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ABSTRACT Brain-computer interfaces (BCIs) and their associated technologies have the potential to shape
future forms of communication, control, and security. Specifically, the steady-state visual evoked potential
(SSVEP) based BCIs have the advantages of better recognition accuracy, and higher information transfer
rate (ITR) compared to other BCI modalities. To fully exploit the capabilities of such devices, it is necessary
to understand the underlying biological features of SSVEPs and design the system considering their inherent
characteristics. This paper introduces bio-inspired filter banks (BIFBs) for improved SSVEP frequency
recognition. SSVEPs are frequency selective, subject-specific, and their power gets weaker as the frequency
of the visual stimuli increases. Therefore, the gain and bandwidth of the filters are designed and tuned
based on these characteristics while also incorporating harmonic SSVEP responses. The BIFBs are utilized
in the feature extraction stage to increase the separability of classes. This method not only improves the
recognition accuracy but also increases the total number of available commands in a BCI system by allowing
the use of stimuli frequencies that elicit weak SSVEP responses. The BIFBs are promising particularly in
the high-frequency band, which causes less visual fatigue. Hence, the proposed approach might enhance
user comfort as well. The BIFB method is tested on two online benchmark datasets and outperforms the
compared methods. The results show the potential of bio-inspired design, and the findings will be extended
by including further SSVEP characteristics for future SSVEP based BCIs.

INDEX TERMS Brain-computer interface (BCI), electroencephalography (EEG), steady-state visual evoked
potential (SSVEP), wireless body area network (WBAN).

I. INTRODUCTION
Scientific advances in neuroscience and biomedical engi-
neering enabled a direct communication channel between
the human brain and a computer. The electrical activity in
the brain that is produced by neuronal post-synaptic mem-
brane polarity changes can be monitored to detect the user’s
intentions [1]. A brain-computer interface (BCI) [2] ana-
lyzes the brain signals and translates them into commands
for external devices such as a speller device, wheelchair,
robotic arm, or a drone (Fig. 1). Since BCIs utilize the signals
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generated by the central nervous system, the primary tar-
get of this technology is people with severe neuromuscu-
lar disorders (e.g., amyotrophic lateral sclerosis, brain-stem
stroke, spinal cord injury, and cerebral palsy). However,
advanced BCI systems serve healthy people as well by pro-
viding an alternative way of communication, control, and
security [3]–[5]. Hence, these systems have evolved to be a
promising part of the body area network [6]–[10].

While there exist multiple approaches to measure brain
activity, electroencephalography (EEG) is widely used in BCI
applications because of its high temporal resolution, which is
essential for BCIs to work as real-time systems [11]. In addi-
tion, EEG devices are inexpensive and portable. Various
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FIGURE 1. Functional model of an SSVEP-based BCI.

EEG signals could serve to drive BCIs. For example, a
distinctive oscillation pattern in EEG is observed when a
sensory stimulus such as visual or auditory is presented to
a human. These oscillations are called as evoked potentials
(EPs), and they disappear after a short period. If the stimulus
is repeated at a regular rate, the EPs do not have time to decay,
and it causes a periodic response which is called as steady-
state evoked potentials [12]. More specifically, a periodic
visual stimulus with a repetition rate higher than 6 Hz elicits
steady-state visual evoked potentials (SSVEPs) which are
more prominent in the occipital region of the brain [13], [14].
The targets that evoke SSVEPs are encoded in various
ways [4], [15], and the users make a selection by shifting
their attention to the desired target in SSVEP based BCIs.
Among other BCI modalities which depend on other EEG
signals (e.g., slow cortical potentials, sensorimotor rhythms,
and event-related potentials), SSVEP based BCIs have the
advantage of high information transfer rate (ITR) and short
training duration to operate the device [16].

SSVEPs are sinusoidal-like waveforms, and they appear
at the same fundamental frequency of the driving stimulus
and its harmonics (Fig. 2) [13]. However, spontaneous oscil-
lations (i.e., background activity), which are not related to
the stimulation, exist in the EEG recordings as well and a
robust recognition algorithm is required to build a reliable
BCI system. Numerous methods have been proposed for
SSVEP recognition in the last decade [16]–[22]. Power spec-
tral density analysis (PSDA) is a typical approach since the
distinctive features of SSVEPs are observed in the frequency
domain [16]. However, PSDA is susceptible to noise, and
long durations are needed to increase the signal to noise ratio
(SNR). A multivariable statistical method, namely canonical
correlation analysis (CCA) [17], [19] exploits the multiple
channel covariance information to enhance SNR and provide
a better recognition accuracy compared to PSDA. Simple
implementation, high robustness, and better ITR performance
have made CCA attractive in SSVEP recognition research.
On the other hand, CCA is not efficient to extract the discrim-
inative information embedded in the harmonic components

FIGURE 2. SSVEP response to frequency-coded stimuli at the occipital
region of the brain.

of SSVEPs, and filter-bank canonical correlation analysis
(FBCCA) [20] is proposed to handle this issue. Although
FBCCA captures the distinct spectral properties of multi-
ple harmonic frequencies successfully, it neglects any cor-
relation information between SSVEP responses at different
frequencies [21]. Furthermore, this approach disregards the
frequency selective nature of SSVEPs due to the utilization of
wide-band filters which cover the whole stimuli bandwidth.

To fully exploit and further increase the potential of
SSVEP based BCIs, it is necessary to employ an accurate
SSVEP model in the recognition algorithm. For example,
the inclusion of SSVEP harmonics in a recognition algo-
rithm improves the accuracy [23] since the spontaneous EEG
oscillations typically do not present any harmonic compo-
nents [24]. Also, the subject-specific nature of SSVEPs is
handled by an individualized parameter optimization and
calibration (e.g., time-window duration, number of harmon-
ics considered, and electrode location) [16], [17]. Moreover,
the SSVEP response is frequency selective, and its power
gets weaker as the frequency of the stimuli increases [11],
[13], [15], [18]. Although the power of EEG background
activity decreases as well with the increase in frequency
(approximately with a 1/f behavior [12]), the resultant SNR
is still considerably low at high frequencies. Hence, a visual
stimulus at a high frequency can almost be indistinguishable
in the presence of noise as shown in Fig. 3. This inherent
feature not only results in a lower recognition accuracy but
also causes exclusion of the stimulus frequencies that evoke
weak SSVEP response and decreases the total number of
available commands in a BCI system.

This paper introduces bio-inspired filter banks (BIFBs)
for improved SSVEP frequency recognition. The BIFBs are
designed considering the inherent biological characteristics
of SSVEPs, namely frequency selectivity, subject specificity,
and harmonic SSVEP responses. They are utilized in the
feature extraction stage to increase the separability of classes.
The proposed approach is tested on datasets available online,
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FIGURE 3. The PSD of EEG signal when a visual stimulus at 28 Hz is
presented to a participant.

and its performance is compared with the performances of
various SSVEP frequency recognition methods. The prelimi-
nary results without an elaborate classification algorithm or a
cross-validation procedure were presented in [25]. Also, a fair
performance comparison with the utilization of unit filters is
provided to validate the effectiveness of the proposed filter
bank design in this study. The results show a notable ITR
improvement with the bio-inspired design and highlight the
promising potential of BIFBs in the high-frequency band,
which causes less visual fatigue. Hence, the proposed method
leads to more reliable, efficient, and user-friendly SSVEP-
based BCI systems.

This article is structured as follows. Section II describes the
performance metrics, evaluation methodology, and datasets.
The proposed method is explained in detail, along with
the comparison methods. Section III presents the perfor-
mance of the SSVEP recognition algorithms and provides
a thorough analysis of the results. Finally, Section IV sum-
marizes the contributions and addresses future research
directions.

II. METHODS AND MATERIALS
A. EVALUATION METRIC
The most common measure to evaluate the performance of a
BCI system is ITR [3], which can be expressed in bits/minutes
as follows:

ITR = s
[
log2(K + δ log2δ + (1− δ) log2

(
1− δ
K − 1

)]
(1)

where K stands for the number of equiprobable commands,
s denotes the commands performed per minute, and δ repre-
sents the accuracy of target recognition. In general, the BCIs
with high ITR have a large number of commands. However,
K is fixed in these datasets, and the ITR can be boosted with
the joint optimization of s and δ. Also, a threshold can be set
either on s or δ based on user comfort.

B. DATASETS AND PRE-PROCESSING
Two publicly-available datasets are utilized in this study to
test the proposed method. Dataset-A [18] consists of EEG
recordings belong to four healthy subjects with normal or cor-
rected to normal vision. Small reversing black and white
checkerboards were presented to the participants sequentially
(i.e., one stimulus at a time) at three different frequencies
(8 Hz, 14 Hz, and 28 Hz) during the recordings. The brain
signal acquisition was performed at a sampling rate of 256 Hz
with 128 active electrodes using the ABC layout standard1 for
electrode placement. The EEG recordings were re-referenced
using the central Cz electrode and band-pass filtered from
6 Hz to 35 Hz. The subjects experienced a visual stimulus
for 15 seconds in each trial. Each unique visual stimulus
was repeated for five times, which corresponds to 60 trials
(4 subjects x 3 stimuli x 5 repetitions) in total. Dataset-B [26],
which is provided by another research institute, consists of
EEG recordings belong to four healthy subjects as well.
A single flickering box that changes color rapidly from black
to white at seven different frequencies (6 Hz, 6.5 Hz, 7 Hz,
7.5 Hz, 8.2 Hz, 9.3 Hz, and 10 Hz) was used as the visual
stimulus. The brain signal acquisition was performed at a
sampling rate of 512 Hz with three electrodes (Oz, Fpz, Pz)
using the 10-20 layout standard for electrode placement. The
EEG recordings were referenced using the electrode Fz, and
an analog notch filter at 50 Hz was applied to suppress the
power-line noise. The subjects experienced a visual stimulus
for 30 seconds in each trial. Each unique visual stimulus was
repeated at least three times with 92 trials in total.

An overview of these datasets is provided in Table 1, and
the reader is referred to individual references for a more
detailed description of the datasets. Dataset-A is selected to
include a stimulus at the high-frequency band that evokes
weak SSVEP response, whereas Dataset-B is selected to deal
with the frequency selectivity even in a narrow band.

C. PROPOSED METHOD
The pre-processed EEG signal from the occipital channel
Oz is segmented with an overlap, and each segment is win-
dowed using a Hamming function [27]. Afterward, the power
spectral density of the signal is estimated by the following
equation:

SEEG[f ] =
1
N

∣∣∣∣∣
N−1∑
n=0

EEG[n] w[n] e−j(
2π fn
N )

∣∣∣∣∣
2

(2)

where EEG[n] and w[n] represent the discrete EEG signal
and Hamming window function, respectively. The features
for SSVEP frequency recognition are extracted by multi-
plying SEEG with the frequency response of BIFBs. The
filter banks are designed in such a way that they capture
the inherent biological characteristics of the SSVEPs. It is
known that the SSVEPs are frequency-selective, and their
power gets weaker as the frequency of the visual stimuli

1https://www.biosemi.com/headcap.htm
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TABLE 1. Overview of the SSVEP datasets.

increases [11], [13], [15], [18]. Figure 4 presents the average
SSVEP response power to pattern reversal stimuli ranging
from 5.1 Hz to 84 Hz [18]. Especially, the stimuli at the high-
frequency bands elicit weak responses and make the recog-
nition challenging. Consequently, the gain and bandwidth of
the filters are designed considering the frequency-selective
nature of SSVEPs. Assume that there are K target stimulus
frequencies (f̃k ), where k = {1, . . . ,K }, in a BCI system.
The array of filters in BIFBs is expressed as follows:

H k
BIFB[f ] :


f −(f̃k−BWk/2)

BWk
gk , (f̃k − BWk/2) ≤ f ≤ f̃k

(f̃k+BWk/2)−f
BWk

gk , f̃k ≤ f ≤ (f̃k + BWk/2)

0, otherwise
(3)

where BWk and gk represent the bandwidth and gain of
the k th filter, respectively. Initially, higher bandwidth and
gain are set to frequencies with low SSVEP response power.
Subsequently, these parameters are optimized for individual
users in order to counter the subject-specific nature of SSVEP
response [16], [17]. A grid search algorithm performed this
hyper-parameter optimization through a manually specified
subset of the hyper-parameter space [28]. It should be noted
that the initial parameter guesses considering the average
SSVEP response decrease the computational complexity.
Also, SSVEPs occur at the fundamental frequency of the
driving stimulus and its harmonics, whereas spontaneous
EEG oscillations typically do not present any harmonic com-
ponents [24]. Accordingly, filters at the SSVEP harmonic fre-
quencies are included in the filter bank design (i.e., HK+1

BIFB[f ]
for 2f̃1, . . . , H

K+K
BIFB [f ] for 2f̃k ) as well to improve the recog-

nition accuracy as shown in Fig. 5. Finally, the features are
extracted using the BIFBs as follows:

xi =
∑
f

SEEG[f ]H i
BIFB[f ] i = 1, . . . , 2K (4)

where xi represents the elements of feature vector X .
The extracted features for SSVEP recognition are clas-

sified with a logistic regression model using the one-vs-all
strategy. Assume K classes where each class represents a
target stimulus frequency. The hypothesis function predicts
whether a given input belongs to k th class or not, and it is
formulated by the following equation:

hkθ (X̃ ) = g(θTk X̃ ) =
1

1+ e−θ
T
k X̃
∀k (5)

FIGURE 4. SSVEP response to pattern reversal stimuli ranging in
frequency from 5.1 Hz to 84 Hz [18].

FIGURE 5. A bio-inspired filter design to capture SSVEP response at ˜fk .

where g represents the sigmoid function, X̃ denotes the aug-
mented feature vector (i.e., [1, x1, . . . x2K ]) with a size of
2K + 1, and θk stands for the mapping weight vector of
k th class. θk is chosen in such a way that it minimizes the
cost function J (θk ), which is a distance metric between the
prediction and the actual class label (y), by the following
equation [29]:

J (θk ) =
1
M

M∑
m=1

[
−y(m) log

(
(hθ (X̃ (m))

)
− (1− y(m))

× log
(
1− hθ (X̃ (m))

)]
+

λ

2M

2K∑
j=1

θ2kj ∀k (6)

where
{(
X (m), y(m)

)
; m = 1, . . . ,M

}
represents the training

set with M training examples and y ε {0, 1}. The leave-
one-out cross-validation is performed to resample the train-
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FIGURE 6. (a) A sample BIFB design that mainly deals with low SNR at the high-frequency band (Dataset-A); (b) A sample BIFB design that
mainly deals with frequency selectivity (Dataset-B).

FIGURE 7. Flowchart of the signal processing stages of an SSVEP-based BCI using the proposed BIFBs.

ing data for true objectivity and its suitability for small
datasets [30]. The last summative term in Eq. 6 prevents
over-fitting the classifier and its precision is controlled by
the regularization parameter λ. J (θk ) is minimized with a
gradient descent algorithm, and optimal θk is calculated
for ∀k .

After the training stage, the probability that a given input
belongs to each class is calculated using the hypothesis
function in Eq. 5, and the class with the highest probabil-
ity is labeled as a candidate frequency for recognition as
follows:

fc = argmax
k

hkθ (X ) ∀k (7)

The candidate frequency is labeled as recognized
(i.e., f̂ = fc) when the same fc occurs at least t times
in the last T iterations, where the typical values for these
parameters are three and four, respectively. If the selection
criteria are not satisfied during the given period, it is evaluated
as an unsuccessful recognition. A flowchart of the proposed
BIFB method for SSVEP frequency recognition is presented
in Fig. 7.

D. COMPARISON METHODS
The performance of the proposed algorithm is compared
with the performances of various SSVEP frequency recogni-
tion algorithms. PSDA and CCA are selected as comparison
methods since they are the most common techniques in the
literature to compare a new algorithm [19]–[21]. However,
there is no training in these traditional approaches, and a
direct comparison may not be proper. Therefore, the BIFBs
are replaced with unit filters (UFs), and a similar classical
training process is performed for classification to examine the
effectiveness of the proposed bio-inspired filter design fairly.
Also, the parameters are optimized/calibrated to maximize
the ITR performance in all SSVEP frequency recognition
methods.

1) UF
It is an SSVEP frequency recognition method, which follows
a similar procedure to the proposed scheme in Subsection II-
C except for the utilization of BIFBs. Instead, the features are
extracted with unit filters, and they are expressed as follows:

H k
UF [f ] :

{
1 (f̃k − BWD) ≤ f ≤ (f̃k + BWD)
0 otherwise

∀k (8)
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TABLE 2. Performance evaluation of SSVEP recognition algorithms on Dataset-A .

TABLE 3. Performance evaluation of SSVEP recognition algorithms on Dataset-B.

where D is the index for dataset, and BWD equals to 1 for
Dataset-A whereas it is equal to 0.5 for Dataset-B. Since the
only difference between BIFB and UF methods is the filter
type utilized in the feature extraction stage (like a controlled
experiment), any performance difference can be attributed to
the filter bank design.

2) PSDA
The EEG signal from the occipital channel is pre-processed,
and PSD is estimated similar to the proposed approach. After-
ward, the peak of the spectrum is determined as the target
frequency (̂f ) in the traditional PSDA approach [16]. In this
study, the harmonic responses are considered in the PSDA
algorithm as well for a fair comparison. Initially, the class
values, where each class represents a target frequency, are
calculated by summing the energy in the fundamental fre-
quency and harmonic bands. Subsequently, the class that has
the maximum value is recognized as SSVEP target frequency
as follows:

ck =
∑
f

SEEG[f ]H k
UF [f ]+

∑
f

SEEG[f ]H
K+k
UF [f ] (9)

f̂ = max
k

ck ∀k (10)

3) CCA
The final comparison method, CCA, is a multivariable sta-
tistical method that aims to reveal the underlying correlation

between two sets of data [31] and has been widely used for
SSVEP frequency recognition [17]. If A is a multi-channel
EEG signal, and B is the Fourier series of a square-wave
stimulus signal, CCA searches for the linear combination
vectors (γa, γb) that maximize the correlation between α =
γ Ta A and β = γ Tb B by optimizing the following equation:

max
γaγb

ρ(α, β) =
E[γ Ta AB

T γb]√
E[γ Ta AAT γa]E[γ

T
b BB

T γb]
(11)

The optimization problem in Eq. 11 can be solved by a gen-
eralized eigenvalue decomposition [32], and the maximum
correlation coefficient (ρ) is computed for each Bk . Finally,
the SSVEP target frequency is recognized as follows:

f̂ = max
k
ρk ∀k (12)

A similar pre-processing procedure to PSDA is applied to the
multi-channel EEG signal (i.e., A) in CCA as well.

III. RESULTS AND DISCUSSION
The proposed BIFB method for SSVEP frequency recogni-
tion is tested on two datasets that include EEG recordings
of eight subjects in 152 trials. The system performance is
evaluated in terms of mean recognition time (MRT), recog-
nition accuracy, and ITR by implementing a leave-one-out
cross-validation methodology. It is worth to note that ITR
changes logarithmically with the number of available com-
mands in Eq. 1. The number of commands in each dataset
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FIGURE 8. The mean recognition accuracy and ITR performance of the SSVEP recognition methods.

TABLE 4. Statistical analysis of ITR difference between BIFB and
comparison methods by using paired t-Test.

is different, and hence ITRs need to be interpreted separately.
The performance of the proposed algorithm is compared with
three baseline methods, and the results are listed in Table 2
and Table 3. The statistical significance of these results is
examined by paired t-tests [33], and corresponding p-values
are presented in Table 4. No multiple comparison correction
is considered since the study is restricted to a small number
of planned comparisons, and the results of individual tests are
important [34].

The traditional PSDA approach requires longer time win-
dows compared to the other three methods to provide suffi-
cient accuracy, which leads to a longer MRT and a lower ITR.
A shorterMRT not only improves the ITR but also diminishes
the visual fatigue due to a reduced gazing duration. Also,
PSDA, as well as CCA, is incapable of detecting stimuli in the
high-frequency band. The low recognition accuracy of 28 Hz
stimulus, which is presented in Table 5, explains the poor
performance results of these algorithms in Dataset-A. On the
other hand, there are no high-frequency stimuli in Dataset-B,
but the frequency selectivity decreases the ITR performances
of PSDA, CCA, and UF.

PSDA and CCA have the advantage of not requiring train-
ing, and just a straightforward calibration that includes the
selection of electrode locations, number of harmonics, and
timewindow duration is sufficient to perform the recognition.

TABLE 5. SSVEP recognition accuracy performance for 28 Hz stimulus in
Dataset-A.

However, these algorithms disregard the correlation informa-
tion between the classes. A simple logistic regression model
can capture the between-class information and enhance per-
formance. Another classification model may achieve better
performance. However, it is beyond the scope of this study,
and [35]–[37] can be referred for more detailed information.
The SSVEP response is subject-specific, but the inter-trial
variance is low within a subject. Therefore, one-time indi-
vidualized training is acceptable to acquire a higher ITR.
Furthermore, BIFB and UF implement the same classifier.
However, a feature extraction stage with BIFB, which cap-
tures the underlying biological features of SSVEPs, increases
the separability and outperforms UF for SSVEP frequency
recognition in both datasets.

User comfort is another important criterion in BCI design
besides the ITR. It is reported that high-frequencies cause less
visual fatigue induced by the flicker [16], [38]. The promising
performance of BIFBs in the high-frequency band may let
the designers include this low SNR band in their BCI system.
As a result, the user discomfort caused by the flicker reduces,
and also ITR increases due to the increase in number of
available commands. Furthermore, the number of electrodes
is critical for user comfort. Although it is preferable to have a
dense sensor systemwhilemapping the brain, it is not suitable
for practical BCI applications. In this study, BIFB utilized
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the information from one electrode for the sake of simplicity.
The results show that a single-channel algorithm can provide
superior performance compared to a multi-channel algorithm
(i.e., CCA), and enhance user comfort as well. However,
the use of BIFBs is not restricted to single-channel utiliza-
tion, and recognition accuracy might be further improved by
taking advantage of multi-channel information in the feature
extraction stage. For example, a simple way to utilize the
BIFBs with multi-channel EEG would be to apply them on
signals from the occipital channels and pass the weighted
average of the extracted features to the feature classification
stage.

IV. CONCLUSION
A novel SSVEP recognition method that exploits the inher-
ent biological characteristics of SSVEPs is introduced in
this paper. The BIFBs capture frequency selectivity, subject
specificity, and harmonic SSVEP responses in the feature
extraction stage and enhance the separability of classes. The
proposed method is tested on two benchmark datasets avail-
able online and outperforms several recognized recognition
algorithms. The BIFBs are promising particularly in the high-
frequency band where SNR is low. Hence, this method not
only increases the ITR of an SSVEP based BCI but also might
improve its user comfort due to less visual fatigue. The results
show the potential of bio-inspired design, and the findings
will be extended to include further SSVEP characteristics.
First, the best pulse shape to utilize in the filter banks remains
unknown. The triangular filters in this study might need to
be replaced with another shape such as Gaussian or raised-
cosine to improve the performance further. Second, the BIFBs
should incorporate the time-characteristics of SSVEPs. The
onset-delay of the response is frequency selective [18] and
including this distinct feature might increase the recognition
accuracy as well. Last, the SSVEP response also strongly
depends on the stimuli type [15], [39], and the BIFB adap-
tation considering the visual stimuli requires further investi-
gation.

BCIs and their associated technologies will shape the
future of communication, control, and security as a part of
WBAN. To fully exploit and further increase the potential
of these devices, it is necessary to employ an accurate model
of the driving physiological signal in the recognition algo-
rithm. Bio-inspired designs such as the proposed BIFBs will
be the key in enabling the development of reliable, efficient,
and high-performance BCI systems.

REFERENCES
[1] J. J. Shih, D. J. Krusienski, and J. R. Wolpaw, ‘‘Brain–computer interfaces

in medicine,’’ Mayo Clin., vol. 87, no. 3, pp. 268–279, Mar. 2012.
[2] J. J. Vidal, ‘‘Toward direct brain–computer communication,’’ Annu. Rev.

Biophys. Bioeng., vol. 2, no. 1, pp. 157–180, 1973.
[3] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and

T. M. Vaughan, ‘‘Brain–computer interfaces for communication and con-
trol,’’ Clin. Neurophysiol., vol. 113, no. 6, pp. 767–791, Jun. 2002.

[4] S. Gao, Y. Wang, X. Gao, and B. Hong, ‘‘Visual and auditory brain–
computer interfaces,’’ IEEE Trans. Biomed. Eng., vol. 61, no. 5,
pp. 1436–1447, May 2014.

[5] J. F. Valenzuela-Valdes, M. A. Lopez, P. Padilla, J. L. Padilla, and
J. Minguillon, ‘‘Human neuro-activity for securing body area networks:
Application of brain–computer interfaces to people-centric Internet of
Things,’’ IEEE Commun. Mag., vol. 55, no. 2, pp. 62–67, Feb. 2017.

[6] G. Schirner, D. Erdogmus, K. Chowdhury, and T. Padir, ‘‘The future of
human-in-the-loop cyber-physical systems,’’ Computer, vol. 46, no. 1,
pp. 36–45, Jan. 2013.

[7] S. Movassaghi, M. Abolhasan, J. Lipman, D. Smith, and A. Jamalipour,
‘‘Wireless body area networks: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 16, no. 3, pp. 1658–1686, Jan. 2014.

[8] A. F. Demir, Z. E. Ankarali, Q. H. Abbasi, Y. Liu, K. Qaraqe, E. Serpedin,
H. Arslan, and R. D. Gitlin, ‘‘In vivo communications: Steps toward the
next generation of implantable devices,’’ IEEE Veh. Technol. Mag., vol. 11,
no. 2, pp. 32–42, Jun. 2016.

[9] A. F. Demir, Q. H. Abbasi, Z. E. Ankarali, A. Alomainy, K. Qaraqe,
E. Serpedin, and H. Arslan, ‘‘Anatomical region-specific in vivo wire-
less communication channel characterization,’’ IEEE J. Biomed. Health
Inform., vol. 21, no. 5, pp. 1254–1262, Sep. 2017.

[10] M. Wang, R. Li, R. Zhang, G. Li, and D. Zhang, ‘‘A wearable SSVEP-
based BCI system for quadcopter control using head-mounted device,’’
IEEE Access, vol. 6, pp. 26789–26798, 2018.

[11] F. B. Vialatte, M. Maurice, J. Dauwels, and A. Cichocki, ‘‘Steady-state
visually evoked potentials: Focus on essential paradigms and future per-
spectives,’’ Prog. Neurobiol., vol. 90, pp. 418–438, Apr. 2010.

[12] A. Paris, G. K. Atia, A. Vosoughi, and S. A. Berman, ‘‘A new statistical
model of electroencephalogram noise spectra for real-time brain–computer
interfaces,’’ IEEE Trans. Biomed. Eng., vol. 64, no. 8, pp. 1688–1700,
Aug. 2017.

[13] C. S. Herrmann, ‘‘Human EEG responses to 1–100 Hz flicker: Resonance
phenomena in visual cortex and their potential correlation to cognitive
phenomena,’’ Exp. Brain Res., vol. 137, nos. 3–4, pp. 346–353, Apr. 2001.

[14] J. Wolpaw and E. W. Wolpaw, Brain-Computer Interfaces: Principles and
Practice. New York, NY, USA: Oxford Univ. Press, Jan. 2012.

[15] D. Zhu, J. Bieger, G. G. Molina, and R. M. Aarts, ‘‘A survey of stimu-
lation methods used in SSVEP-based BCIs,’’ Comput. Intell. Neurosci.,
vol. 2010, Jan. 2010, Art. no. 1.

[16] Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gao, ‘‘A practical VEP-
based brain–computer interface,’’ IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 14, no. 2, pp. 234–240, 2006.

[17] Z. Lin, C. Zhang, W. Wu, and X. Gao, ‘‘Frequency recognition based
on canonical correlation analysis for SSVEP-based BCIS,’’ IEEE Trans.
Biomed. Eng., vol. 54, no. 6, pp. 1172–1176, Jun. 2007.

[18] H. Bakardjian, T. Tanaka, and A. Cichocki, ‘‘Optimization of SSVEP brain
responses with application to eight-command brain–computer interface,’’
Neurosci. Lett., vol. 469, pp. 34–38, Jan. 2010.

[19] Y. Zhang, G. Zhou, J. Jin, M. Wang, X. Wang, and A. Cichocki,
‘‘L1-regularizedmultiway canonical correlation analysis for SSVEP-based
BCI,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21, no. 6, pp. 887–896,
Nov. 2013.

[20] X. Chen, Y. Wang, S. Gao, T.-P. Jung, and X. Gao, ‘‘Filter bank canon-
ical correlation analysis for implementing a high-speed SSVEP-based
brain–computer interface,’’ J. Neural Eng., vol. 12, no. 4, Aug. 2015,
Art. no. 046008.

[21] H. Wang, Y. Zhang, N. R. Waytowich, D. J. Krusienski, G. Zhou,
J. Jin, X. Wang, and A. Cichocki, ‘‘Discriminative feature extraction via
multivariate linear regression for SSVEP-based BCI,’’ IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 24, no. 5, pp. 532–541, May 2016.

[22] M. Bittencourt-Villalpando and N. M. Maurits, ‘‘Stimuli and feature
extraction algorithms for brain–computer interfaces: A systematic com-
parison,’’ IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 9,
pp. 1669–1679, Sep. 2018.

[23] G. R. Müller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller, ‘‘Steady-
state visual evoked potential (SSVEP)-based communication: Impact of
harmonic frequency components,’’ J. Neural Eng., vol. 2, no. 4, p. 123,
2005.

[24] A. Birca, L. Carmant, A. Lortie, and M. Lassonde, ‘‘Interaction between
the flash evoked SSVEPs and the spontaneous EEG activity in children and
adults,’’ Clin. Neurophysiol., vol. 117, no. 2, pp. 279–288, Feb. 2006.

[25] A. F. Demir, H. Arslan, and I. Uysal, ‘‘Bio-inspired filter banks for SSVEP-
based brain–computer interfaces,’’ inProc. IEEE-EMBS Int. Conf. Biomed.
Health Inform., Las Vegas, NV, USA, Feb. 2016, pp. 144–147.

[26] AVI SSVEP Dataset. Accessed: Nov. 4, 2019. [Online]. Available:
https://www.setzner.com/avi-ssvep-dataset/

160302 VOLUME 7, 2019



A. F. Demir et al.: BIFBs for Frequency Recognition of SSVEP-Based BCIs

[27] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. Upper Saddle River, NJ, USA: Pearson, 2009.

[28] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘‘Algorithms for hyper-
parameter optimization,’’ in Proc. Adv. Neural Inf. Process Syst., 2011,
pp. 2546–2554.

[29] A. Ng, ‘‘CS229: Machine learning,’’ Stanford Univ., Stanford, CA, USA,
Lect. Notes 1, 2019. [Online]. Available: http://cs229.stanford.edu/

[30] O. Irsoy, O. T. Yildiz, and E. Alpaydin, ‘‘Design and analysis of clas-
sifier learning experiments in bioinformatics: Survey and case studies,’’
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 9, no. 6, pp. 1663–1675,
Nov. 2012.

[31] H. Hotelling, ‘‘Relations between two sets of variates,’’ Biometrika,
vol. 28, nos. 3–4, pp. 321–377, 1936.

[32] O. Friman, J. Cedefamn, P. Lundberg, M. Borga, and H. Knutsson, ‘‘Detec-
tion of neural activity in functional MRI using canonical correlation anal-
ysis,’’ Magn. Reson. Imag., vol. 45, pp. 323–330, Feb. 2001.

[33] M. H. DeGroot and M. J. Schervish, Probability and Statistics, 4th ed.
London, U.K.: Pearson, 2012.

[34] R. A. Armstrong, ‘‘When to use the Bonferroni correction,’’ Ophthalmic
Physiol. Opt., vol. 34, no. 5, pp. 502–508, 2014.

[35] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, ‘‘A review
of classification algorithms for EEG-based brain–computer interfaces,’’
J. Neural Eng., vol. 4, no. 2, p. R1, 2007.

[36] S. N. Carvalho, T. B. S. Costa, L. F. S. Uribe, D. C. Soriano, G. F. G. Yared,
L. C. Coradine, and R. Attux, ‘‘Comparative analysis of strategies for
feature extraction and classification in SSVEP BCIs,’’ Biomed. Signal
Process. Control, vol. 21, pp. 34–42, Aug. 2015.

[37] V. P. Oikonomou, G. Liaros, K. Georgiadis, E. Chatzilari, K. Adam,
S. Nikolopoulos, and I. Kompatsiaris, ‘‘Comparative evaluation of state-of-
the-art algorithms for SSVEP-based BCIs,’’ Feb. 2016, arXiv:1602.00904.
[Online]. Available: https://arxiv.org/abs/1602.00904

[38] P. F. Diez, V. A. Mut, E. M. A. Perona, and E. L. Leber, ‘‘Asynchronous
BCI control using high-frequency SSVEP,’’ J. Neuroeng. Rehabil., vol. 8,
p. 39, Jul. 2011.

[39] F. Teng, ‘‘An SSSVEP brain–computer interface: A machine learning
approach,’’ Ph.D. dissertation, Dept. Comput. Inf. Sci., Univ. Mississippi,
Oxford, MS, USA, 2012.

ALI FATIH DEMIR (S’08) received the B.S.
degree in electrical engineering from Yıldız
Technical University, Istanbul, Turkey, in 2011,
and the M.S. degrees in electrical engineering
and applied statistics from Syracuse University,
Syracuse, NY, USA, in 2013. He is currently pur-
suing the Ph.D. degree with the Wireless Com-
munication and Signal Processing (WCSP) Group,
Department of Electrical Engineering, University
of South Florida, Tampa, FL, USA. His current

research interests include PHY and MAC aspects of wireless communi-
cation systems, in vivo wireless communication systems, and signal pro-
cessing/machine learning algorithms for brain–computer interfaces. He is
also a member of the WCSP Group, Department of Electrical Engineering,
University of South Florida.

HÜSEYIN ARSLAN (S’95–M’98–SM’04–F’16)
received the B.S. degree in electrical and elec-
tronics engineering from Middle East Techni-
cal University, Ankara, Turkey, in 1992, and the
M.S. and Ph.D. degrees in electrical engineer-
ing from Southern Methodist University, Dallas,
TX, USA, in 1994 and 1998, respectively. From
January 1998 to August 2002, he was with the
research group of Ericsson Inc., NC, USA, where
he was involved with 2G and 3G wireless com-

munication systems. He is currently a Professor of electrical engineering
with the University of South Florida, Tampa, FL, USA, and the Dean of the
College of Engineering and Natural Sciences, İstanbul Medipol University,
İstanbul, Turkey. His current research interests include 5G and beyond,
waveform design, advanced multiple accessing techniques, physical layer
security, beamforming and massive MIMO, cognitive radio, dynamic spec-
trum access, interference management (avoidance, awareness, and cancel-
lation), co-existence issues on heterogeneous networks, aeronautical (high
altitude platform) communications, millimeter-wave communications, and
in vivo communications. He is a member of the Editorial Board for the IEEE
COMMUNICATIONS SURVEYS AND TUTORIALS and the Sensors Journal.

ISMAIL UYSAL (S’04–M’08) received the B.S.
degree in electrical and electronics engineering
from Middle East Technical University, Ankara,
Turkey, in 1998, and the M.S. and Ph.D. degrees
in electrical and computer engineering from the
University of Florida (UF), Gainesville, FL, USA,
in 2006 and 2008, respectively. From 2008 to
2010, he was a Postdoctoral Research Fellow with
the UF Research Center for Food Distribution and
Retailing. Since 2010, he has been with the Uni-

versity of South Florida, where he is currently an Assistant Professor of
electrical engineering and the Director of the Radio Frequency Identification
(RFID) Lab for Applied Research, College of Engineering. His research
interests include deep machine learning theory and applications in semi-
supervised and unsupervised settings, data-oriented applications of RFID
systems in healthcare and food supply chains, and signal processing algo-
rithms for brain–computer interfaces.

VOLUME 7, 2019 160303


	INTRODUCTION
	METHODS AND MATERIALS
	EVALUATION METRIC
	DATASETS AND PRE-PROCESSING
	PROPOSED METHOD 
	COMPARISON METHODS
	UF
	PSDA
	CCA


	RESULTS AND DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	ALI FATIH DEMIR
	HÜSEYIN ARSLAN
	ISMAIL UYSAL


