(0.010) 

Air China 
(0.695) 

12 Hawaiian 
Airlines (0.903) 

Avianca 
(0.679) 

EVA Air (0.010) Turkish Airlines 
(0.669) 

13 Japan Airlines 
(0.825) 

Copa Airlines 
(0.676) 

China Airlines 
(0.009) 

Qantas Airways 
(0.649) 

14 Air China 
(0.659) 

Jet Airways 
(0.659) 

Garuda 
Indonesia 
(0.008) 

Emirates 
(0.638) 

15 Air New 
Zealand (0.590) 

Alaska Airlines 
(0.642) 

Alaska Airlines 
(0.008) 

KLM (0.626) 

16 China Southern 
(0.587) 

China Airlines 
(0.638) 

South African 
Airways 
(0.008) 

Air France 
(0.626) 

17 easyJet (0.580) Air China 
(0.635) 

Avianca 
(0.008) 

Lufthansa 
(0.577) 

18 TAP Air 
Portugal 
(0.577) 

SAS 
Scandinavian 
(0.621) 

Virgin Australia 
(0.008) 

Jet Airways 
(0.541) 

19 Southwest 
Airlines (0.548) 

Garuda 
Indonesia 
(0.609) 

SAS 
Scandinavian 
(0.007) 

Korean Air 
(0.515) 

20 British Airways 
(0.503) 

Asiana Airlines 
(0.599) 

Korean Air 
(0.006) 

Garuda 
Indonesia 
(0.508) 

21 Hainan Airlines 
(0.473) 

Virgin Australia 
(0.594) 

Norwegian 
(0.006) 

SAS 
Scandinavian 
(0.490) 

22 Jet Airways 
(0.460) 

Air New 
Zealand (0.581) 

Jet Airways 
(0.005) 

British Airways 
(0.457) 

23 Qantas Airways 
(0.439) 

Finnair (0.569) Japan Airlines 
(0.005) 

Aeroflot 
(0.451) 

24 SAS 
Scandinavian 
(0.426) 

China Southern 
(0.561) 

Hainan Airlines 
(0.005) 

Avianca 
(0.444) 

25 Aeroflot 
(0.420) 

Korean Air 
(0.526) 

Thai Airways 
(0.005) 

Vietnam 
Airlines (0.443) 

26 Asiana Airlines 
(0.417) 

Thai Airways 
(0.486) 

easyJet (0.004) Cathay Pacific 
(0.430) 

27 Air Canada 
(0.406) 

Qantas Airways 
(0.445) 

ANA All Nippon 
Airways 
(0.004) 

Virgin Australia 
(0.423) 

28 Finnair (0.397) EVA Air (0.444) Air Canada 
(0.003) 

ANA All Nippon 
Airways 
(0.404) 

29 ANA All Nippon 
Airways 
(0.346) 

Japan Airlines 
(0.392) 

Singapore 
Airlines (0.003) 

Air Canada 
(0.404)  

Table 5 (continued ) 

Rank Reduced Model 
1 

Reduced Model 
2 

Reduced Model 
3 

Reduced Model 
4 

30 American 
Airlines (0.318) 

easyJet (0.387) Cathay Pacific 
(0.003) 

Alaska Airlines 
(0.382) 

31 Avianca 
(0.315) 

Delta Air Lines 
(0.383) 

Qantas Airways 
(0.002) 

Aegean Airlines 
(0.380) 

32 EVA Air (0.293) Aeroflot 
(0.363) 

Aeroflot 
(0.002) 

Japan Airlines 
(0.366) 

33 Lufthansa 
(0.286) 

Singapore 
Airlines (0.345) 

Southwest 
Airlines (0.002) 

Hawaiian 
Airlines (0.353) 

34 China Airlines 
(0.284) 

Southwest 
Airlines (0.344) 

Turkish Airlines 
(0.002) 

TAP Air 
Portugal 
(0.324) 

35 Thai Airways 
(0.273) 

ANA All Nippon 
Airways 
(0.332) 

China Southern 
(0.002) 

Singapore 
Airlines (0.314) 

36 Garuda 
Indonesia 
(0.272) 

Turkish Airlines 
(0.321) 

British Airways 
(0.001) 

Air New 
Zealand (0.311) 

37 Singapore 
Airlines (0.261) 

Air Canada 
(0.315) 

Lufthansa 
(0.001) 

Finnair (0.302) 

38 KLM (0.229) Cathay Pacific 
(0.295) 

China Eastern 
(0.001) 

Bangkok 
Airways 
(0.279) 

39 Air France 
(0.229) 

British Airways 
(0.289) 

KLM (0.001) Copa Airlines 
(0.264) 

40 Emirates 
(0.182) 

Air France 
(0.286) 

Delta Air Lines 
(0.001) 

South African 
Airways 
(0.230) 

41 Turkish Airlines 
(0.176) 

KLM (0.286) Air France 
(0.001) 

Icelandair 
(0.222) 

42 Cathay Pacific 
(0.170) 

Hainan Airlines 
(0.271) 

Air China 
(0.001) 

EVA Air (0.221) 

43 Virgin Australia 
(0.072) 

Lufthansa 
(0.266) 

Emirates 
(0.001) 

United Airlines 
(0.205) 

44 Korean Air 
(0.068) 

American 
Airlines (0.258) 

United Airlines 
(0.000) 

Aeromexico 
(0.198) 

45 South African 
Airways 
(0.052) 

Emirates 
(0.248) 

American 
Airlines (0.000) 

China Airlines 
(0.099)  
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the kth airline to the jthairline in the reference set under DEA spec
ification t. 
Step 3: Normalize the lambda value. The contribution of the ith input 
of the kth airline to the jthairline in the reference set under DEA 
specification t can be rescaled as follows: 

IWt;k
ij ¼

λt
jkxt

ij
P

j2Eλt
jkxt

ij
; 0 < IWt;k

ij � 1: (2) 

Similarly, the contribution of the rth output of the kth airline to the 
jthairline in the reference set under DEA specification t can be rescaled as 
follows: 

OWt;k
rj ¼

λt
jkyt

rj
P

j2Eλt
jkyt

rj
; 0 < OWt;k

rj � 1: (3) 

In the reference set under DEA specification t, the overall contribu
tion of the kth airline to the jthairline can be computed as follows: 

IOWt
jk ¼

1
ðmþ sÞ

 
Xm

i¼1
IWt;k

ij þ
Xs

r¼1
OWt;k

rj

!

(4)   

Step 4: Aggregate results of all DEA specifications onto one network 
to obtain the following adjacency matrix A:

A¼

"
Xw

t¼1
IOWt

jk

#

(5)  

where A is a square matrix of order n and w is the total number of DEA 
specifications w ¼ ð2m � 1Þð2s � 1Þ. 

Step 5: Calculate the eigenvector centrality value for each network 
node (airline). 
Step 6: Rank airlines according to obtained eigenvector centrality 
value (in Step 5) in descending order. 

*Sensitivity of the airline performance to individual input and 

output variables. Ranking the airline companies under each input 
or output variable. 

A¼
1

mþ s

 
Xm

i¼1
AIiþ

Xs

r¼1
AOr

!

; (6)  

where, 

AIi¼

"
Xw

t¼1
IWt;k

ij

#

; i¼ 1; 2;…;m;

AOr ¼

"
Xw

t¼1
OWt;k

rj

#

; r¼ 1; 2;…; s: (7) 

In this formulation, AIi and AOi are square matrices of order n: Each 
entry in these matrices denote the aggregated endorsement of the kth 
airline to the jth airline in the reference set through the ith input, and the 
endorsement of the kthairline to the jth airline in the reference set 
through the rth output, respectively. AIi and AOi can be treated as 
network adjacency matrices and airlines can be ranked in descending 
order according to obtained eigenvector centrality value under each 
input or output variable. 

*Within organization strengths and weaknesses among all var
iables for an airline: 

The endorsement from all peers over all specifications to an efficient 
airline j through a specific input/output p can be calculated as follows: 

IOWSp
j ¼

8
>>>><

>>>>:

Xn

k¼1

Xw

t¼1
IWt;k

ij ; p ¼ i; i ¼ 1; 2;…;m; ve

Xn

k¼1

Xw

t¼1
OWt;k

rj ; p ¼ mþ r; r ¼ 1; 2;…; s:

9
>>>>=

>>>>;

(8)  

where p is a consolidated input/output index. The relative importance of 
each input/output factor p to an efficient airline equals: 

IOp
j ¼

�
IOWSp

j
�2

Pmþs

p¼1

�
IOWSp

j
�2

(9) 

Table 6 
Ranking of the Efficient Airline Companies and their Strengths and Weaknesses for the Reduced Model 1 (Output: NPM).  

Super- 
SBM-I-C 
Rank 

Superefficiency 
Score 

Eigenvector 
centrality value 
(Weight) 

Normalized 
Weights 

Superefficiency score 
weighted by eigenvector 
centrality 

Rank of airlines based on 
superefficiency score weighted 
by eigenvector centrality(5) 

Strengths Weaknesses 

(1) (2) (3) (4)¼(3)/SUM 
(3)) 

(5)¼(2)*(4) (6) (7) (8) 

3 1.124 0.260 0.167 0.527 Vietnam Airlines ASK (0.524), 
Liquidity (0.462) 

Debt (0.015) 

7 1.077 0.218 0.167 0.505 Icelandair ASK (0.450), Debt 
(0.450)  

11 1.017 0.066 0.168 0.479 Copa Airlines ASK (0.348), Debt 
(0.305), Liquidity 
(0.348)  

10 1.031 0.471 0.136 0.394 China Eastern  ASK (0.001) 
5 1.112 0.468 0.092 0.289 Aeromexico ASK (0.968) Debt (0.022), 

Liquidity 
(0.011) 

1 2.042 0.382 0.046 0.264 Norwegian Liquidity (0.353)  
9 1.052 0.209 0.078 0.230 Alaska Airlines ASK (0.483), 

Liquidity (0.483) 
Debt (0.034) 

8 1.077 0.116 0.074 0.225 Delta Airlines Liquidity (0.555)  
4 1.122 0.129 0.041 0.130 Aegean Airlines ASK (0.5), Debt 

(0.500) 
Liquidity 
(0.000) 

2 1.236 0.021 0.024 0.082 Bangkok Airways ASK (0.499), Debt 
(0.499) 

Liquidity 
(0.002) 

6 1.088 0.469 0.008 0.023 United Airlines Debt (0.985) ASK (0.007), 
Liquidity 
(0.008) 

Strengths and Weaknesses columns represents the factors with IOj
p greater than or equal to 0.2 (strengths) and less or equal to 0.05 (weaknesses) (Liu and Lu, 2010). 
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Here, IOp
j is calculated to indicate the relative importance of each input 

factor pamong all inputs within an efficient airline company. Input 
factors with values greater than or equal to 0.2 are labeled as strengths, 
while values less than or equal to 0.05 are labeled as weaknesses. 

This analysis identifies the airline companies that are particularly 
efficient in certain input/output factors relative to other airline com
panies. Identifying strengths and weakness provides managerial insights 
to airline companies, since it highlights the areas where each airline 
company needs to improve and should make investments. This is the 
same as detecting the sensitivity of the airline company’s performance 
to individual input and output factors. This tends to screen out 

specialized efficient organizations, or in other words, it favors airline 
organizations that have their strengths evenly spread. 

In this study, a total of 22 DEA models are run with all input/output 
combinations (7 for reduced model 1, 7 for reduced model 2, 1 for 
reduced model 3, and 7 for reduced model 4). By applying the steps 
(1–5) to each reduced model, adjacent matrices are constructed to 
calculate eigenvector centrality values and, hence, to determine the 
importance of each efficient airline in the network for different output 
scenarios. Next, by employing formulas (6–9), strong and weak factors 
among all inputs for each output scenario are determined. Identification 
of strengths and weaknesses within an airline company provides a 

Table 7 
Ranking of the Efficient Airline Companies and their Strengths and Weaknesses for Reduced Model 2 (Output: OTP).  

Super- 
SBM-I-C 
Rank 

Superefficiency 
Score 

Eigenvector 
centrality value 
(Weight) 

Normalized 
Weights 

Superefficiency score 
weighted by eigenvector 
centrality 

Rank of airlines based on 
superefficiency score weighted 
by eigenvector centrality(5) 

Strengths Weaknesses 

(1) (2) (3) (4)¼(3)/SUM 
(3)) 

(5)¼(2)*(4) (6) (7) (8) 

1 2.270 0.460 0.187 0.426 Norwegian Liquidity (0.386)  
4 1.114 0.461 0.188 0.209 China Eastern Liquidity (0.972) ASK (0.013), 

Debt (0.013) 
2 1.143 0.353 0.144 0.206 Aegean Airlines ASK (0.497), Debt 

(0.497) 
Liquidity 
(0.005) 

6 1.080 0.462 0.189 0.203 TAP Air Portugal ASK (0.698), 
Liquidity (0.296) 

Debt (0.004) 

8 1.046 0.462 0.189 0.197 United Airlines Debt (0.983) Ask (0.008), 
Liquidity 
(0.008) 

7 1.071 0.125 0.051 0.054 Icelandair ASK (0.347), Debt 
(0.347), Liquidity 
(0.304)  

9 1.004 0.065 0.026 0.026 South African Airways ASK (0.500), 
Liquidity (0.500) 

Debt (0.000) 

5 1.097 0.049 0.020 0.021 Aeromexico ASK (0.626), Debt 
(0.328) 

Liquidity 
(0.004) 

3 1.117 0.011 0.004 0.005 Bangkok Airways ASK (0.500), Debt 
(0.500) 

Liquidity 
(0.002) 

Strengths and Weaknesses columns represents the factors with IOj
p greater than or equal to 0.2 (strengths) and less or equal to 0.05 (weaknesses) (Liu and Lu, 2010). 

Table 8 
Efficiency scores, ranks, strengths and weaknesses for the reduced model 3 (output: OCSS).  

Super-SBM-I- 
C Rank 

Superefficiency 
Score 

Eigenvector centrality 
value (Weight) 

Normalized 
Weights 

Superefficiency score weighted by 
eigenvector centrality 

Rank of Airlines based on Superefficiency score 
weighted by eigenvector centrality 

(1) (2) (3) (4)¼(3)/SUM 
(3)) 

(5)¼(2)*(4)  

1 1.062 1 1 1.062 Vietnam Airlines  

Table 9 
Ranking of the Efficient Airline Companies and their Strengths and Weaknesses for Reduced Model 4 (Output PAX).  

Super- 
SBM-I-C 
Ran k 

Superefficiency 
Score 

Eigenvector 
centrality value 
(Weight) 

Normalized 
Weights 

Superefficiency score 
weighted by eigenvector 
centrality 

Rank of airlines based on 
superefficiency score weighted 
by eigenvector centrality(5) 

Strengths Weaknesses 

(1) (2) (3) (4)¼(3)/SUM 
(3)) 

(5)¼(2)*(4) (6) (7) (8) 

1 4.280 0.528 0.269 1.152 Thai Airways Employee (1.935), 
Fleet (0.583) 

- 

2 1.254 0.600 0.305 0.383 Delta Air Lines Employee (0.463), 
Fleet (0.439), 
Liquidity (2.205) 

- 

3 1.125 0.492 0.250 0.282 Asiana Airlines Employee (0.254), 
Fleet (2.529), 
Liquidity (1.813) 

- 

4 1.209 0.342 0.174 0.174 Easy Jet Employee (2.851), 
Fleet (1.556), 
Liquidity (2.113) 

- 

Strengths and Weaknesses columns represents the factors with IOjp greater than or equal to 0.2 (strengths) and less or equal to 0.05 (weaknesses) (Liu and Lu, 2010). 
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roadmap for their improvement. Tables 6–9 presents the rankings of 
efficient airline companies according to obtained eigenvector centrality 
values and their strengths and weaknesses within the company for each 
output scenario in the reduced DEA model. 

When Net Profit Margin (NPM) is taken as an output according to the 
superefficient model, the most superefficient company is Norwegian 
Airlines (column 1) with its superefficiency value of 2.043. However, it 
is not the role model endorsed by the most influential airline companies. 
Fig. 2 shows the role model companies for reduced model 1 at the center. 

Because its eigenvector centrality value is low (0.382), when the 
NPM is selected as output, Norwegian Airlines becomes the sixth most 

efficient airline in terms of its weighted super efficiency value (0.264). 
That is, why, with its high eigenvector centrality, the weighted super
efficiency value (0.527) of Vietnam Airlines makes it a leader in terms of 
NPM. This company has the power to connect with many other influ
ential airline companies outside its immediate connections. In organi
zational risk terms, it has the ability to form a social elite within the 
group, building norms and expectations that others in the group will 
relate to. Vietnam Airlines can improve its debt ratio, its basic strengths 
are liquidity and available seat kilometers (ASK), while Norwegian 
Airlines especially outperforms on liquidity (see Table 6). This outcome 
also shows us that the network-based approach proposed by Liu and Lu, 

Fig. 2. Reference network of airline companies with respect to Reduced Model 1 (Output: NPM). (The network is plotted with Pajek software using the Kamada- 
Kawai energy layout option). 

Fig. 3. Reference network of airline companies with respect to Reduced Model 2 (Output:OTP). (The network is plotted with Pajek software using the Kamada-Kawai 
energy layout option). 
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2010 favors organizations that have their strengths evenly spread and 
tends to screen out specialized efficient organizations. 

On the other hand, when On-Time Departure Performance (OTP) is 
taken as an output, the most superefficient airline is Norwegian Airlines 
(2.2704) because it has a superefficiency much higher than the rest of 
the efficient airlines and, hence, has the top superefficiency score 
weighted by eigenvectorcentrality (see Table 7). 

Fig. 3 shows that the eigenvector centrality of United Airlines 
(0.4624) is the highest. However, because its eigenvector centrality 
value is also high (0.4603), Norwegian Airline has the highest weighted 
superefficiency value (0.4266), and this makes it the leader with respect 
to the OTP dimension. 

The greatest strength of Norwegian Airlines is its liquidity and it has 
no weakness. It influences many other airline companies that are 
themselves well-connected. The other superefficient airline companies 
still have some relative weaknesses, such as debt, liquidity and available 
seat kilometers (ASK). They should take Norwegian Airlines as a role 
model in these factors. 

Because the superefficiency DEA was able to reduce the number of 
superefficient airline companies to one for reduced model 3, it can be 
seen that Vietnam Airlines is the leader in terms of overall customer 
satisfaction and should serve as a dominant role model for the other 
companies (see Table 8). 

Finally, when the efficiency of airline companies is analyzed with 
respect to passengers carried (PAX), we can see that Thai Airways is the 
leader in terms of eigenvector centrality (Fig. 4), superefficiency and 
weighted superefficiency values, and its basic strengths are its fleet and 
employees (see Table 9). 

Fig. 4 shows the airline companies with the highest eigenvector 
centrality values for reduced model 4 at the center. 

To sum up, in Figs. 2–4 efficient airlines which play a role model for 
the other airlines with respect to each considered output are located at 
the inner periphery of the network. Size of the related nodes in these 
figures also provide information about the degree of influence, in terms 
of Eigenvector centrality. For instance, in Fig. 4, Thai Airways, Delta Air 
Lines, Asiana Airlines and easyJet are located at the inner cluster since 
they have the highest eigenvector centrality with respect to output, 
“PAX”, based on the reference network analysis. Therefore, they should 
act as role models to the other airlines when we consider output “PAX”. 
Moreover, Tables 6–9 provide information about within organization 
strengths and weaknesses of each efficient airline. These tables present 
only the input factors with greater than or equal to 0.2 (strengths) and 
less than or equal to 0.05 (weaknesses) due to approach suggested by Liu 
and Lu (2010). Related to Fig. 4, Table 9 present within organization 
strengths of these efficient airlines since no weaknesses are observed. To 
sum up, the strength/weakness of an efficient airline with respect to a 
certain input exactly varies from one output to another as we can see in 
Tables 6–9 

3.2.5. Phase V: aggregation 
At the final stage, a pairwise comparison of the four outputs is made 

by 7 experts from different departments of the airline companies to 
reflect different perspectives. The relative priorities based on eigen
vectors are shown in Table 10 for both the individual evaluations and 
the group decision (geometric means). 

According to the relative priorities calculated in Table 10, financial 
performance output “Net Profit Margin (NPM)” has the highest priority 
(0.383), followed by operational performance output “On-time Depar
ture (OTP)” (0.286) and marketing performance output “Overall 
Customer Satisfaction (OCSS)” (0.273), while passengers carried is 

Fig. 4. Reference network of airline companies with respect to Reduced Model 4 (Output:PAX). (The network is plotted with Pajek software using the Kamada-Kawai 
energy layout option.) 

Table 10 
Output weights obtained by eigenvectors.   

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Geometric Mean 

NPM 0.3182 0.3125 0.4657 0.4464 0.3076 0.3866 0.4578 0.3791 
OTP 0.3182 0.3125 0.2947 0.2373 0.3268 0.3143 0.2074 0.2838 
OCSS 0.3220 0.3177 0.1893 0.2250 0.3306 0.2514 0.2921 0.2704 
PAX 0.0460 0.0635 0.0560 0.1053 0.0394 0.0522 0.0485 0.0560  

U. Aydın et al.                                                                                                                                                                                                                                   



Journal of Air Transport Management 82 (2020) 101725

13

found to be of the lowest importance (0.056). The weight of each the 
four output is multiplied by the superefficiency score weighted by 
eigenvector centrality of each airline for this output and summed in 
order to get the overall aggregated superefficiency score for each airline. 
Through this calculation it can be seen that Vietnam Airlines can be 
accepted as the top airline company, followed by Norwegian Airlines. 
Overall aggregated scores are presented in Table 11. 

4. Conclusions and further suggestions 

Superefficiency DEA is an important tool for providing a road map 
for airline organizations in preparing an efficiency improvement pro
gram with the correct allocation of resources. This study examines 
airline performance models through a five-stage procedure. 

Initially, the inputs and outputs used in the literature are evaluated 
and a factor analysis is conducted to combine Cash, Current and Quick 
Ratios under one factor that we named “liquidity” because one dimen
sion explains approximately 96.4% of variances among these variables. 
This resulted in 5 input and 6 output variables. The full superefficiency 
model developed using all these selected inputs and outputs resulted in 
28 superefficient companies, which shows that, in its current state, the 
developed model does not have a strong power of discrimination in 
terms of the relative efficiency of the airline companies. That is, why it 
was decided to specify the significant inputs for each output. As a result, 
in the second phase, the appropriate selection of inputs and outputs, in 
which an important issue is getting accurate results related to the per
formance of the airline company, is carried out using stepwise regression 
analysis for each output separately. Hence, an important contribution of 
the research is the use of stepwise regression to select the most signifi
cant input combinations to evaluate each output. For this purpose, the 
methodology proposed by Subramanyam (2016) is applied to the su
perefficiency case, which is, to our knowledge, a novel application. 

Additionally, classic DEA models generally result in many perfor
mance leaders and, therefore, discriminating among the DEA results is 
important. Although the integration of super efficiency with step wise 
regression permits us to use significant input sets for each output and 
decreases the number of efficient airline companies for each reduced 
model, it still suffers from insufficient discriminatory power when there 
are many performance leaders. This study incorporates social networks 
into the analysis and uses eigenvector centrality to compute the relative 
weight of airline companies in terms of their influential power. As a 
result, a ranking with a much higher discriminatory power is obtained 
through weighting the superefficiency scores of the airline companies by 
their eigenvector centrality values (De Nooy et al., 2011). 

According to the results of the research, Vietnam Airlines is the 
leader in terms of Net Profit Margin, and its basic strengths are available 
seat-km and liquidity. In terms of on-time departures, Norwegian Air
lines is the leader. Vietnam Airlines also acts as a role model for overall 
customer satisfaction, having high strength in all the customer 
satisfaction-related inputs. Finally, Thai Airways is at the top and serves 
as a role model in terms of passengers carried. Thai Airways’ basic 
strengths are its employees and its fleet. When the relative priority of the 
four outputs are calculated based on the pairwise comparison matrices 
of 7 experts from different departments of the airline companies, it is 

found that financial performance (net profit margin) has the highest 
priority followed by operational performance (On-time departure) and 
Marketing Performance (overall customer satisfaction). This makes 
Vietnam Airlines the top airline company, followed by Norwegian 
Airlines. 

The proposed methodology is used to further discriminate among the 
efficient airline companies To the best of our knowledge, this is the first 
study to elaborate upon the network-based approach to airline company 
performance evaluation, and being able to identify each efficient DMU’s 
strengths and weaknesses has significant managerial implications. An 
airline company will be able to know which areas to improve and from 
which organization to learn for this particular area. 

Policy makers in the field can use the results of the proposed meth
odology to gain insight into differentiating operational features and to 
take strategic actions, such as resource planning. 

As a further suggestion, using the regional classification of the In
ternational Air Transport Association (IATA), the proposed methodol
ogy can be applied to analyze whether there are regional differences in 
terms of efficiency. The proposed methodology can also be applied to 
the worldwide known airports to see which airports are working effi
ciently, and whether there are differences with respect to the regions. 

On the other hand, since the evaluated airline companies are from all 
around the world, the difference of government’s police may directly 
affect their efficiency. For example, fiscal policies such as taxes on 
airline tickets will increase consumer prices, and affect demands in its 
turn. Thus, as another further suggestion it may be rational to analyze 
the impact of such policy indicators on airline’s efficiency. 

Additionally, Hyperlink-Induced Topic Search (HITS) (Kleinberg, 
2007), also known as the hub and authorities centrality measure, can be 
used as the weight of the superefficiency values. This measure is more 
suitable for networks having two types of nodes, as is the case in the DEA 
models where there are only efficient and inefficient DMUs. The hubs 
and authorities algorithm distinguishes between units that are author
ities (efficient units in the DEA model) and units that contribute to the 
quality of authorities (inefficient units), ranking both classes of nodes. 
Therefore, it can rank the efficient and inefficient nodes separately. 

Finally, instead of using eigenvector centrality as the weight of the 
superefficiency scores, in addition to eigenvector centrality, different 
social network analysis indexes can be computed for the airlines and the 
values of superefficiency scores and the social network indexes can be 
integrated by a multiattribute decision making technique such as TOP
SIS in order to get a richer information about the efficiency of the air
lines (Lozano and Calzada-Infante, 2019) 
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