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ABSTRACT Sub-Nyquist sampling for spectrum sensing has the advantages of reducing the sampling and
computational complexity burdens. However, determining the sparsity of the underlying spectrum is still
a challenging issue for this approach. Along this line, this paper proposes an algorithm for narrowband
spectrum sensing based on tracking the convergence patterns in sparse coding of compressed received
signals. First, a compressed version of a received signal at the location of interest is obtained according
to the principle of compressive sensing. Then, the signal is reconstructed via sparse recovery over a learned
dictionary. While performing sparse recovery, we calculate the sparse coding convergence rate in terms
of the decay rate of the energy of residual vectors. Such a decay rate is conveniently quantified in terms
of the gradient operator. This means that while compressive sensing allows for sub-Nyquist sampling
thereby reducing the analog-to-digital conversion overhead, the sparse recovery process could be effectively
exploited to reveal spectrum occupancy. Furthermore, as an extension to this approach, we consider feeding
the energy decay gradient vectors as features for a machine learning-based classification process. This
classification further enhances the performance of the proposed algorithm. The proposed algorithm is shown
to have excellent performances in terms of the probability-of-detection and false-alarm-rate measures.
This result is validated through numerical experiments conducted over synthetic data as well as real-
life measurements of received signals. Moreover, we show that the proposed algorithm has a tractable
computational complexity, allowing for real-time operation.

INDEX TERMS Sparse coding, spectrum sensing, machine learning classification, residual components.

I. INTRODUCTION
The increasing demand on high data rate communications
highlights the scarcity of available spectrum [1]. Standard
spectrum usage is based on allocating a specific frequency
resource to each user. However, this policy is widely believed
to under-utilize the wireless spectrum [2]. Accordingly, this
calls for exploiting the unused spectrum portions, referred
to as spectral opportunities for communication. To detect
spectral opportunities, reliable and fast spectrum sensing (SS)
is required [3].

SS approaches can be mainly classified into narrowband
methods and wideband methods. In this context, the term
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narrowband means that the frequency range is sufficiently
narrow such that the channel frequency response can be
considered as flat. Standard narrowband SS techniques can
be classified into three broad categories; matched filter-
ing [4], energy detection [5], and cyclostationary feature
detection [6]. This work considers the narrowband scenario
of SS.

Matched filtering SS archives optimum detection by cor-
relating the received signal with a pre-defined signal pattern.
Despite its optimality, this method requires prior knowledge
about the signal transmitted by the primary users (PU)s.
On the contrary, energy detection avoids the need for prior
knowledge of the PUs at lower implementation and computa-
tional complexity levels. Still, it performs poorly in low SNR
scenarios. Cyclostationary feature detection distinguishes
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between different types of primary signals by exploiting their
cyclostationary features. However, the computational cost of
such an approach is relatively high.

Recent SS literature considers using compressive sens-
ing (CS) as a framework for SS [7]. Similar to the witnessed
success of CS in various application areas, the fundamental
gain CS offers is alleviating the need for high-sampling-
rate analog-to-digital converters (ADC)s and costly radio
frequency (RF) circuitry [8].

A. MOTIVATION AND RELATED WORKS

CS-based SS considers sampling the spectrum with a few
measurements at a rate often lower than the Nyquist rate.
Hence, this SS scheme is referred to as the sub-Nyquist SS.
This leads to reduced energy consumption, complexity, and
memory requirements [9]. Sub-Nyquist measurements are
then used to approximately reconstruct the spectrum.
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FIGURE 1. Compressive spectrum sensing in block diagram.

The main rationale of the above-explained CS-based SS
approach is depicted in Fig. 1. The spectrum y is down-
sampled as y,. using a CS matrix. Then, the aim is to recon-
structy fromy,. in a certain domain. It is customary to expand
¥, in the discrete Fourier transform (DFT) domain to as y,. =
F,w.From the DFT coefficients, there are various approaches
to SS. For example, spectral domain energy detection [5] is
a typical approach. This is based on calculating the energy
of the reconstructed signal and comparing it with a spe-
cific energy threshold to perform hypothesis testing. Other
works [10] consider exploiting the statistical properties of the
reconstructed signals for the purpose of SS.

The sub-Nyquist SS paradigm is based on assuming spec-
trum sparsity with respect to some domain or transforma-
tion [11]. Fortunately, this is true for under-utilized spectra in
the frequency domain [12], as the number of PUs is smaller
than what the spectrum can accommodate for. Moreover,
the spectrum can exhibit a sparse nature in other domains,
especially, in the case of overcomplete learned dictionaries.

Knowing the exact sparsity level is of crucial impor-
tance to the success of sub-Nyquist SS. In the signal acqui-
sition stage, the assumed sparsity governs the number of
sub-Nyquist samples. More specifically, the minimal num-
ber of samples to guarantee an efficient recovery is M =
Co S log(Mpy,/S) [13] where Cy is a constant, My, the num-
ber of measurements at the Nyquist rate, and S the assumed
sparsity. In the recovery stage, the sparsity level determines
the quality of the reconstructed spectra.

To reconstruct the spectrum from its sub-Nyquist measure-
ments, sparse recovery can be applied in one of the following
two formulations. First, is to minimize the reconstruction
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error with a fixed sparsity level [14]. Clearly, this approach
requires prior knowledge about the sparsity level. However,
the sparsity level is dependent on spectrum occupancy [15],
which is usually unavailable to either the dynamic activities
of PUs or the time-varying fading channels [12]. Secondly,
is to minimize sparsity level such that the reconstruction error
is upper-bounded with a certain error tolerance level [16].
This requires information about the noise level and signal-to-
noise ratio values of the PU signals, which should not either
be available. Based on either of these two approaches, other
more advanced sparse recovery techniques have been pro-
posed. For example, [17] adopts minimizing trigonometric
functions as a means of a better approximating the /o norm.

Along the line of sparsity level-based reconstruction, [18]
proposes a denoised version of the CS framework for SS to
suppress the impact of inherent noise. However, this approach
assumes knowing the sparsity level to minimize the sampling
rate. This requirement is alleviated in [19] where one first
estimates the sparsity level, and then applies CS accordingly.
Nevertheless, this sparsity level estimation is computationally
expensive.

Another attempt at avoiding sparsity level estimation is
proposed by Sun et al. [20]. This is done by iteratively
performing step-by-step CS processes while setting the num-
ber of measurements in an adaptive manner. However, this
iterative process incurs higher computational complexities as
sparse coding has to be solved several times until the exact
signal recovery is achieved. As a more efficient alternative,
Qin et al. [21] covey an approximate sparsity level from
geolocation data. This low-complexity estimation allows for
efficient performance at relatively lower computational com-
plexity levels.

B. CONTRIBUTIONS, ORGANIZATION AND NOTATION
This paper proposes an algorithm for narrowband sub-
Nyquist SS based on tracking the convergence in energy
decay of sparsely coded compressed received signals. Here
is a summary of the contributions presented in this paper.

« This approach alleviates the need for estimating the sparsity
level, neither a specific sparse coding error tolerance. This
is because sparse recovery is carried out for revealing its
energy convergence rate, rather than giving an accurate
signal reconstruction. Hence, if the actual sparsity level
is exceeded, that will not affect the convergence rate, and
therefore the decision to be made. Besides, the sparsity
level used is independent of the measurements undertaken
in the sensing stage.

« This work comes along the line of CS-based methods. Sub-
Nyquist sampling reduces the analog-to-digital conversion
overhead. The proposed algorithm uses learned dictionar-
ies instead of fixed basis functions, thereby allowing for
better sparse recovery, improved noise rejection and lower
numbers of samples for efficient signal acquisition.

« This work is also applicable with sampled dictionaries as
a means of substantially reducing the computational cost,
without sacrificing the performance.
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« The absolute gradient is applied as a feature vector fed
to a machine learning (binary) classifier to enhance the
classification quality. Such a classifier can be a support-
vector machine classifier (SVM) or a deep neural network
classifier (DNN).

The proposed algorithm is shown to efficiently identify
spectral opportunities in terms of the probability-of-detection
and false alarm rate measures. This result is validated through
performance analysis tests conducted over synthetic data as
well as real-life measurements of received signals. We show
that the proposed algorithm has a tractable computational
complexity, and can, therefore, be implemented in real-time.

The remainder of the paper is organized as follows:
In Section II, a brief background of the main topics
is provided. Section III presents the proposed algorithm.
Synthetic and measurement-based experiments are provided
in Section IV, with the conclusions made in Section V.

Notation: Plain-faced letters represent scalars. Bold-faced
lower-case, and bold-faced upper-case letters denote vectors
and matrices, respectively. In a matrix X, the symbol X;
resembles the i-th column in this matrix. Similarly, x; is the
i-th element in the vector x. The |||, ||.|lo and (-, -) symbols
represent the 2-norm, the number of nonzero elements in a
vector, and the inner product operator, respectively.

Il. BACKGROUND

A. COMPRESSIVE SENSING

The fundamental assumption behind CS is that the majority
of a signal’s salient information content is contained in a
relatively small number of random signal projections [22].
This allows for sub-Nyquist sampling of signals without a
noticeable loss in information if one wisely selects where and
when to sense [2]. Such a reduced sampling rate results in
several advantages of; reducing the circuit and time cost of
sensing, and allowing for efficient low-dimensional represen-
tation and processing of signals.

Real life signals are either sparse or compressible. Sparse
signals have a few nonzero elements, as they are; in the stan-
dard basis. However, compressible ones are sparse in a certain
domain/transformation. The above mentioned CS paradigm
is applicable for both sparse and compressible signals. Hence,
it is generally applicable to natural signals.

Ify € CV is a sparse signal, one can obtain a correspond-
ing compressed version y, € CM, using a sensing matrix
® e CMXN 45 follows.

Yo = ®y, ey

where M is the number of CS measurements. Herein, ®
denotes a sensing matrix that selectively chooses the signal
samples to be sensed. Typically, there are two categories of
sensing matrices; deterministic and random. It is shown that
random matrices such as Gaussian or Bernoulli perform very
well in practice.

From a low dimensional measurement, a high-dimensional
signal version can be reconstructed. This is often achieved
through a sparse recovery process.
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B. SPARSE RECOVERY AND DICTIONARY LEARNING

If a signal y € CV admits sparse coding over a dictionary
D e CN*K theny ~ Dw, where w € CK is said to be a
sparse coding coefficient vector. For a given y and D, w can
be obtained through the following sparse coding process.

argmin |w|o s.t. |y — Dwl||3 < e, )
w

where € is the error tolerance.

The above-mentioned problem is N-P hard. However, there
are methods to obtain efficient approximate solutions. These
can be classified into two main categories. First, is /1 relax-
ation methods, where one relaxes the /[y measure to the [,
thereby offering a significant reduction to the computational
complexity of the problem. An example of these methods
is the basis pursuit algorithm and its variants, such as [16].
The other category is greedy pursuit algorithms that solve
the problem iteratively, such as the matching pursuit meth-
ods [14]. Algorithms in this category possess the advantages
of low computational complexity, but the solution is not
necessarily the sparsest.

A collection of predefined basis functions such as the DFT
can be used as a dictionary. However, learning a redundant
dictionary over a set of training data points ¥ e CN*[
is a better alternative [23] that assures sparsity, enhances
representation quality and is locally-adaptive to the signals of
interest. Such a dictionary has the basis vectors as its columns
(atoms). This is referred to as the dictionary learning process,
formulated as

argmin |Willg s.t. ||Y; —DW,-II% <eV i 3)
W,D

An example widely-used algorithm for dictionary learning is
the K-SVD algorithm [23].

C. MACHINE LEARNING FOR CLASSIFICATION

1) SVM CLASSIFICATION

Support vector machines (SVM) [24] is a widely used
machine learning algorithm for classification and regres-
sion tasks. In binary classification, SVM aims at finding an
N-dimensional hyperplane separating the data, assuming it
exists. It is customary to apply SVM on some distinctive fea-
tures of the given data. Such a hyperplane can be found such
that the following two criteria are met. First, is maximizing
the distance between the hyperplane and each of the data
points in each pair of closest points in the two classes. Second,
each data point should be labeled to belong in its own class.
Formally, these requirements are formulated as follows.

1
arg min f(®) = = o[> + C
w,b 2

st yi@ y@) +b) =1
>0, Vi=1,...,L, 4)
where @ is a weight vector, b is a bias parameter,

{GeryD. .. @z yn).x € RY y € {+1, —1}} is a training
set. Herein, each 2-tuple consists of an observation vector
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x;, along with its known label y;. It is assumed that this
training set can be separated by the hyperplane satisfying
ol y(x) + b = 0. Besides, the feature map y(x) maps x into
a higher dimensional space, C is a positive constant, and ¢; is
the error in the soft margin.

The problem formulation in (4) is referred to as the pri-
mal formulation. Aside from the primal, it is customary
to consider solving a dual counterpart of this formulation.
Solving the dual transforms the problem into a quadratic
programming problem with the number of variables equal
to the number of training data pairs (L). For a given kernel
matrix K(x;, x;) = p(x;)y(x;), training SVM with the dual
formulation consists of solving the following optimization
problem.

L L L
1
argoilnm 5 Z ZyiyjociajK(xi,xj) — ;dj
]:

i=1 j=I

L
s.t. Zyioci =0
i=1

0<a;<C, Vi=1,...,L. )

where « is the argument weight vector, L is the length of the
SVM training set, C is a positive constant. Here, there is not
dependency on w or b, and « is the only argument.

After SVM training, labeling an incoming test signal x can
be done with the following decision function.

L
f&) = sign(}_ aiyiK(x; - x) +b). (6)
i=1
This is, in fact, a quadratic programming problem that is easy
to solve by standard linear programming.

2) DNN CLASSIFICATION

DNN is in essence an artificial neural network that applies
several hidden layers between the input and the output layers.
These layers are composed of neurons. The success of DNN's
has been widely witnessed in various application areas [25].
This success relies basically on DNN’s ability in extracting
high-level features from raw sensory data after using statisti-
cal learning over a large amount of data to obtain an effective
representation of an input space. This does not require hand-
crafted features or rules designed by experts. In general,
the sigmoid function and the rectified linear unit (ReLU)
function are the most universal choices in the nonlinear oper-
ation, which can be given by

1
fSigmoid(x) =] p—

JreLu (x) = max(0, x), @)

where x is the argument of the function. The input (x) and
output )o) of the DNN are related as follows

o=foxw =" (r? (') ®

Here, n and w denote the number of layers and the associated
weights, respectively.
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D. SYSTEM MODEL

A communications system is assumed where at the trans-
mitter side, the transmit signal model can be expressed as
follows.

x = As, C))

where s = [s51(¢), ..., sn(t)]” represents N independent data
points. Also, si(t) = Y _po _ . bru(t — kT )el2™fent where n =
1,2,...,N, and u(t) is the pulse shaping filter, by are the
digitally modulated symbols, f, , is the center frequency, and
T is the symbol duration. A is n x n coefficient matrix with
a; j elements where i,j = 1,...N.

The signal x is then transmitted over a noise channel H.
The signal received at the receiver side is as follows.

y=Hx+n, (10)

where y is the received signal, H is the channel matrix
(or vector), x is the transmitted signal, and n is additive white
Gaussian noise.

This work aims at estimating the spectrum in the above-
explained communication system. This sensing is charac-
terized by identifying spectral opportunities. This can be
achieved by detecting transceiver communication activity at a
given location. However, it is noted that detecting transceivers
is a challenging process in practice, as many PUs are passive
receivers. Therefore, it is more feasible to detect the exis-
tence of signals coming from PUs at a given location [12].
In accordance with the common practice in the SS literature,
this is done by deciding whether there is a transmitted signal
within the received one, signifying the existence of a PU at
that location of interest, and vice-versa. Formally, we target
at distinguishing between the following two hypotheses:

« Null Hypothesis (Hg): There is no active PU at the
location of interest. Hence, the received signal is merely
noisey = n.

« Alternate Hypothesis (H1): A PU exists. Therefore,
the signal received at the user location is composed of
the transmitted PU signal along with noise.y = Hx +n.

The distinction between these two hypotheses should be inco-
herent, i.e., assumes no prior knowledge about the signal-
ing or modulation of the PU, neither a collaboration from its
side.

IIl. SPARSE CODING RESIDUAL ENERGY DECAY

SPEED TRACKING FOR SPECTRUM SENSING

A. SPARSE CODING CONVERGENCE AS MEANS OF
TRANSMITTED SIGNAL IDENTIFICATION

As opposed to noise, natural signals are generally compress-
ible. Accordingly, the magnitudes of their sparse coding coef-
ficients are shown to obey a power-law decay [26]. This
means that a signal is written in terms of its sparse approx-
imation as x ~ Dw, and the coefficients w; are sorted such
that [wi| > |wz|... > |w,], then there exist C and ¢ such

that:
lwi| < Ci™9.

(11)

126101



IEEE Access

M. Nazzal et al.: Exploiting Sparsity Recovery for Compressive Spectrum Sensing

The larger g is, the faster the magnitudes decay, and the more
compressible a signal is.

In general, sparse coding methods such as the greedy
OMP [14] iteratively calculate the sparse coding coeffi-
cient vector w with a specified sparsity S as follows. First,
a so-called residual vectorr;, {i = 0, 1, ..., S — 1} is initial-
ized with the signal itself as 9 = x. In each iteration, sparse
coding selects one atom from a given dictionary D that best
approximates the current residual r;. The residual after each
atom selection is updated by subtracting the projection of the
residual onto the selected atom from the residual itself. This
process is repeated S times.

To this end, let us think of the signal as a composition
of its residual components, i.e., x ~ Zf: 1 i Each residual
component corresponds to one nonzero entry in w. In view
of the power-law decay property of the elements in w, it is
evident that the energy of the residual components does also
follow the same power-law decay. Stated in the reverse direc-
tion, compliance of the energy of the residual components
of a signal signifies its compressibility. Known that signal
is compressible assures that it is not only noise, but it also
contains a transmitted signal component. This relies on the
key assumption that noise is not structured, and therefore not
compressible. This observation suggests that one can depend
on this so-called residual energy decay speed to identify the
existence of a PU at a given location.

In harmony with the concept of signal compressibility, it is
intuitively expected that the residual vector of a compressible
signal exhibits a significant loss in its energy in the first few
sparse coding iterations. This is due to the fact that the signal
is compressible in the given dictionary, meaning that there is
a similarity between such a signal and the dictionary atoms
to guarantee a sparse and accurate representation. This is
because dictionary atoms are, in fact, prototype signal signals
conveyed from real-life training data sets. Stating this in the
reverse direction, a fast decay in the residual energy signifies
the existence of a compressible signal.

Modulated signals are generally compressible. Hence, this
informs on the existence of transmitted signals. On the con-
trary, the absence of a PU means that the received signal is
mere noise. Therefore, the decay speed of the residual will
not necessarily be that fast. Besides, it can exhibit chaotic
patterns owing to the randomness of noise, and the fact that no
single dictionary atom is well-suited to represent noise. Fur-
thermore, this observation can be exaggerated if we consider
performing a full atom selection, i.e., selecting all the atoms
in the dictionary and calculating the corresponding coeffi-
cients. Under this condition, the aforementioned observation
will be, especially, more strongly valid. An analysis of this
idea is provided in Appendix.

The gradient operator quantifies the speed of decay. For a
vector signal x, the gradient is the first-order derivative. The
gradient of a discrete signal x at time instant 7, it is defined
as follows.

G(t)=x(t + 1) —x(7). (12)
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To this end, the gradient operator can guide on how fast
the residual energy decays versus iteration. The following test
empirically motivates the usage of this operator to guide on
the existence of transmitted signals.

B. A MOTIVATING EXAMPLE

In this test, we use the dictionary and setup used in Section I'V.
We also generate a test set of 10* received signals. However,
each received signal realization is generated according to both
Ho and ;. Using a compression ratio of 30%, a compressed
version of each test received signal is obtained according
to (13). To this end, we perform a sparse coding process of
the compressed received signal over D, using the OMP [14]
algorithm. After each OMP iteration, we calculate the energy
of the residual ||r|». Afterwards, we calculate the absolute
values of the gradient |G| of the energy vector. This process
is repeated for 10* trials, over a set of several SNR values.
The results of this experiment are depicted in Fig. 2.

In view of Fig. 2-a, it is seen that ||r||» decays very fast
in the first few iterations for #; the major energy reduction
happens in these iterations. Also, the decay speed afterward
fluctuates, but it is still not as high as in the first few iterations.
On the contrary, the speed of energy decay fluctuates for
the case of Hp. It can be seen that the fastest decay does
not happen in the first few iterations. Observing Fig.s 2-b,
Fig.s 2-c and 2-d, the same observation can be made.

This test suggests that one can rely on the profile of this
gradient versus iteration as a feature vector to signify the
underlying hypothesis.

C. THE PROPOSED ALGORITHM

Based on the above motivation, we propose an algorithm
for SS through exploiting the residual energy decay with the
following two variants.

1) USING THE GRADIENT OPERATOR DIRECTLY

In view of the results reported in Fig. 2, the gradient operator
can be directly used for hypothesis testing. This requires
developing a test statistic for that purpose. An immediate
approach is to measure the first few maxima in the absolute
gradient vector. If such maxima happen to be in the first few
iterations, this signifies the existence of a transmitted signal
and hence a PU, and vice-versa. This simplistic hypothesis
testing is outlined Algorithm 1 which represents the run-time
stage of the algorithm. Prior to this stage, a training stage is
required to train for the dictionary.

It is noted that in the case of H, the majority of maxima
lies in the first half of the vector |G|, and vice-versa. To this
end, let us denote by |G¢| and |G| the first and second halves
of this vector. Besides, let us denote by max(x, i) the i-th
order maximum of a given vector x. Then, the underlying
hypothesis testing can be formally stated as follows.

Z H 1 4
> _max((Gyl. i) = ) max(|Gsl. i),
i=1 0 =1
where z denotes the number of maxima to consider in the
comparison.

13)
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FIGURE 2. The averages of ||, (up) and |G| (down) versus sparse coding iteration for received signals under #( (left) and ¢, (right).
In (a), (b), (c), and (d), the SNR values are -5, 0, 5, and 10 dB, respectively.

Algorithm 1 PU Sensing via SC Residual Energy Tracing
N xK

Input: Dictionary D € CV*X | sensing matrix ® € CM*N,
and access to the received signal.
Output: A decision about PU existence.
1: Sample a compressed received signal as y, = ®y
2: Solve arg min |ly, — ®Dw||3 s.t. |wlo =M

(95}

: Record thz energy of the residual for each iteration.

: Locate the first few maxima of the absolute gradient of
the residual

: if maxima happen in the first few iterations then
decision < 1

else
decision < 0

end if

10: return decision

A~

e A

2) USING THE GRADIENT OPERATOR AS FEATURE FOR
MACHINE LEARNING-BASED CLASSIFICATION

As a natural enhancement to Algorithm 1, the absolute
gradient vector can be regarded as a feature vector for
a better classifier. Generally speaking, one can select an
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advanced classifier such as machine learning-based classifi-
cation techniques. Typical examples along this line include
SVM and DNN classifiers. In this context, the absolute gradi-
ent vectors represent the features of the observed data points.
For each gradient vector, the corresponding hypotheses =
(Ho or H,) is its class label. Hence, a classifier model is
trained over a set of gradient operator vectors, with known
hypotheses. This process is pictorially described in Fig. 3.
It is also noted that one can employ other simpler classifi-
cation techniques at the expense of losing the performance.
Examples include simple perceptron, logistic regression, and
naive Bayes classifier.

It is noted that classifier training signals can be either
synthetically generated or obtained as field measurements.
In either case, one needs to know the hypothesis resembling
the class index, and the received signal. Hence, received
signals are recorded along with their underlying class indices.
Then, the absolute gradient vector of each signal is calculated
and used as the feature vector over which the classifier is
trained.

Once the classification model is trained, it can be used
for classifying an upcoming received signal to be in either
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FIGURE 3. Classifier model training in block diagram.

Algorithm 2 PU Sensing via SC Residual Energy Tracing
and a ML Classifier
Input: Dictionary D € , sensing matrix ® €
an ML classification model, and access to the received
signal.
Output: A decision about PU existence.
1: Sample a compressed version of the received signal
Yo = oy
2: Solve arg min |ly, — ®Dw||3 s.t. |wllg = M

N xK M xN
cvx CY>H,

: Record thz energy of the residual for each iteration.
: Calculate the gradient of the residual

: Using the ML classifier, make a decision

: return decision

N L kA~ W

hypothesis based on its gradient vector. The main steps of
this algorithm are outlined in Algorithm 2. It is noted that
there is a training stage before the application of Algorithm 2,
where one performs dictionary learning and classifier training
over suitable data training datasets. This algorithm should be
superior to Algorithm 1. However, in situations where the pri-
ority is alleviating the computational burden of the classifier
training and testing, this algorithm forms a compromise at the
price of degraded performance.

The proposed algorithm assumes the availability of a dic-
tionary D trained over sample received signals. Despite its
high representation quality, learning a dictionary is a com-
putationally demanding process, as will be discussed in the
next session. This is especially the case knowing that SS will
be typically performed by mobile users of limited compu-
tational and storage capabilities. Therefore, we argue that
one can use a sample dictionary instead of a learned one.
A sampled dictionary is obtained by randomly selected data
vectors [27]. Compared to a learned dictionary, a sampled one
is not as good in representation. However, it offers a cheap
compromise for the computational complexity at a tolerable
performance loss. For the problem of SS, using a sampled
dictionary seems especially reasonable owing to the fact that
the interest is not high-quality estimation as in other applica-
tions of sparse coding. Rather, the aim is to extract distinctive
features from the received signals.
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D. A DISCUSSION ON COMPUTATIONAL COMPLEXITY

In view of the stages of the proposed algorithm, it is clear that
dictionary learning and classifier training incur the majority
of the training stage computational cost. Correspondingly,
the processes of sparse coding and classification occupy the
major computational burden of the run-time stage. Accord-
ingly, we can roughly approximate the proposed algorithm’s
computational complexity by addressing the complexities of
these two processes.

First, let us address the computational complexity of clas-
sifier training, by considering SVM as an example. Given
a training set consisting of a matrix X € RN*L repre-
senting the coordinates of m points in N dimensions and a
target label vector y € RE, O. Chapelle [28] reports that
the computational complexity of SVM training depends on
the relation between the dimensions L and N. This relation
determines whether the primal or the dual SVM formulation
is considered. Accordingly, the computational complexity of
SVM training is O(max{L, N}.min{L, N}?). On the other
hand, dictionary learning is also required in the training stage
of the proposed algorithm, if sampled dictionaries are not to
be employed. Let us consider K-SVD [23] as an example. The
total complexity of K-SVD working on a training set X €
CN*L, with sparsity S and Num iterations is O(Num(S> +
N)KL) [29]. It is noted that dictionary training is done
off-line, only once.

To this end, we can address the computational complexities
of SVM training and sparse coding. In [30], it is reported that
the computational complexity of SVM testing (prediction)
depends basically on the kernel used. For linear kernels,
the computational complexity is in the order of the signal
dimension. This means that for the computational complexity
is O(n), where n is the dimension of the gradient vector to
be fed to SVM prediction. It is noted that this work uses a
linear kernel for SVM. This is due to the fact that the gradient
vector values are clearly distinctive features for classification.
Intuitively, there is no need to map these features to higher
dimensional feature spaces by using a more advanced kernel,
such as the Gaussian or polynomial kernels [31].

For sparse coding, let us consider OMP as an example.
OMP has several computational approaches with different
computational complexity and memory requirements. For the

Calculate |G|
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TABLE 1. Computational complexity levels of the proposed algorithm with several operation scenarios.

Computational Complexity of

Operation Scenario Training Testing
Algorithm 1 with a learned D O(Num(S® + N)KL) OQRKM? + KM> + M%)
Algorithm 1 with a sampled D N.A. OQRKM? + KM® + M%)

Algorithm 2 with a learned D

O(max{L, N}.min{L, N}?) + Num(S> + N)KL

OQKM? + KM® + M*+ M)

Algorithm 2 with a sampled D

O(max{L, N}.min{L, N}?)

ORKM?* + KM> + M™ + M)

sake of convenience, we can consider the Naive OMP algo-
rithm working on sparse coding of a signal x € CN over
a given dictionary D € CN*K, with sparsity S. In [32],
Sturm and Christensen prove that the k-th iteration of the
naive OMP implementation has a computational complexity
of O(NK + KS + KS? + S3). The memory required for
the naive approach is O(NK). This memory is required to
store the dictionary and the inner products of an iteration.
Hence, overall computational complexity with sparsity S will
be ONKS + KS? + KS3 + §%).

Based on the aforementioned discussion, the computa-
tional complexity of the proposed algorithm will be approx-
imately as follows. For a given y, € CM, D e CM*K
with a compression factor of M, Algorithm 1 performs a
sparse coding with a sparsity of M, where M is the number
of measurements. So, the computational complexity of this
algorithm is approximately O(2KM? + KM3 + M*).

The computational complexity of Algorithm 2 is similar to
that of Algorithm 1 plus that of SVM prediction. Hence, it is
approximately O(2KM? + KM?3 + M* + M). In summary,
Table 1 lists the computational complexities of the proposed
algorithm in these variants.

IV. SIMULATION AND RESULTS

In this section, we present performance analyses of the
proposed algorithm as tested over synthetic and measured
received signals. The performance metrics are the probability
of detection Pp and false alarm rate Pr measures, defined as
follows.

P; = Pr{decision = H; | H1}, (14)
Pr = Pr{decision = H; | Ho}. (15)

A. PARAMETERS SETTING

We use a system simulator created under MatLab environ-
ment. According to the system model specifications provided
above, we simulate this system with different modulation set-
tings. This includes phase shift keying (PSK), frequency shift
keying (PSK), pulse amplitude modulation (PAM) or quadra-
ture amplitude modulation (QAM) as modulation techniques.
A complete listing of the simulation parameters is provided
in Table 2. For each received signal realization, a different
data stream, and a different channel realization are randomly
obtained.

For the following experiments, a training set is made up
of 10 received signal realizations generated synthetically to
cover different SNR values. First, we create a training set of
10* example received signals. These are generated according
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TABLE 2. Synthetic received signal simulation parameters.

Property Value
Channel Model Rayleigh
No. of Channel Taps 7
Channel Delay Unit Sample Period
Signal Length 100
Oversampling Rate 10
Modulation Order 64
Symbol Order Binary
Pulse Shaping Square-root-raised-cos.
Raised Cos. Roll-off Factor 0.2
Raised Cos. Symbol Span 50
PD and PF

M
(9]
& 20
Ei —*—30
8 —e—50
8 ——170
~
——100
4
0t - + + 4= - * -
-5 0 5 10 15 20 25 30

SNR(dB)

FIGURE 4. For Algorithm 1 with a learned dictionary, Pp and P versus
SNR for several M values.

to Table 2, and the modulation is randomly selected to be
PSK, FSK, PAM, or QAM. Then an under-complete dictio-
nary is trained for each modulation case. Next, the trained
dictionaries are concatenated to establish a composite dictio-
nary D. The K-SVD algorithm [23] with standard settings is
used for this purpose. We use a fixed sparsity of § = 10,
30 iterations and an overall dictionary size of 100x 100. Then,
another 10* received signals are generated to randomly be in
Ho and H1. These will serve as the test set.

The following experiments present a performance analysis
of the proposed algorithm. Both cases of synthetically gener-
ated and measured received signals are considered.

B. ROC PERFORMANCE WITH SYNTHETIC SIGNALS

1) WITH LEARNED DICTIONARIES

Herein, we use the dictionary and test set presented earlier.
Each test signal is randomly selected to belong either to
Ho or to H;. For each test signal, we obtain a compressed
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FIGURE 5. For Algorithm 1 with a sampled dictionary, Pp and Pr versus
SNR for several M values.

version according to (1) using a Gaussian random sensing
matrix. We detect the PU existence using Algorithm 1. Then,
we calculate the average Pp and Pr measures over the given
10* test set signals. This procedure is repeated for several
numbers of samples (M) over several SNR levels. The results
are presented in Fig. 4. It is noted that M = 100 corresponds
to the case where the sensing matrix is the identity matrix.
Therefore, this value resembles sampling at the Nyquist rate.

In view of Fig. 4, the following observations can be made
regarding the performance of the proposed algorithm. First,
the Pp and Pr performances are both weak for the particular
case of SNR = 5dB. However, the Pp performance is gener-
ally high for high M values. For M > 30, Pp is consistently
greater than 50%. Second, the Pp performance also depends
on the SNR value. However, for SNR values of 5dB and
beyond, Pp is very high. Third, the Pr is moderate for the
case of M = 20. For higher M values, Pr is consistently
close to zero, regardless of the SNR.

To this end, it is interesting to investigate the performance
of Algorithm 2 with SVM and DNN classifiers. We consider
linear SVM and a 10-layer DNN. Each classifier model is
trained over 1000 training vectors according to Fig 3. This
number is selected as a compromise between computational
complexity and performance trade-off in view of the learning
curve [33] shown in Fig. 6. This curve shows the DNN
cross-validation error versus training set size averaged over
100 trials. It is noted that SVM is set to use the same number
for fair compassion. This curve shows an approximate good
fit, as the performance of the model is good on both the train
and validation sets.

A confusion matrix is used as an indication of the prop-
erties of a classification (discriminant) rule. It contains the
number of elements that have been correctly or incorrectly
classified for each class. We can see on its main diagonal
the number of observations that have been correctly classified
for each class; the off-diagonal elements indicate the number
of observations that have been incorrectly classified. The
rows of the confusion matrix correspond to the true class
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FIGURE 6. The SVM learning curve.

TABLE 3. Confusion matrices of SYM (above) and DNN (below), versus M.

20 30 50 70 100
95 5 [ 98 2 [ 100 O | 100 O [ 100 O
SVM | 7 93 | 4 96| 3 97 2 98| 6 94
95 5 |94 6 | 95 5 | 100 0 | 99 I
DNN | 13 87 | 9 91 12 88 2 98 | 13 87

and the columns correspond to the predicted class. Diagonal
and off-diagonal cells correspond to correctly and incorrectly
classified observations, respectively. To attest the quality of
the classifier learning, Table 3 lists the confusion matrices
for different M values with the cases of SVM and DNN,
respectively. It is seen that SVM is generally better than
DNN in terms of the confusion matrix. Besides, the confusion
matrices in both scenarios become better with increasing M.

The previous experiment is repeated while the decision
is made this time according to Algorithm 2 working with
either SVM or DNN. The results of using SVM and DNN
are depicted in Figs. 7 and Fig. 8, respectively. Comparing
Fig. 7 to Fig. 4, the advantage of SVM classification is notable
and clear. In Fig. 7, the Pp performance is steadily better.
This is especially the case for low SNR values. Besides,
the Py performance is also better, especially for SNR values
of 5 dB and above. For SNR values of 0 and 5 dB, Pr is first
relatively high, before it approaches very small values after
5 dB SNR. Similar to the results of Fig. 4, the Pp performance
goes higher with increased M values. If one compares the
performances of SVM and DNN, it is seen that DNN does
not have any advantage over SVM. This is the case for both
the Pp and Pr measures.

2) WITH SAMPLED DICTIONARIES

Now, it is interesting to investigate the impact of using sam-
pled dictionaries instead of learned ones. The results for
using sampled dictionaries with Algorithm 1, Algorithm 2
with SVM, and Algorithm 2 with DNN are depicted
in Fig.s 5 and 9, and 10, respectively.
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FIGURE 7. For algorithm 2 using SVM with a learned dictionary,
Pp and Pg versus SNR for several M values.
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FIGURE 8. For algorithm 2 using DNN with a learned dictionary,
Pp and Pg versus SNR for several M values.
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FIGURE 10. For algorithm 2 using DNN with a sampled dictionary,
Pp and P versus SNR for several M values.

degradation is higher than the Pp performance gain. On the
other hand, it is clear that a sampled dictionary slightly
degrades both Pp and Pr performance of Algorithm 2,
as seen by comparing Fig. 9 to Fig. 7. Moreover, Fig. 10
suggests that using DNN gives almost the same performance
attained with SVM. However, it exhibits higher Pr values.
This result is consistent with the comparison of SVM and
DNN for the case of using learned dictionaries.

C. ROC PERFORMANCE WITH MEASURED SIGNALS

This test analyses the performance of the proposed algorithm
as tested over indoor lab measurements of received signals.
We use two sets of measurements; a training set and a test set.
Such measurements were conducted with an SNR of —5 dB.
To take these measurements, we adopted the same experi-
mental setup presented in [34]. This experimental setup is
composed of a Rohde & Schwarz SMBV100A vector signal
generator, a Rohde & Schwarz FSW signal and spectrum
analyzer, a tuple of omnidirectional antennas to cover the
wireless communications bands of interest, a laptop com-
puter, cables, and connectors, as depicted in Fig. 11.

TABLE 4. The values of the parameters used in practical signal
measurements.

Property Value Used
Carrier Frequency 918 MHz
Tx/ Rx Distance 18.24 Feet
Modulation Type PSK, QAM, BPSK, QPSK
Modulation Order 8, 16, 64
Propagation Type LOS/NLOS
Filter Type Square-root raised cosine

Pp and Pr
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70
o 60¢ M
%0 20
= —*—30
g % %
e 40 ——170
—+— 100
30
20
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0 2 * & & & ]
-5 0 5 10 15 20 25 30
SNR(dB)

FIGURE 9. For algorithm 2 using SVM with a sampled dictionary,
Pp and Pg versus SNR for several M values.

Comparing Fig. 5 to Fig. 4, the Pp performance is
slightly better. On the contrary, the Pr performance is more
significantly degraded. In summary, the Pr performance
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The signal generation, transmission, and measurement pro-
cesses are controlled by the computer through a MatLab-
based software. This software orders the signal generator to
produce signals with various modulation schemes and param-
eters. These include PSK, FSK, QAM, and PAM modulated
signals with various modulation orders based on the signal
model in Section II. The list of all the parameters used in the
measurement process is given in Table 4.
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FIGURE 11. Measurement setup and environment. (a) Measurement setup: transmitter, receiver,
laptop computer, router, and their connections. (b) General overview of the measurement

environment.

TABLE 5. ROC percentage with algorithm 1 over measured received
signals.

M

Metric 10 20 30 50 70 100
Pp 100 | 100 | 100 | 100 | 100 | 100
Pr 0 0 0 0 0 0

TABLE 6. ROC percentage with algorithm 2 with SVM over measured
received signals.

M

Metric 10 20 30 50 70 100
Pp 100 | 100 | 100 | 100 | 100 | 100
Pr 0 0 0 0 0 0.05

First, we consider Algorithm 2 with a learned dictionary
and SVM classification. The Pp and P values are presented
in Table 5. It is seen that Algorithm 2 provides excellent per-
formance in both measures. Finally, we repeat this experiment
with a sampled dictionary and provide the results in Table 6.
Again, the proposed algorithm archives a full Pp with zero
Pr consistently for all M values considered.

V. CONCLUSION

This paper has shown the possibility of exploiting the con-
vergence features of sparse recovery as a means of spectrum
sensing. Sparse recovery is applied to reconstruct a received
signal from its compressed version obtained through a com-
pressive sampling process. This sampling scheme allows for
sub-Nyquist sampling, thereby reducing the analog-to-digital
conversion burden. A learned dictionary is used for the recov-
ery process. While doing sparse recovery, we quantify the
reconstruction convergence speed in terms of the decay rate
of the energy of sparse coding residual components. In this
context, fast residual decay in the first few iterations signifies
the existence of a transmitted signal. We also extend the
work by using machine learning classification which uses
the gradient of energy decay as a classification feature. This
classification enhances the performance of the proposed algo-
rithm. The proposed algorithm is shown to have excellent
performances in terms of the probability-of-detection and
false-alarm-rate measures. This result is validated through
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experiments conducted over synthetic data as well as real-life
measurements of received signals.

The proposed algorithm can be extended to the wideband
SS scenario. This can be achieved by applying the proposed
algorithm on several subbands of the frequency range of
interest. This requires designing several dictionaries that can
account for the whole spectrum of interest.

APPENDIX

RESIDUAL ENERGY GRADIENT DECAY ANALYSIS

By tracing sparse coding atom selection and residual update,
one can roughly analyze how the decay rate of the residual
energy is related to the existence of a transmitted signal. Let
us assume that OMP is the sparse coding algorithm. Now,
let us concentrate on the first OMP iteration for the sake of
convenience.

At the beginning of the first iteration, OMP initializes the
zero-th residual ry by the signal of interest. Then, amongst all
atoms in a given dictionary D, the one that best approximates
ro based on a certain similarity measure, is selected. OMP
considers maximizing the projection of rp over each atom.
This is achieved by calculating a projection operator for each
atom d as P = dd', where 1 is the Moore-Penrose pseu-
doinverse. After this atom selection, the residual is updated
as follows

ry =ro —Pro. (16)

Let us ignore the least-squares refinement OMP does for the
sake of simplicity.

Now, we can write the gradient operator G as the discrete

first derivative of the residual energy. Hence, the first element
in G can be expressed as follows.

G() = |Ir1l3 = llroll3 = {ri,71) = {ro,r0). (17
Let us analyze the gradient magnitude comparing the cases
of Ho and H;.

Under Hy: the signal y is merely noise. Therefore, G(1) can
be written as follows.

G(1) = [n —Pn| — |n|l2
=(n—Pn,n—Pn)— (n,n). (18)
Note that (n — Pn,n — Pn) — (n,n) = (n,n) — 2(n, Pn) +
(Pn,Pn) — (n,n). Now, using the property of projection
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we know that (Pn,n) = (Pn, Pn) = ||Pn||%, we can write
G()3, = —|IPnll3. (19)

Under H;: the signal y = x 4+ n, where the channel
operator (H) is dropped from simplicity. Therefore, G(1) can
be written as follows. G(1) = x +n — P(x +n),x +n —
Px+n))—(x+n,x+n) =a—2b+c—d.Let us simplify
the four terms a, b, ¢, and d.

Firstt a= (x+n,x+n) = x+x)+2(x+n) + (n + n)
assuming that the noise is independent of x, (x + n) = 0 we
can write @ = (x +x) + (n + n).

Second: b = (x + n,P(x + n)) = (x +n, Px + Pn) =
(x, Px) + (x, Pn) + (n, Px) + (n, Pn). Using the expression:
(x,Px) = (Px,Px), (n,Pn) = (Pn,Pn), and (x, Pn) =
(n, Px) = 0, we can write: b = (Px, Px) + (Pn, Pn)

Third: ¢ = (P(x +n), P(x +n)) = (Px+Pn, Px+Pn)
(Px, Px) + (Pn, Pn)

Fourth: d = a = (x+x)+ (n+n) = a. Therefore, G(1) =
a—2b+c+d = —-2(Px,Px) — 2(Pn, Pn) + (Px, Px) +
(Pn, Pn) = —(Px, Px) — (Pn, Pn)

Finally, the gradient magnitude for H; is as shown in (20).

G(Dy, = —|IPx|l2 — [|Pn|>. (20)

Comparing (19) and (20), it is evident that G(1)3, is
greater than G(1)3, as anticipated earlier. Following similar
steps, this result can be generalized for the first S iterations
of OMP.
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